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• Metric and Palatini gravity


• Einstein-Cartan gravity


• Einstein-Cartan portal to dark matter 


• Summary 
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Metric and Palatini gravity

S =
M2

P

2 ∫ d4x |g | RLowest order action

Rρ
σμν = ∂μΓρ

νσ − ∂νΓρ
μσ + Γρ

μλΓ
λ
νσ − Γρ

νλΓ
λ
μσ

Riemann curvature tensor is expressed via connection  asΓρ
νσ

Metric gravity

•  is symmetric with respect to lower indices


•  is expressed in terms of metric via 


• The dynamical variable is   , variation with respect to  gives 
the Einstein equations

Γρ
νσ

Γρ
νσ gμν ; α = 0

gμν gμν
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Metric and Palatini gravity

S =
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•  is symmetric with respect to lower indices


• The dynamical variables are   and , 


• Variation with respect to  gives the relation between  and  
variation with respect to  gives the Einstein equations
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νσ
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νσ

Γρ
νσ Γρ

νσ gμν
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Metric and Palatini gravity
S =

M2
P

2 ∫ d4x |g | RLowest order action

Rρ
σμν = ∂μΓρ

νσ − ∂νΓρ
μσ + Γρ

μλΓ
λ
νσ − Γρ

νλΓ
λ
μσ

Riemann curvature tensor is expressed via connection  asΓρ
νσ

Palatini gravityMetric gravity
 is compatible with metricΓρ

νσ

∇αgμν = 0

 is independentΓρ
νσ

δS
δΓα

μν
∝ ∇αgμν

δS
δgμν

∝ Rμν −
1
2

gμνR

without matter Palatini gravity is equivalent to metric gravity 
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Einstein-Cartan gravity

Rρ
σμν = ∂μΓρ

νσ − ∂νΓρ
μσ + Γρ

μλΓ
λ
νσ − Γρ

νλΓ
λ
μσ

Riemann curvature tensor is expressed via connection  asΓρ
νσ

Einstein-Cartan(-Sciama–Kibble) theory

gauging of the Poincaré group, Utiyama ‘56, Kibble ‘61


Symmetry of  with respect to lower indices is not assumed.

Torsion tensor:  

Γρ
νσ
Tρ

νσ = Γρ
νσ − Γρ

σν

Variation with respect to  gives the relation between  and  

Variation with respect to  gives the Einstein equations

On the solution 

Γρ
νσ Γρ

νσ gμν
gμν

Tρ
νσ = 0

Einstein-Cartan pure gravity is equivalent to metric gravity 
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Einstein-Cartan gravity, Holst term and Nieh-Yan invariant

Symmetry of  with respect to lower indices is not assumed.

Torsion tensor:  

Γρ
νσ
Tρ

νσ = Γρ
νσ − Γρ

σν

Einstein-Cartan pure gravity is equivalent to metric gravity 
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S =
M2

P

2 ∫ d4x |g | R +
M2

P

2γ̄ ∫ d4x |g | ϵμνρσRμνρσ + M2 ∫ d4x∂μ ( |g | ϵμνρσTνρσ)
as in metric gravity Holst term Nieh-Yan invariant

 — Barbero-Immirzi parameter γ̄

Variation with respect to  gives the relation between  and  

Variation with respect to  gives the Einstein equations

On the solution 

Γρ
νσ Γρ

νσ gμν
gμν

Tρ
νσ = 0
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Higgs inflation in EC gravity

S =
M2

P

2 ∫ d4x |g | R +
M2

P

2γ̄ ∫ d4x |g | ϵμνρσRμνρσ + M2 ∫ d4x∂μ ( |g | ϵμνρσTνρσ)

