
Generative Modelling for HEP

June 09, 2021

Artem Maevskiy
National Research University Higher School of Economics

Quarks online workshop “Advanced Computing in Particle Physics”
June 8-9, 2021

Deep-faking a high-energy physics detector

This X does not exist

Artem Maevskiy, NRU HSE

https://thisxdoesnotexist.com/

2

https://thisxdoesnotexist.com/

Style transfer

Artem Maevskiy, NRU HSE

https://junyanz.github.io/CycleGAN/

3

https://junyanz.github.io/CycleGAN/

Generative models progress

Artem Maevskiy, NRU HSE

https://twitter.com/goodfellow_ian/status/1084973596236144640

4

https://twitter.com/goodfellow_ian/status/1084973596236144640

▶ What if, instead of generating
images, we train these models to
generate detector responses?

▶ Generating a response as fast as a
single forward pass through the
network

– Should be orders of magnitude faster
compared to e.g. detailed Geant4
simulation

Deep generative models for fast detector simulation

Artem Maevskiy, NRU HSE

LHCb-FIGURE-2019-018

Estimated CPU usage for LHCb

5

▶ Generative modelling

▶ Deep learning models for generative modelling

– GANs

– VAEs

▶ HEP applications

Outline

Artem Maevskiy, NRU HSE 6

›

Generative modelling

▶ Training data – a set of objects, e.g.:

– Photos of animals / people faces / rooms / whatever

– Text

– Audio of speech / music / whatever

– Signals from a high energy physics experiment detector

▶ Goal: build a model to sample similar data

Problem setup

Artem Maevskiy, NRU HSE

𝑥! | 𝑖 = 1,…𝑁
Set of objects:

8

▶ Training data – a set of objects, e.g.:

– Photos of animals / people faces / rooms / whatever

– Text

– Audio of speech / music / whatever

– Signals from a high energy physics experiment detector

▶ Goal: build a model to sample similar data

Problem setup

Artem Maevskiy, NRU HSE

𝑥! | 𝑖 = 1,…𝑁

𝑝 𝑥

Set of objects:

Population PDF:

I.e. 𝑥! are i.i.d.
sampled from 𝑝(𝑥)

9

▶ Training data – a set of objects, e.g.:

– Photos of animals / people faces / rooms / whatever

– Text

– Audio of speech / music / whatever

– Signals from a high energy physics experiment detector

▶ Goal: build a model to sample similar data

– Learn the population distribution to sample more objects
from it

– (may be done implicitly, i.e. when we can’t evaluate the probability

density, yet can sample from it)

Problem setup

Artem Maevskiy, NRU HSE

𝑥! | 𝑖 = 1,…𝑁

𝑝 𝑥

Set of objects:

Population PDF:

I.e. 𝑥! are i.i.d.
sampled from 𝑝(𝑥)

Learn 𝑞 𝑥 ∼ 𝑝(𝑥) to
sample 𝑥" from 𝑞 𝑥

10

›

Generative Adversarial Networks
(GANs)

How can a neural network generate data?

Artem Maevskiy, NRU HSE

Neural network, 𝐺

12

How can a neural network generate data?

Artem Maevskiy, NRU HSE

Random noize
e.g. multivariate normal

Cat image attribution: https://pixabay.com/users/chiemsee2016-1892688/

Generated data

𝑧 ∼ 𝑝"

Neural network, 𝐺

𝑥# = 𝐺 𝑧 ∼ 𝑞 𝑥# → 𝑝 𝑥

13

https://pixabay.com/users/chiemsee2016-1892688/

How can a neural network generate data?

Artem Maevskiy, NRU HSE

Random noize
e.g. multivariate normal

Neural network, 𝐺

Cat image attribution: https://pixabay.com/users/chiemsee2016-1892688/

Generated data

▶ This makes the generated object being a differentiable function of the network
parameters

𝑧 ∼ 𝑝" 𝑥# = 𝐺 𝑧 ∼ 𝑞 𝑥# → 𝑝 𝑥

14

https://pixabay.com/users/chiemsee2016-1892688/

▶ Generated object is a differentiable function of the network parameters

▶ Need a differentiable measure of similarity between the sets of generated
objects and real ones

– Can optimize with gradient descent

▶ How to find such a measure?

How to train such a generator?

Artem Maevskiy, NRU HSE 15

▶ Measure of similarity: how well can another neural network (discriminator) tell the
generated objects apart from the real ones

Adversarial approach

Artem Maevskiy, NRU HSE

Random noize

Generator network
Generated data

“Real” data

Discriminator network

Separate real
objects from

generated

Goodfellow et al., Generative Adversarial Networks,
arXiv:1406.2661 [stat.ML]

16

Training the networks

Artem Maevskiy, NRU HSE
https://arxiv.org/abs/1406.2661

discriminator
steps

generator
steps

17

https://arxiv.org/abs/1406.2661

›

Variational Autoencoders (VAE)

▶ Simarly to GANs, we want to find a transformation from a
known distribution 𝑝" 𝑧 to the data distribution 𝑝 𝑥 ,
using only samples from 𝑝 𝑥

