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This Person Does Not Exist

The site that started it all, with the name
that says it all. Created using a style-
based generative adversarial network
(StyleGAN), this website had the tech
community buzzing with excitement and
intrigue and inspired many more sites.

Created by Phillip Wang.
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This X does not exist

This Cat Does Not Exist

These purr-fect GAN-made cats will
freshen your feeline-gs and make you
wish you could reach through your screen
and cuddle them. Once in a while the cats
have visual deformities due to
imperfections in the model — beware, they
can cause nightmares.

Created by Ryan Hoover.

This Rental Does Not Exist

Why bother trying to look for the perfect
home when you can create one instead?
Just find a listing you like, buy some land,
build it, and then enjoy the rest of your
life.

Created by Christopher Schmidt.

https://thisxdoesnotexist.com/
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https://junyanz.github.io/CycleGAN/
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Generative models progress

2018

https://twitter.com/goodfellow_ian/status/1084973596236144640
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Deep generative models for fast detector simulation

» What if, instead of generating

images, we train these models to

generate detector responses?

» Generating a response as fast as a
single forward pass through the

network

— Should be orders of magnitude faster
compared to e.g. detailed Geant4

simulation
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Outline

» Generative modelling

» Deep learning models for generative modelling
— GANSs
— VAEs

» HEP applications
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Generative modelling



Problem setup

» Training data - a set of objects, e.qg.: Set of objects:

— Photos of animals / people faces / rooms / whatever i |i=1,..N}
— Text

— Audio of speech / music / whatever

— Signals from a high energy physics experiment detector

» Goal: build a model to sample similar data
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Problem setup

» Training data - a set of objects, e.qg.:
— Photos of animals / people faces / rooms / whatever
— Text
— Audio of speech / music / whatever

— Signals from a high energy physics experiment detector

» Goal: build a model to sample similar data
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Set of objects:
{XL' | [ =1, N}

Population PDF:
p(x)

l.e. {x;} arei.i.d.
sampled from p(x)



Problem setup

» Training data - a set of objects, e.qg.:
— Photos of animals / people faces / rooms / whatever
— Text
— Audio of speech / music / whatever

— Signals from a high energy physics experiment detector

» Goal: build a model to sample similar data

— Learn the population distribution to sample more objects
from it

— (may be done implicitly, i.e. when we can’t evaluate the probability
density, yet can sample from it)

Artem Maevskiy, NRU HSE

Set of objects:
{Xi | [ =1, N}

Population PDF:
p(x)

l.e. {x;} arei.i.d.
sampled from p(x)

Learn q(x) ~ p(x) to
sample x’ from g(x)
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Generative Adversarial Networks
(GANS)



How can a neural network generate data?




How can a neural network generate data?

Random noize
e.g. multivariate normal
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Generated data

Cat image attribution: https://pixabay.com/users/chiemsee2016-1892688/
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How can a neural network generate data?

Random noize
e.g. multivariate normal

Generated data

Neural network, G

» This makes the generated object being a differentiable function of the network
parameters

Cat image attribution: https://pixabay.com/users/chiemsee2016-1892688/

Artem Maevskiy, NRU HSE 14



https://pixabay.com/users/chiemsee2016-1892688/

How to train such a generator?

» Generated object is a differentiable function of the network parameters

» Need a differentiable measure of similarity between the sets of generated
objects and real ones

— Can optimize with gradient descent

» How to find such a measure?

Artem Maevskiy, NRU HSE
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Adversarial approach

il
‘m
and! W ~

Generated data

Goodfellow et al., Generative Adversarial Networks,
arXiv:1406.2661 [stat.ML]
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Discriminator network

“Real” data

» Measure of similarity: how well can another neural network (discriminator) tell the

generated objects apart from the real ones

Artem Maevskiy, NRU HSE 16



Training the networks

discriminator <

steps

Artem Maevskiy, NRU HSE

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do

7~ for k steps do
e Sample minibatch of m noise samples {z(1), ..., 2(™} from noise prior p,(z).
e Sample minibatch of m examples {z(1),...,2(™)} from data generating distribution
DPdata (w)

e Update the discriminator by ascending its stochastic gradient:

Vo, L 3 [log > (2) +105 (1 - D (c (=)))].