M. Långvik, J. Ojanperä, S. Raatikainen, S. Räsänen, 

Higgs inflation with the Holst and the Nieh-Yan term, arXiv:2007.12595


M. Shaposhnikov, A. Shkerin, IT, and Sebastian Zell:, 

Higgs inflation in Einstein-Cartan gravity, arXiv:2007.14978


Non-minimal coupling to Higgs can be added

Talk by Sebastian Zell [link]

https://indico.quarks.ru/event/2020/contributions/750/attachments/649/696/Quarks_final_SebastianZell.pdf
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Smetric  = ∫ d4x |g |
M2

P

2
R − [ 1

2Ω2 (∂μh)
2

+
λ
4

h4

Ω4 ] −
3M2

P

4 (γ2 + 1) (
∂μη̄
Ω2

+ ∂μγ)
2

γ =
1

γ̄Ω2 (1 +
ξγh2

M2
P ), η̄ =

ξηh2

M2
P

Modified kinetic term: essential for inflation and non-perturbative 
generation of the electroweak scale

[Mikhail Shaposhnikov, Andrey Shkerin, and Sebastian Zell, 2001.09088]

talk by Mikhail Shaposhnikov [link] 

EC gravity action with the Higgs field

https://www.youtube.com/watch?v=CDGiUQdtdTc
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Einstein-Cartan portal to dark matter

S =
M2

P

2 ∫ d4x |g | R+
M2

P

2γ ∫ d4x |g | ϵμνρσRμνρσ + M2 ∫ d4x∂μ ( |g | ϵμνρσTνρσ)

+ fermionic  part
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Fermonic action in Einstein-Cartan gravity
• Appropriate variables: 


•  - tetrad field (translations)


•  - spin connection (local Lorentz transformations)


• Fermionic action

ea
μ

Aab
μ

S =
i
2 ∫ d4x −g (Ψ̄γμDμψ − h . c . )

DμΨ = (∂μ +
1
8

Aμab [γa, γb]) Ψ
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Fermonic action in Einstein-Cartan gravity

Non-vanishing torsion allows introducing new couplings 

S =
i
2 ∫ d4x −g (Ψ̄ (1 − iα − iβγ5) γμDμΨ − h . c . )

L. Freidel, D. Minic, T. Takeuchi, Quantum gravity, torsion, parity violation and all that, 
hep-th/0507253. 

S. Alexandrov, Immirzi parameter and fermions with non-minimal coupling, 0802.1221. 


 — real parametersα, β
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Fermonic action in Einstein-Cartan gravity

Integrating out torsion one arrives at

new universal four-fermion interaction

ℒ4f =
−3α2

16M2
P

VμVμ −
3αβ
8M2

P
VμAμ +

3 − 3β2

16M2
P

AμAμ

Vμ = N̄γμN + ∑
X

X̄γμX

Aμ = N̄γ5γμN + ∑
X

X̄γ5γμX
This interaction is 

universal and also affects a new 
hypothetical singlet particle— 

DM candidate

 are SM fermionsX
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DM production via Four-Fermion Interactions

ℒ4f =
−3α2

16M2
P

VμVμ −
3αβ
8M2

P
VμAμ +

3 − 3β2

16M2
P

AμAμ

Allows for annihilation of the SM particles X̄ + X → N̄ + N

Four-fermion 
interaction

SM

SM

DM

DM

The four-fermion is universal: affects singlet fermions — DM candidates

Vμ = N̄γμN + ∑
X

X̄γμX

Aμ = N̄γ5γμN + ∑
X

X̄γ5γμX
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DM production via Four-Fermion Interactions

ℒ4f =
−3α2

16M2
P

VμVμ −
3αβ
8M2

P
VμAμ +

3 − 3β2

16M2
P

AμAμ
Allows for annihilation of the SM 

particles  X̄ + X → N̄ + N

2

Holst term [14–17], which modifies the four-fermion in-
teraction. Note that the additional terms come with a
priori unknown coupling constants and the strength of
current-current interactions depends on these couplings.