VAEs in a nutshell (1/3)

Artem Maevskiy, NRU HSE

𝒛 ∼ 𝒑𝒛(𝒛)

𝒙 ∼ 𝒑 𝒙

arXiv:1401.4082

arXiv:1312.6114

19

https://arxiv.org/abs/1401.4082
https://arxiv.org/abs/1312.6114

▶ Simarly to GANs, we want to find a transformation from a
known distribution 𝑝" 𝑧 to the data distribution 𝑝 𝑥 ,
using only samples from 𝑝 𝑥

▶ In GANs, this transformation is deterministic (𝑥# = 𝐺 𝑧)

VAEs in a nutshell (1/3)

Artem Maevskiy, NRU HSE

𝒛 ∼ 𝒑𝒛(𝒛)

𝒙 ∼ 𝒑 𝒙𝐺 𝑧

arXiv:1401.4082

arXiv:1312.6114

20

https://arxiv.org/abs/1401.4082
https://arxiv.org/abs/1312.6114

▶ Simarly to GANs, we want to find a transformation from a
known distribution 𝑝" 𝑧 to the data distribution 𝑝 𝑥 ,
using only samples from 𝑝 𝑥

▶ In GANs, this transformation is deterministic (𝑥# = 𝐺 𝑧)

▶ In VAEs, it is stochastic, modelled with parametric
distribution 𝑝+ 𝑥 | 𝑧
– E.g.: 𝑝# 𝑥 | 𝑧 ≡ 𝑝 𝑥; 𝜆 = 𝐺# 𝑧 ,

– i.e. a neural network 𝐺# 𝑧 maps (decodes) latent codes 𝑧 to
parameters 𝜆 of some distribution 𝑝 𝑥; 𝜆

VAEs in a nutshell (1/3)

Artem Maevskiy, NRU HSE

𝒛 ∼ 𝒑𝒛(𝒛)

𝒙 ∼ 𝒑 𝒙
𝑝! 𝑥 | 𝑧

𝐺 𝑧

arXiv:1401.4082

arXiv:1312.6114

21

https://arxiv.org/abs/1401.4082
https://arxiv.org/abs/1312.6114

▶ Simarly to GANs, we want to find a transformation from a
known distribution 𝑝" 𝑧 to the data distribution 𝑝 𝑥 ,
using only samples from 𝑝 𝑥

▶ In GANs, this transformation is deterministic (𝑥# = 𝐺 𝑧)

▶ In VAEs, it is stochastic, modelled with parametric
distribution 𝑝+ 𝑥 | 𝑧
– E.g.: 𝑝# 𝑥 | 𝑧 ≡ 𝑝 𝑥; 𝜆 = 𝐺# 𝑧 ,

– i.e. a neural network 𝐺# 𝑧 maps (decodes) latent codes 𝑧 to
parameters 𝜆 of some distribution 𝑝 𝑥; 𝜆

▶ So, our approximation to the target distribution is:

VAEs in a nutshell (1/3)

Artem Maevskiy, NRU HSE

𝑝+ 𝑥 = *𝑝+ 𝑥, 𝑧 𝑑𝑧 = *𝑝+ 𝑥 | 𝑧 𝑝" 𝑧 𝑑𝑧 = 𝔼"∼,%𝑝+ 𝑥 | 𝑧

𝒛 ∼ 𝒑𝒛(𝒛)

𝒙 ∼ 𝒑 𝒙
𝑝! 𝑥 | 𝑧

𝐺 𝑧

arXiv:1401.4082

arXiv:1312.6114

22

https://arxiv.org/abs/1401.4082
https://arxiv.org/abs/1312.6114

▶ Assume we know the inverse transformation 𝑝+ 𝑧|𝑥
– (though, this is typically intractable)

VAEs in a nutshell (2/3)

Artem Maevskiy, NRU HSE

𝒛 ∼ 𝒑𝒛(𝒛)

𝒙 ∼ 𝒑 𝒙
𝑝! 𝑥 | 𝑧

𝐺 𝑧

𝑝! 𝑧 | 𝑥

arXiv:1401.4082

arXiv:1312.6114

23

https://arxiv.org/abs/1401.4082
https://arxiv.org/abs/1312.6114

▶ Assume we know the inverse transformation 𝑝+ 𝑧|𝑥
– (though, this is typically intractable)

▶ Then, we could efficiently train our model by
maximizing the log-likelihood:

VAEs in a nutshell (2/3)

Artem Maevskiy, NRU HSE

log 𝑝+ 𝑥 = 𝔼"∼,&("|.) log 𝑝+ 𝑥
𝑝+ 𝑧 𝑥
𝑝+ 𝑧 𝑥

= 𝔼"∼,&("|.) log 𝑝+ 𝑥, 𝑧 − log 𝑝+ 𝑧 𝑥

= 𝔼"∼,&("|.) log 𝑝+ 𝑥, 𝑧 +ℋ 𝑝+ 𝑧 𝑥

So, for the log-likelihood we’re sampling not all 𝑧 values,
but only those corresponding to this particular 𝑥