1=1

\_ end for
e Sample minibatch of m noise samples {z(V), ..., (™)} from noise prior py(2). )
e Update the generator by descending its stochastic gradient:

Vo, 3108 (1-0 (6 (=),

\ generator
steps

~

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

https://arxiv.org/abs/1406.2661
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Variational Autoencoders (VAE)



VAEs in a nutshell (1/3)  laretts

» Simarly to GANs, we want to find a transformation from a

known distribution p,(z) to the data distribution p(x),
using only samples from p(x)

Artem Maevskiy, NRU HSE 19
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VAEs in a nutshell (']/3) arXiv:1401.4082

arXiv:1312.6114

» Simarly to GANs, we want to find a transformation from a
known distribution p,(z) to the data distribution p(x),
using only samples from p(x)

» In GANSs, this transformation is deterministic (x’ = G(2))

Artem Maevskiy, NRU HSE 20
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VAEs in a nutshell (']/3) arXiv:1401.4082

arXiv:1312.6114

» Simarly to GANs, we want to find a transformation from a
known distribution p,(z) to the data distribution p(x),
using only samples from p(x)

» In GANSs, this transformation is deterministic (x’ = G(2))

» In VAEs, it is stochastic, modelled with parametric
distribution py(x | 2)
— Egupglx|2) = p(x;ﬂ = Ge(Z)),

— i.e.a neural network Gg(z) maps (decodes) latent codes z to
parameters A of some distribution p(x; 1)

Artem Maevskiy, NRU HSE 21
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VAEs in a nutshell (1/3)  laretts

>

Simarly to GANs, we want to find a transformation from a
known distribution p,(z) to the data distribution p(x),
using only samples from p(x)

In GANSs, this transformation is deterministic (x’ = G(2))

In VAEs, it is stochastic, modelled with parametric
distribution py(x | 2)
— Egupglx|2) = p(x;/l = Ge(Z)),

— i.e.a neural network Gg(z) maps (decodes) latent codes z to

parameters A of some distribution p(x; 1)

So, our approximation to the target distribution is:

pp(x) = j po(x, 2)dz = j po(x | 2)p,(2)dz = E,, po(x | 2)

Artem Maevskiy, NRU HSE 22
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VAEs in a nutshell (2/3)  laretts

» Assume we know the inverse transformation pg(z|x)

po(z | x)

— (though, this is typically intractable)

Artem Maevskiy, NRU HSE 23
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VAEs in a nutshell (2/3)  laetts

» Assume we know the inverse transformation pg(z|x)

po(z | x)

— (though, this is typically intractable)

» Then, we could efficiently train our model by
maximizing the log-likelihood:

pe(z|x)

pe(z]x)

log pg(x) = IE':z~p‘9(z|x) log [Pe (x)

= [Ez~p9(z|x) llog e (x,z) — logpg(z|x)]
= E;p,zx) 08 Do (x, Z) + }f(Pe(le))

P
So, for the log-likelihood we’re sampling not all z values, Maximizing this encourages placing high
but only those corresponding to this particular x probability mass on many z values that

could’'ve generated x

Artem Maevskiy, NRU HSE 24
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VAEs in a nutshell (3/3) e.g.,N\(z;<u,a>D¢<x>)

» In practice, pg(z|x) is not known, so we approximate it with some q¢ (z]x):

llog pe (x)]approx.,qb = IIEz~q(l,(z|x) logpe(x,z) + H (Q¢(Z|x))

» One can prove, that this approximate log-likelihood is a lower bound to the true
log-likelihood log pg (x)

» Maximizing it wrt 8 and ¢ will also maximize the true log-likelihood
— Will lead to the true optimum if the family g4 (z[x) is rich enough to include pg(z|x) for any 6

» It's easy to derive this alternative form, which is simpler to optimize:

llog pe (x)]approx.,cl) = IE':z~q¢(z|x) logpg(x|z) — DKL(CIqb(le)”p(Z)) - nel?px

Artem Maevskiy, NRU HSE 25



Applications in HEP



Deep learning for fast simulation in HEP

» Quite a developing field!