The present paper uses the results of [18], where a the-
ory of scalar and fermion fields coupled to gravity was
studied. There, we included all additional terms of mass
dimension not bigger than four that are specific to the
EC formulation and derived the equivalent metric theory.
When applied to cosmology and experiment, the scalar
field can be associated with the SM Higgs field, and the
fermions with the SM quarks and leptons as well as, pos-
sibly, additional species such as right-handed neutrinos.
The phenomenology of the scalar-gravity part of the EC
theory has already been investigated in [19]. There, we
considered the Higgs field as an inflaton. Our study was
motivated by the well-known fact that the Higgs field can
be responsible for inflation provided that it couples non-
minimally to the Ricci scalar [20]. The models of Higgs
inflation in the metric [20] and Palatini [21] formulations
of gravity find their natural generalization within the EC
theory [19] (see also [22]).

The goal of this paper is to study phenomenology
of the fermionic sector of the EC theory. Namely, we
show that the four-fermion interaction originating from
EC gravity can be responsible for DM production. We
compute the abundance and the spectrum of produced
(Dirac or Majorana) particles and show that the right
amount of DM can be generated for a wide range of
fermion masses. We also discuss an interesting case of
warm DM where the primordial momentum distribution
characteristic for EC gravity can potentially be observ-
able.

Einstein-Cartan gravity and fermions.—In this work,
we focus on the fermion-gravity part of the general the-
ory studied in [18]. To simplify the presentation, we only
keep the Einstein-Hilbert term and the non-minimal cou-
plings of fermions in the action. We comment on the in-
clusion of other terms later; see also appendix A. Then,
for each (Dirac or Majorana) fermion species  the rele-
vant part of the action reads as follows:4

L =
1

2
M

2
PR+

i

2
 ̄(1� i↵� i��

5)�µ
Dµ 

� i

2
Dµ (1 + i↵+ i��

5)�µ ,

(1)

where MP = 2.435 ⇥ 1018 GeV is the Planck mass and
Dµ is the covariant derivative containing the connection
field. The real couplings ↵, � are chosen to be the same
for all generations of fermions which implies the univer-
sality of gravity in the fermionic sector. Allowing for the

4 We work in natural units ~ = c = 1 and use the metric signature
(�1,+1,+1,+1). The matrix �5 is defined as �5 = �i�0�1�2�3.

couplings to depend on a generation index yields qual-
itatively the same results. In metric gravity, the non-
minimal terms sum up to a total derivative, but in the
torsionful case they contribute to the dynamics of the
theory.
The theory (1) can be resolved for torsion explicitly;

see [18] for details. Upon substituting the solution for
torsion back to the action, one obtains an equivalent met-
ric theory with extra higher-dimensional fermion interac-
tion terms. They read:

L4f =
�3↵2

16M2
P

V
µ
Vµ � 3↵�

8M2
P

V
µ
Aµ +

3� 3�2

16M2
P

A
µ
Aµ , (2)

with

V
µ = N̄�

µ
N +

X

X

X̄�
µ
X ,

A
µ = N̄�

5
�
µ
N +

X

X

X̄�
5
�
µ
X

(3)

the vector and axial fermion currents, correspondingly.
The sum is performed over all fermion species, and for
convenience we wrote separately the terms containing
N which plays the role of DM and can be Dirac or
right-handed Majorana fermion. The interaction (2)
vanishes only if ↵ = 0, � = ±1, and in what follows we
do not consider this particular choice of the couplings.
In appendix A, we discuss other terms that can be added
to Eq. (2). Namely, the presence of the scalar field �

coupled non-minimally to gravity results in operators
of the form @µ(�†

�)V µ, @µ(�†
�)Aµ. However, their

contribution to the DM production turns out to be
suppressed compared to the four-fermion interaction
channel. Furthermore, the coe�cients in Eq. (2) are
modified when the Holst term is taken into account.

Thermal production of singlet fermions.—The four-
fermion interaction (2) opens up the production chan-
nel of N -particles through the annihilation of the SM
fermions X, via the reaction X + X̄ ! N + N̄ .5 The
kinetic equation corresponding to this reaction takes the
form

✓
@

@t
�Hqi

@

@qi

◆
fN (t, ~q) = R(~q, T ) , (4)

where fN is the phase-space density of N , H is the Hub-
ble rate and R is the collision integral, also referred to as
a production rate. In an isotropic background, both fN

and R depend only on the absolute value of the spatial
momentum |q| ⌘ |~q|.

5 The production of singlet fermions due to some higher-
dimensional operators was considered in [23]. However, the four-
fermion interaction which appears in EC gravity was not ac-
counted for.
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In what follows, we assume that all SM particles, in-
cluding fermions, are in thermal equilibrium at the mo-
ment of DM production. To check the validity of this
assumption, one would need a careful examination of dy-
namics of bosonic and fermionic SM species at and after
preheating, which goes beyond the scope of the present
paper. We expect, however, that deviations from ther-
mality do not change qualitatively our results.

As long as the concentration of N remains small and
we can neglect the inverse processes, the collision integral
in Eq. (4) reads

R =
1

2|q|
X

X

Z
d3~p1

(2⇡)3 2E1

d3~p2
(2⇡)3 2E2

d3~p3
(2⇡)3 2E3

⇥(2⇡)4�(4) (p1 + p2 � q � p3) |MX |2 fX(p1)fX̄(p2) ,

(5)

where the sum runs over the SM species (24 left- and
21 right-handed fermions), MX is the amplitude of the
process summed over all spinor indices, and fX is the dis-
tribution of X which we assume to be the Fermi-Dirac
one. The typical values of the momenta in Eq. (5) are
large compared to the mass of N , so we neglect all masses
when computing MX . Introducing the dimensionless
variable y = E/T , where T is the temperature of the
cosmic plasma and E = |q|, we arrive at

R(E, T ) = T
5 Cf (↵,�)

M
4
P

r(y) . (6)

Here Cf (↵,�) is a combination of the non-minimal
fermion couplings whose precise form depends on
whether N is Majorana (f = M) or Dirac (f = D):

CM =
9

4

⇢
24

�
1 + ↵

2 � �
2
�2

+ 21
⇣
1� (↵+ �)2

⌘2
�
,

CD =
9

4

⇢
45

�
1 + ↵

2 � �
2
�2

+21
⇣
1� (↵+ �)2

⌘2
+ 24

⇣
1� (↵� �)2

⌘2
�
.

(7)

Next, r(y) is a function computed numerically, which is
accurately approximated by6

r(y) ' 1

24⇡3
yfX . (8)

Eq. (4) can now be easily integrated, leading to

fN (y) =
Cf T

3
prod M0(Tprod)

3M4
P

r(y) , (9)

where Tprod is the temperature at which the DM

production begins, M0(T ) = MP

q
90

⇡2geff (T ) , and

6 This expression is exact if instead of the Fermi-Dirac distribution,
one uses the Boltzmann distribution for fX .

ge↵(Tprod) = 106.75 is the number of e↵ectively massless
degrees of freedom at high temperature. Plugging in the
numbers, we obtain for the abundance of N -particles:7

⌦N

⌦DM
' 3.6 · 10�2

Cf

✓
MN

10 keV

◆ ✓
Tprod

MP

◆3

, (10)

where ⌦DM is the observed DM abundance and the co-
e�cient Cf is defined in Eq. (7). Eq. (10) shows that,
depending on the value of Cf , the right amount of DM
can be generated in a broad range of fermion masses MN .
In appendix B, we provide more details on the derivation
of Eqs. (6) to (10).
To proceed further, we need an estimate for the pro-

duction temperature. We obtain it within the framework
of Higgs inflation in the Palatini formulation of grav-
ity [21, 24]. In this model, preheating is almost instanta-
neous [25], and one can take Tprod ⇠ Treh where