» (not pretending to be able

to cover all applications)

Artem Maevskiy, NRU HSE
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Where it all started: LAGAN

» de Oliveira, L., Paganini, M. & Nachman, B., arXiv:1701.05927
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Figure 1: A typical jet image.
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Figure 4: LAGAN architecture

» Demonstrated the ability to generate realistic jet images
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CaloGAN (3D calorimeter)

» L., Paganini, de Oliveira, M. & Nachman, B., arXiv:1705.02355
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Fast Calorimeter Simulation: the LHCb case

» arXiv:1812.01319

— Uses WGAN-GP
modification of GAN
(arXiv:1704.00028)

» 0.07 ms per sample
(GPU)

» 4.9 ms per sample
(CPU)
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Data-driven simulation of LHCb Cherenkov detectors

» arXiv:1905.11825

» Cramer-GAN
(arXiv:1705.10743)

» Trained on real data

— Utilized sPlot for
background
subtraction
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Time projection chamber fastsim at MPD (NICA)

» arXiv:2012.04595

» Tracking characteristics are spot-on

Detailed Detailed
simulation simulation
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ast shower simulation in ATLAS

» ATL-SOFT-PUB-2018-001

» 3d calorimeter simulation

» Tested both GAN and VAE
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Discriminator
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There's many more...

» Check out this list if interested:
https://github.com/iml-
wg/HEPML-LivingReview

Artem Maevskiy, NRU HSE

Generative models [ density estimation

o GANs:

Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks
for Physics Synthesis [DOI]

Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle
Showers in Multilayer Calorimeters [DOI]

CaloGAN : Simulating 3D high energy particle showers in multilayer electromagnetic
calorimeters with generative adversarial networks [DOI]
Image-based model parameter o ion using Model
Networks [DOI]

How to GAN Event Subtraction [DOI]

Particle Generative Adversarial Networks for full-event simulation at the LHC and their
application to pileup description [DOI]

How to GAN away Detector Effects [DOI]

3D convolutional GAN for fast simulation

Fast simulation of muons produced at the SHiP experiment using Generative Adversarial
Networks [DOI]

Lund jet images from generative and cycle-consistent adversarial networks [DOI]

How to GAN LHC Events [DOI]

Machine Learning Templates for QCD Factorization in the Search for Physics Beyond the
Standard Model [DOI]

DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet
Events at the LHC [DOI]

LHC analysis-specific datasets with Generative Adversarial Networks

Generative Models for Fast Calorimeter Simulation.LHCb case [DOI]

Deep generative models for fast shower simulation in ATLAS

Regressive and generative neural networks for scalar field theory [DOI]

Three dimensional Generative Adversarial Networks for fast simulation

Generative models for fast simulation

d Generative Adversarial

Unfolding with Generative Adversarial Networks

Fast and Accurate Simulation of Particle Detectors Using Generative Adversarial
Networks [DOI]

Generating and refining particle detector simulations using the Wasserstein distance in
adversarial networks [DOI]

Generative models for fast cluster simulations in the TPC for the ALICE experiment
RICH 2018 [DOI]

GANSs for generating EFT models [DOI]

Precise simulation of electromagnetic calorimeter showers using a Wasserstein
Generative Adversarial Network [DOI]

Reducing Autocorrelation Times in Lattice Simulations with Generative Adversarial
Networks [DOI]