Treh '
✓

15�

2⇡2ge↵

◆ 1
4 MPp

⇠
(11)

is the preheating temperature, � is the Higgs field self-
coupling and ⇠ is the non-minimal coupling of the Higgs
field to the Ricci scalar. Both � and ⇠ are taken at a
high energy scale. Using ⇠ = 107 and � = 10�3 [26], we
obtain Tprod ' 4⇥ 1013 GeV.
Now we can investigate two particularly interesting

cases. The first one is the limit of vanishing non-minimal
couplings, ↵ = � = 0. Then, from Eq. (10) we obtain
that ⌦N ' ⌦DM if MN ' 6⇥ 108 GeV for the Majorana
fermion and MN ' 3 ⇥ 108 GeV for the Dirac fermion.
We conclude that heavy fermion DM can be produced in
EC gravity even if the action of the EC theory is identical
to that of the metric theory.8

The second case corresponds to setting ↵ ⇠ � ⇠
p
⇠.

With this choice, the scale of suppression of the interac-
tion (2) coincides with the inflationary cuto↵ scale which
in Palatini Higgs inflation is of the order of MP /

p
⇠ [29].

For both the Majorana and Dirac cases, Eq. (10) becomes

⌦N

⌦DM
' 1.4

p
⇠�

3/4

g
3/4
e↵

(↵+ �)4

⇠2

✓
MN

10 keV

◆ ✓
Tprod

Treh

◆3

. (12)

Thus, the right amount of DM is generated for a
keV-scale MN .

7 In deriving this result, we assume that all other possible inter-
actions of N -particles with particles of the SM are not essential
for the DM production.

8 Interestingly, the given bounds on MN are close to the bound
MN . 109 GeV above which N -particles are overproduced due
to the varying geometry at the radiation-dominated stage of the
Universe [27, 28].

we assume thermal distributions 

of the SM particles

number 

density

Kinetic description of  productionN
See, e.g.

Dolgov 2000, hep-ph/0202122

Freeze-in
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DM production via Four-Fermion Interactions

Kinetic description of  productionN

TH
∂fN
∂T

= −
Cf

M4
Pl

T5r(y), y = E/T, Cf = a combination of α, β

r(E, T ) =
1

2E ∑
X

∫
d3 ⃗p 1

(2π)32E1

d3 ⃗p 2

(2π)32E2

d3 ⃗p 3

(2π)32E3

× (2π)4δ(4) (p1 + p2 − q − p3) (p1 ⋅ q) (p2 ⋅ p3) × fX (p1) fX̄ (p2)

r(y) ≃ 1
24π3 y fX

fN(y) =
CfT3

prodM0(Tprod)
3M4

P
r(y)

DM spectrum carries information about

 the distribution of the SM fermions at T = Tprod
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DM production via Four-Fermion Interactions

ΩN

ΩDM
≃ 3.6 ⋅ 10−2Cf ( MN

10keV ) (
Tprod

MP )
3

DM abundance:

3

In what follows, we assume that all SM particles, in-
cluding fermions, are in thermal equilibrium at the mo-
ment of DM production. To check the validity of this
assumption, one would need a careful examination of dy-
namics of bosonic and fermionic SM species at and after
preheating, which goes beyond the scope of the present
paper. We expect, however, that deviations from ther-
mality do not change qualitatively our results.

As long as the concentration of N remains small and
we can neglect the inverse processes, the collision integral
in Eq. (4) reads

R =
1

2|q|
X

X

Z
d3~p1

(2⇡)3 2E1

d3~p2
(2⇡)3 2E2

d3~p3
(2⇡)3 2E3

⇥(2⇡)4�(4) (p1 + p2 � q � p3) |MX |2 fX(p1)fX̄(p2) ,

(5)

where the sum runs over the SM species (24 left- and
21 right-handed fermions), MX is the amplitude of the
process summed over all spinor indices, and fX is the dis-
tribution of X which we assume to be the Fermi-Dirac
one. The typical values of the momenta in Eq. (5) are
large compared to the mass of N , so we neglect all masses
when computing MX . Introducing the dimensionless
variable y = E/T , where T is the temperature of the
cosmic plasma and E = |q|, we arrive at