Tips and Tricks for Training GANs with Physics Constraints

Controlling Physical Attributes in GAN-Accelerated Simulation of Electromagnetic
Calorimeters [DOI]

Next Generation Generative Neural Networks for HEP

Calorimetry with Deep Learning: Particle Classification, Energy Regression, and
Simulation for High-Energy Physics

Calorimetry with Deep Learning: Particle Simulation and Reconstruction for Collider
Physics [DOI]

Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed
Al-based Monte Carlo event generator for electron-proton scattering

DCTRGAN: Improving the Precision of Generative Models with Reweighting [DOI]
GANplifying Event Samples

Graph Generative Adversarial Networks for Sparse Data Generation in High Energy
Physics

Simulating the Time Projection Chamber responses at the MPD detector using Generative
Adversarial Networks

Explainable machine learning of the underlying physics of high-energy particle collisions
A Data-driven Event Generator for Hadron Colliders using Wasserstein Generative
Adversarial Network [DOI]

Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative
Adversarial Network Use Case [DOI]

Validation of Deep Convolutional Generative Adversarial Networks for High Energy
Physics Calorimeter Simulations

Compressing PDF sets using generative adversarial networks

Physics Validation of Novel Convolutional 2D Architectures for Speeding Up High Energy
Physics Simulations

Autoencoders

= Deep Learning as a Parton Shower

= Deep generative models for fast shower simulation in ATLAS

= Variational Autoencoders for Anomalous Jet Tagging

= Variational Autoencoders for Jet Simulation

= Foundations of a Fast, Data-Driven, Machine-Learned Simulator

= Decoding Photons: Physics in the Latent Space of a BIB-AE Generative Network
= Bump Hunting in Latent Space

= {End-to-end Sinkhorn Autoencoder with Noise Generator

= Graph Generative Models for Fast Detector Simulations in High Energy Physics
= DeepRICH: Learning Deeply Cherenkov Detectors [DOI]

Normalizing flows

= Flow-based generative models for Markov chain Monte Carlo in lattice field theory [DOI]

= Equivariant flow-based sampling for lattice gauge theory [DOI]

= Flows for simultaneous manifold learning and density estimation

= Exploring phase space with Neural Importance Sampling [DOI]

= Event Generation with Normalizing Flows [DOI]

= i-flow: High-Dimensional Integration and Sampling with Normalizing Flows [DOI]

= Anomaly Detection with Density Estimation [DOI]

= Data-driven Estimation of Background Distribution through Neural Autoregressive Flows

= SARM: Sparse Autoregressive Model for Scalable Generation of Sparse Images in Particle
Physics [DOI]

= Measuring QCD Splittings with Invertible Networks

= Efficient sampling of constrained high-dimensional theoretical spaces with machine
learning

Physics-inspired
= JUNIPR: a Framework for Unsupervised Machine Learning in Particle Physics
= Binary JUNIPR: an interpretable probabilistic model for discrimination [DOI]

= Exploring the Possibility of a Recovery of Physics Process Properties from a Neural
Network Model [DOI]

= Explainable machine learning of the underlying physics of high-energy particle collisions
= Symmetry meets Al

Mixture Models

= Data Augmentation at the LHC through Analysis-specific Fast Simul.
Learning

= Mixture Density Network Estimation of Continuous Variable Maximum Likelihood Using
Discrete Training Samples

with Deep

Phase space generation

= Efficient Monte Carlo Integration Using Boosted Decision

= Exploring phase space with Neural Importance Sampling [DOI]

= Event Generation with Normalizing Flows [DOI]

= i-flow: High-Dimensional Integration and Sampling with Normalizing Flows [DOI]

= Neural Network-Based Approach to Phase Space Integration [DOI]

= VegasFlow: accelerating Monte Carlo simulation across multiple hardware platforms [DOI]

= A Neural Resampler for Monte Carlo Reweighting with Preserved Uncertainties [DOI]

= Improved Neural Network Monte Carlo Simulation [DOI]

= Phase Space Sampling and Inference from Weighted Events with Autoregressive Flows
[oon

= How to GAN Event Unweighting

Gaussian processes

= Modeling Smooth Backgrounds and Generic Localized Signals with Gaussian Processes

= Accelerating the BSM interpretation of LHC data with machine learning [DOI]

= $\textsf{Xsec}$: the cross-section evaluation code [DOI]

= Al-optimized detector design for the future Electron-lon Collider: the dual-radiator RICH
case [DOI]
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Note on systematic uncertainties

» Trained on a finite sample, generative

models introduce additional systematics

» However, a generative model may contain

more statistical power than the original

training dataset — due to interpolation

Artem Maevskiy, NRU HSE

arXiv:2008.06545 [hep-phl
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Summary

» Deep generative models are an exciting and very quickly developing field of

machine learning
» They promise to be good candidates for fast simulation models in HEP

» GANs and VAEs briefly covered in this talk, did not get to other models, e.qg.
based on Normalizing Flows or Mixture models

» Performance evaluation of a trained model is always tricky

Artem Maevskiy, NRU HSE
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Thank you!

Q amaevskij@hse.ru

Q SiLiKhon

Artem Maevskiy

Artem Maevskiy, NRU HSE

hse lambda
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Let’s put it in formulas

» Noise samples:
zi ~ pz(2)
where p, is some simple PDF we can sample from, e.g. N'(0, I).

» Generated samples:
x; = Gg(z;)
where Gy is the generator network with parameters 6.

» Discriminator network (with parameters ¢):
Dy (x)

returns the probability for x being a real sample rather than a generated one

» Measure of similarity between the generated and real samples:

L; = qubiX [Ex~p(x) [log D¢ (X)] + [Ez~pz(z) llog(li_ D¢(G9 (Z)))‘]
|

Probability the sample
was generated

— min
y 2]

, Log-likelihood for discriminator prediction
Artem Maevskiy, NRU HSE

40



Training the networks

Artem Maevskiy, NRU HSE

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(1), ..., 2(™} from noise prior p,(z).
e Sample minibatch of m examples {z(1),...,2(™)} from data generating distribution
DPdata (w)

e Update the discriminator by ascending its stochastic gradient:

Vo, L 3 [log > (2) +105 (1 - D (c (=)))].

1=1
end for

e Sample minibatch of m noise samples {z1), ..., 2("™)} from noise prior p, (z).
e Update the generator by descending its stochastic gradient:

Vo, 3108 (1-0 (6 (=),

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

https://arxiv.org/abs/1406.2661
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Problems with GANs



The optimal discriminator solution

> If we re-write the loss using Pgen,g (x) — the distribution of x" = G4(z), and

expand the expectations as integrals:
L; = ch;;lxj ['p(x) log (D¢(x)) + Dgen,p (x) log (1 — D¢(x))] dx
X

» it's easy to show that mdz)ax is obtained at ¢p*(6) with:

p(x)
p(x) + Pgen,6 (x)

D 4+ 9)(x) =
» So the objective becomes:

p(x) pgen,@ (x)

Le = Ex-p) [log t Exepgens@ [log

p(x) + Pgen,6 (x) p(x) + Pgen,6 (x)

= —log4 +]S\D(p | pgen,H)

Artem Maevskiy, NRU HSE Jensen-Shannon divergence
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Vanishing gradients

> In case p and Pgen,g have non-overlapping support:

Le = Expeo [

= Exp(o) [108

log p(x) + [E
p(x) T Pgen,6 (x) *~Pgen,o(*)

p(x)

Pgen,6 (x)

Pgen,6 (x)

llogp(x) + Dgen,0 (x)