R(E, T ) = T
5 Cf (↵,�)

M
4
P

r(y) . (6)

Here Cf (↵,�) is a combination of the non-minimal
fermion couplings whose precise form depends on
whether N is Majorana (f = M) or Dirac (f = D):

CM =
9

4

⇢
24

�
1 + ↵

2 � �
2
�2

+ 21
⇣
1� (↵+ �)2

⌘2
�
,

CD =
9

4

⇢
45

�
1 + ↵

2 � �
2
�2

+21
⇣
1� (↵+ �)2

⌘2
+ 24

⇣
1� (↵� �)2

⌘2
�
.

(7)

Next, r(y) is a function computed numerically, which is
accurately approximated by6

r(y) ' 1

24⇡3
yfX . (8)

Eq. (4) can now be easily integrated, leading to

fN (y) =
Cf T

3
prod M0(Tprod)

3M4
P

r(y) , (9)

where Tprod is the temperature at which the DM

production begins, M0(T ) = MP

q
90

⇡2geff (T ) , and

6 This expression is exact if instead of the Fermi-Dirac distribution,
one uses the Boltzmann distribution for fX .

ge↵(Tprod) = 106.75 is the number of e↵ectively massless
degrees of freedom at high temperature. Plugging in the
numbers, we obtain for the abundance of N -particles:7

⌦N

⌦DM
' 3.6 · 10�2

Cf

✓
MN

10 keV

◆ ✓
Tprod

MP

◆3

, (10)

where ⌦DM is the observed DM abundance and the co-
e�cient Cf is defined in Eq. (7). Eq. (10) shows that,
depending on the value of Cf , the right amount of DM
can be generated in a broad range of fermion masses MN .
In appendix B, we provide more details on the derivation
of Eqs. (6) to (10).
To proceed further, we need an estimate for the pro-

duction temperature. We obtain it within the framework
of Higgs inflation in the Palatini formulation of grav-
ity [21, 24]. In this model, preheating is almost instanta-
neous [25], and one can take Tprod ⇠ Treh where

Treh '
✓

15�

2⇡2ge↵

◆ 1
4 MPp

⇠
(11)

is the preheating temperature, � is the Higgs field self-
coupling and ⇠ is the non-minimal coupling of the Higgs
field to the Ricci scalar. Both � and ⇠ are taken at a
high energy scale. Using ⇠ = 107 and � = 10�3 [26], we
obtain Tprod ' 4⇥ 1013 GeV.
Now we can investigate two particularly interesting

cases. The first one is the limit of vanishing non-minimal
couplings, ↵ = � = 0. Then, from Eq. (10) we obtain
that ⌦N ' ⌦DM if MN ' 6⇥ 108 GeV for the Majorana
fermion and MN ' 3 ⇥ 108 GeV for the Dirac fermion.
We conclude that heavy fermion DM can be produced in
EC gravity even if the action of the EC theory is identical
to that of the metric theory.8

The second case corresponds to setting ↵ ⇠ � ⇠
p
⇠.

With this choice, the scale of suppression of the interac-
tion (2) coincides with the inflationary cuto↵ scale which
in Palatini Higgs inflation is of the order of MP /

p
⇠ [29].

For both the Majorana and Dirac cases, Eq. (10) becomes

⌦N

⌦DM
' 1.4

p
⇠�

3/4

g
3/4
e↵

(↵+ �)4

⇠2

✓
MN

10 keV

◆ ✓
Tprod

Treh

◆3

. (12)

Thus, the right amount of DM is generated for a
keV-scale MN .

7 In deriving this result, we assume that all other possible inter-
actions of N -particles with particles of the SM are not essential
for the DM production.