= 0 = const

p(x)] Ex“’pgen,e (x) [lOg

» No meaningful gradient, can’t learn

Artem Maevskiy, NRU HSE

Pgen,6 (x)
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Mode collapse

» Assume at some
point the generator
has learned one of
the modes

» No meaningful
gradients to drive
the solution towards
covering the other

modes

Artem Maevskiy, NRU HSE

X = np.linspace(-10, 10, 300)
p_data = 0.7 * normal(x, 5, 0.8) + 0.3 * normal(x, -4, 1)

p_gen = 1.0 * normal(x, 5, 0.8)

D = p data / (p_data + p_gen)

0.5 - *\ —— p_data(x) [ 1.0
— p_gen(x)

0.4 - 0.8
0.3 A - 0.6
0.2 1 o

0.1 A
- 0.2

0.0 A
I I I I I I I I I 0.0

-10.0 -=7.5 -5.0 —-2.5 0.0 2.5 5.0 7.5 10.0
X

Discriminator output
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Wasserstein GAN



Alternative distance measure

» The problems with GANs are mainly due to Jensen-Shannon divergence
providing problematic gradients

» What if we try to find some other measure of distance between real and
generated distributions that doesn’t have these problems?

Artem Maevskiy, NRU HSE
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Wasserstein distance

Also called “Earth mover’s distance” (EMD)

» Distributions P(x) and Q(x)
are viewed as describing the

amounts of “dirt” at point x

» We want to convert one
distribution into the other by
moving around some
amounts of dirt

0.25 4

o

20 1

0.05 4

0.00 " T T ; . : :
-6 -4 -2 0 2 4 6 8

» The cost of moving an amount m from x4 to x5 is mX||xy — x4]||

» EMD(P, Q) = minimum total cost of converting P into Q

Artem Maevskiy, NRU HSE
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Why is it better?

1.0 1 1 T 1 T 1 I
\ — Density of real

08l —— Density of fake |
' ——  GAN Discriminator
——  WGAN Critic
0.6 + .

—-0.2 Vanishing gradients ]
in regular GAN

_04 ] ] ] ] ] ] ]
-8 -6 -4 -2 0 2 4 6 8

https://arxiv.org/abs/1701.07875
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Formal definition

» Say, we have a moving plan y(x4,x,) = O:

Yy (xq, x2)dx1dx, — how much dirt we're moving from
|x1, x1 + dxq] to [x5, x5 + dx5]

» Then, the cost of moving from [xq, x; + dx;] t0 [x5, x5 + dx,] is:

|y — x1 || - y(xq, x2)dx1dx;

Interpreting y as a PDF
» and the total cost is: /

¢ = J 22 = x4l - ¥y Cep, x2)dx1dxa = By, xeymy (g ) l1X2 — 24|
X1,X2

» Since we want to convert P to Q, the plan has to satisfy:

J Y (x1, x2)dx1 = Q(x2), j y(x1, x2)dx; = P(x1)
X1 X2
Artem Maevskiy, NRU HSE 50



Formal definition

» Let ;r be the set of all plans that convert P to Q, i.e.:

T[={)/: y =0,

J Y (x1,x2)dx; = Q(x3), f Y (x1,x2)dx; = P(x1) }

X1 X2

» Then, the Wasserstein distance between P and Q is:

EMD(P, Q) = inf By, x,~y [z — 21

7

Optimization over all transport plans - not too friendly

» Dual form (Kantorovich-Rubinstein duality):

EMD(P,Q) = sup |Ey.pf(x) — Eyoof (x)]

Artem Maevskiy, NRU HSE

<
IfllL=1 \, Optimization over Lipschitz-1

continuous functions actingin X - R
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Lipschitz continuity

» f is Lipschitz-k continuous if

» there exists a constant k > 0, such that

for all x; and x5:

|f (x1) — fx)| < k- [[xg — x2]]

Artem Maevskiy, NRU HSE
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[intuition behind the dual form]

disclaimer: not a strict
mathematical derivation

EMD(P, Q) = %Ielfr L1, wany | |T1 — T2
Let’s add the following term to this expression:

+inf supEy, 2,5~ Lo f(8) —Eingf(t) — (f(z1) — f(x2))]