8 Interestingly, the given bounds on MN are close to the bound
MN . 109 GeV above which N -particles are overproduced due
to the varying geometry at the radiation-dominated stage of the
Universe [27, 28].

 is different for Majorana and Dirac fermions:Cf
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Einstein-Cartan portal to dark matter

• Universal four-fermion interaction of EC gravity can lead to 
production of singlet fermions


• This mechanism is the most effective at very high temperatures 
( )ΩN ∼ T3

prod
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Einstein-Cartan portal to dark matter

and Higgs inflation

• Higgs is the only scalar in the SM


• It can play the role of inflaton


• Original metric Higgs inflation [Bezrukov and 
Shaposhnikov, 0710.3755]


• Palatini Higgs Inflation [Bauer and Demir  0803.2664 ]
Advantages of Palatini formulation, see


Bauer and Demir  0803.2664

Shaposhnikov, Shkerin, and Zell, 2002.07105

S = ∫ d4x −g −
1
2 (∂μh)

2
−

λ
4

h4 +
M2

P

2
R (1 +

ξh2

M2
p )
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Einstein-Cartan portal to dark matter

• (Palatini) Higgs inflation: non-minimal coupling 


• Almost instantaneous preheating in Higgs inflation            
[DeCross, Kaiser, Prabhu, Prescod-Weinstein, Sfakianakis; Ema, 
Jinno, Mukaida, Nakayama ; Rubio, Tomberg; Bezrukov, 
Shepherd]


• We take 

ξ

Tprod = Treh

ΩN

ΩDM
≃ 3.6 ⋅ 10−2Cf ( MN

10keV ) (
Tprod

MP )
3

Treh ≃ ( 15λ
2π2geff )

1
4 MP

ξ
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Einstein-Cartan portal to dark matter

• Two “natural” choices of  and :


•   
the correct DM abundance is obtained for  GeV 
fermion in Palatini Higgs inflation


•   (universal UV cutoff ) 
the correct DM abundance is obtained for a keV fermion in 
Palatini Higgs inflation

α β

α = β = 0
(3 − 6) × 108

α ∼ β ∼ ξ Λ ∼ MP / ξ

ΩN

ΩDM
≃ 1.4

ξλ3/4

g3/4
eff

(α + β)4

ξ2 ( MN

10keV ) (
Tprod

Treh )
3
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N1 N2,3

Figure 14: Constraints on sterile neutrino DM. The solid lines represent the most important constraints
that are largely model independent, i.e., they can be derived for a generic SM-singlet fermion N of mass
M and a mixing angle ✓ with SM neutrinos, without specification of the model that this DM candidate is
embedded in. The model independent phase space bound (solid purple line) is based on Pauli’s exclusion
principle (c.f. Section 3.1). The bounds based on the non-observation of X-rays from the decay N ! ⌫�
(violet area, see Section 3.2 for details) assume that the decay occurs solely through mixing with the active
neutrinos with the decay rate given by eq. (29). In the presence of additional interactions, these constraints
could be stronger, see e.g. [520]. All X-ray bounds have been smoothed and divided by a factor 2 to account
for the uncertainty in the DM density in the observed objects. They are compared to two estimates of the
ATHENA sensitivity made in ref. [234]. The blue square marks the interpretation of the 3.5 keV excess as
decaying sterile neutrino DM [184, 188]. All other constraints depend on the sterile neutrino production
mechanism. As an example, we here show di↵erent bounds that apply to thermally produced sterile
neutrino DM, cf. section 4.2. The correct DM density is produced for any point along black solid line
via the non-resonant mechanism due to ✓-suppressed weak interactions (24) alone (Section 4.2.1). Above
this line the abundance of sterile neutrinos would exceed the observed DM density. We have indicated
this overclosure bound by a solid line because it applies to any sterile neutrino, i.e., singlet fermion that
mixes with the SM neutrinos. It can only be avoided if one either assumes significant deviations from the
standard thermal history of the universe or considers a mechanism that suppresses the neutrino production
at temperatures of a few hundred MeV, well within the energy range that is testable in experiments, cf. e.g.
[521]. For parameter values between the solid black line and the dotted green line, the observed DM density
can be generated by resonantly enhanced thermal production (Section 4.2.2). Below the dotted green line
the lepton asymmetries required for this mechanism to work are ruled out because they would alternate the
abundances of light elements produced during BBN [584]. The dotted purple line represents the lower bound
from phase space arguments that takes into account primordial distribution of sterile neutrinos, depending on
the production mechanism [22]. As a structure formation bound we choose to display the conservative lower
bound on the mass of resonantly produced sterile neutrinos, based on the BOSS Lyman-↵ forest data [268]
(see Section 3.3 for discussion). The structure formation constraints depend very strongly on the production
mechanism (Section 4). The dashed red line shows the sensitivity estimate for the TRISTAN upgrade of the
KATRIN experiment (90% C.L., ignoring systematics, c.f. Section 5.2).