T Y~ > —

f(x) — real-valued function These cancel out wheny e«
otherwise supremum over f(x) goes to +o

Therefore, we can remove the y € & condition from the whole expression:

= inf Sup Euy zonny [||Z1 — Z2|| + Esap f(8) — Etng f(t) — (f(z1) — f(22))]

Infimum and supremum operations can be swapped under certain conditions
(satisfied here — see https://vincentherrmann.github.io/blog/wasserstein/ for more detailed info)

Artem Maevskiy, NRU HSE 53



[intuition behind the dual form]

disclaimer: not a strict
mathematical derivation

= supinf [Eonpf(s) ~ Etngf (t) + Eay eanr [llar — 22l = (£(21) = f(22)]]

f Y R

Consider the following case: [f(a) — f(b)| < |la —b]||, Va, b
We’'ll denote it as: ||f||lr <1

For such case this term is 0

Otherwise the whole expression is -
Therefore we can finally rewrite the whole thing as:

EMD(P,Q) = sup [Ezupf(z) —Eznqf ()]
[ fllz <1

Artem Maevskiy, NRU HSE 54



WGAN

EMD(P, Q) = ll;ﬁlgl[ExNPf(x) — Eyeof ()]

» The function can be expressed as a » The expectations can be estimated as
neural net — discriminator (‘critic’ in sample mean
the original paper)

» Lipschitz-1 continuity can be

replaced with Lipschitz-k continuity We wouldn’t know what k is, but it
doesn’t matter: all we want is to
— In such case we'll estimate kXEMD(P, Q) minimize the EMD!

— (Can be achieved by clipping the weights
of the critic: w — clip(w, —c, ¢) with
some constant ¢

https://arxiv.org/abs/1701.07875
Artem Maevskiy, NRU HSE 55
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WGAN

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values o = 0.00005, ¢ = 0.01, m = 64, n¢ritic = O-

Require: : «, the learning rate. c, the clipping parameter. m, the batch size.
Neritic, the number of iterations of the critic per generator iteration.
Require: : wq, initial critic parameters. 6, initial generator’s parameters.

1: while 6 has not converged do

for t =0, ..., neritic do
Sample {z(M1™  ~ P, a batch from the real data.
Sample {z(V}™ ~ p(z) a batch of prior samples.
guw < Vu [% 2111 fw(x(i)) — % Z:il fw(gO(Z(i))ﬂ
w < w + a - RMSProp(w, g,)
w < clip(w, —¢, ¢)

end for

Sample {9} ~ p(z) a batch of prior samples.

9o + —Vog >ty fu(ge(z7))

11: 6 < 0 — a - RMSProp(0, gs)

12: end while

—_
<

Artem Maevskiy, NRU HSE
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WGAN-GP

» Weight clipping makes the critic less
8 Gaussians 25 Gaussians  Swiss Roll
//,\,,iﬁ,‘,ifff

expressive and the training harder to

converge

» Optimal f should satisfy ||Vf]|| = 1 almost
everywhere under P and Q

> Also: [Ifll, <1 < [IVfll <1

» Can replace weight clipping with a

gradient penalty term: X = “[9;1 -lf_ (1 —Oaixz'
GP = AEzp, [(IV:f (D) = D] py o | @ Umiorm(OD
|~
or alternatively (‘'one-sided’ penalty): i x, ~ Q

GP = AEg.p [max(0, [|Vgf (X)) — 1)?]
https://arxiv.org/abs/1704.00028
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Sidenote

» There's an argument that the (true) Wasserstein distance might not be ideal for
generative modelling

— being a function of L2 norm of the difference vector (e.g. per-pixel difference between
images)

» A curious reading:

— J. Stanczuk et. al. Wasserstein GANs Work Because They Fail (to Approximate the
Wasserstein Distance), https://arxiv.org/abs/2103.01678

Artem Maevskiy, NRU HSE
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