58

DM can be produced via universal 4-femion interaction

No lower bound on the mixing angle θ2

[from Boyarsky, Drewes, Lasserre, Mertens, Ruchayskiy]
[Klaric, Shaposhnikov, IT]

 are also produced, 

but  

So leptogenesis is not affected

N2,3
n2,3 ≃ 10−2neq (10keV/M1)
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N1

Figure 14: Constraints on sterile neutrino DM. The solid lines represent the most important constraints
that are largely model independent, i.e., they can be derived for a generic SM-singlet fermion N of mass
M and a mixing angle ✓ with SM neutrinos, without specification of the model that this DM candidate is
embedded in. The model independent phase space bound (solid purple line) is based on Pauli’s exclusion
principle (c.f. Section 3.1). The bounds based on the non-observation of X-rays from the decay N ! ⌫�
(violet area, see Section 3.2 for details) assume that the decay occurs solely through mixing with the active
neutrinos with the decay rate given by eq. (29). In the presence of additional interactions, these constraints
could be stronger, see e.g. [520]. All X-ray bounds have been smoothed and divided by a factor 2 to account
for the uncertainty in the DM density in the observed objects. They are compared to two estimates of the
ATHENA sensitivity made in ref. [234]. The blue square marks the interpretation of the 3.5 keV excess as
decaying sterile neutrino DM [184, 188]. All other constraints depend on the sterile neutrino production
mechanism. As an example, we here show di↵erent bounds that apply to thermally produced sterile
neutrino DM, cf. section 4.2. The correct DM density is produced for any point along black solid line
via the non-resonant mechanism due to ✓-suppressed weak interactions (24) alone (Section 4.2.1). Above
this line the abundance of sterile neutrinos would exceed the observed DM density. We have indicated
this overclosure bound by a solid line because it applies to any sterile neutrino, i.e., singlet fermion that
mixes with the SM neutrinos. It can only be avoided if one either assumes significant deviations from the
standard thermal history of the universe or considers a mechanism that suppresses the neutrino production
at temperatures of a few hundred MeV, well within the energy range that is testable in experiments, cf. e.g.
[521]. For parameter values between the solid black line and the dotted green line, the observed DM density
can be generated by resonantly enhanced thermal production (Section 4.2.2). Below the dotted green line
the lepton asymmetries required for this mechanism to work are ruled out because they would alternate the
abundances of light elements produced during BBN [584]. The dotted purple line represents the lower bound
from phase space arguments that takes into account primordial distribution of sterile neutrinos, depending on
the production mechanism [22]. As a structure formation bound we choose to display the conservative lower
bound on the mass of resonantly produced sterile neutrinos, based on the BOSS Lyman-↵ forest data [268]
(see Section 3.3 for discussion). The structure formation constraints depend very strongly on the production
mechanism (Section 4). The dashed red line shows the sensitivity estimate for the TRISTAN upgrade of the
KATRIN experiment (90% C.L., ignoring systematics, c.f. Section 5.2).

58

[from 1807.07938]

— momentum distribution
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Summary

Einstein-Cartan theory


• Pure gravity: equivalent to metric formulation 

• A new universal mechanism for fermion dark matter 
production 