Maximizing this encourages placing high
probability mass on many 𝑧 values that
could’ve generated 𝑥

𝒛 ∼ 𝒑𝒛(𝒛)

𝒙 ∼ 𝒑 𝒙
𝑝! 𝑥 | 𝑧

𝐺 𝑧

𝑝! 𝑧 | 𝑥

arXiv:1401.4082

arXiv:1312.6114

24

https://arxiv.org/abs/1401.4082
https://arxiv.org/abs/1312.6114

▶ In practice, 𝑝+ 𝑧|𝑥 is not known, so we approximate it with some 𝑞0 𝑧 𝑥 :

▶ One can prove, that this approximate log-likelihood is a lower bound to the true
log-likelihood log 𝑝+ 𝑥

▶ Maximizing it wrt 𝜃 and 𝜙 will also maximize the true log-likelihood

– Will lead to the true optimum if the family 𝑞$ 𝑧 𝑥 is rich enough to include 𝑝# 𝑧|𝑥 for any 𝜃

▶ It’s easy to derive this alternative form, which is simpler to optimize:

VAEs in a nutshell (3/3)

Artem Maevskiy, NRU HSE

log 𝑝+ 𝑥 122345.,0 = 𝔼"∼8'("|.) log 𝑝+ 𝑥, 𝑧 +ℋ 𝑞0 𝑧 𝑥

log 𝑝+ 𝑥 122345.,0 = 𝔼"∼8'("|.) log 𝑝+ 𝑥 𝑧 − 𝐷9: 𝑞0 𝑧 𝑥 7𝑝 𝑧 → max
+,0

e.g., 𝒩 𝑧; 𝜇, 𝜎 = 𝐷" 𝑥

25

›

Applications in HEP

▶ Quite a developing field!

▶ (not pretending to be able
to cover all applications)

Deep learning for fast simulation in HEP

Artem Maevskiy, NRU HSE

K. Matchev, P. Shyamsundar, Uncertainties associated with GAN-generated datasets in high energy physics,
arXiv:2002.06307 [hep-ph]

27

▶ de Oliveira, L., Paganini, M. & Nachman, B., arXiv:1701.05927

Where it all started: LAGAN

Artem Maevskiy, NRU HSE

▶ Demonstrated the ability to generate realistic jet images

28

https://arxiv.org/abs/1701.05927

▶ L., Paganini, de Oliveira, M. & Nachman, B., arXiv:1705.02355

CaloGAN (3D calorimeter)

Artem Maevskiy, NRU HSE

Some physically-motivated variables for validation
(not seen at training time)

▶ Up to 𝒪 10A time improvement on CPU

▶ Up to 𝒪 10B on GPU

29

https://arxiv.org/abs/1705.02355

▶ arXiv:1812.01319

– Uses WGAN-GP
modification of GAN
(arXiv:1704.00028)

▶ 0.07ms per sample
(GPU)

▶ 4.9ms per sample
(CPU)

Fast Calorimeter Simulation: the LHCb case

Artem Maevskiy, NRU HSE

G
ea

nt
4

G
A

N

30

https://arxiv.org/abs/1812.01319
https://arxiv.org/abs/1704.00028

▶ arXiv:1905.11825

▶ Cramer-GAN
(arXiv:1705.10743)

▶ Trained on real data

– Utilized sPlot for
background
subtraction

Data-driven simulation of LHCb Cherenkov detectors

Artem Maevskiy, NRU HSE 31

https://arxiv.org/abs/1905.11825

▶ arXiv:2012.04595

▶ Tracking characteristics are spot-on

▶ 𝒪(10) speed-up factor

Time projection chamber fastsim at MPD (NICA)

Artem Maevskiy, NRU HSE

Detailed
simulation

Detailed
simulationGAN GAN

Sm
al

l p
at

ch
es

 o
f t

he
 in

du
ce

d
re

sp
on

se
32

https://arxiv.org/abs/2012.04595

▶ ATL-SOFT-PUB-2018-001

▶ 3d calorimeter simulation

▶ Tested both GAN and VAE

Fast shower simulation in ATLAS

Artem Maevskiy, NRU HSE

G
A

N
V

A
E

33

http://cds.cern.ch/record/2630433

▶ Check out this list if interested:
https://github.com/iml-
wg/HEPML-LivingReview

There’s many more…

Artem Maevskiy, NRU HSE 34

https://github.com/iml-wg/HEPML-LivingReview

▶ Trained on a finite sample, generative
models introduce additional systematics

▶ However, a generative model may contain

more statistical power than the original
training dataset — due to interpolation

Note on systematic uncertainties

Artem Maevskiy, NRU HSE

arXiv:2002.06307 [hep-ph]

arXiv:2008.06545 [hep-ph]

35

https://arxiv.org/abs/2002.06307
https://arxiv.org/abs/2008.06545

▶ Deep generative models are an exciting and very quickly developing field of
machine learning

▶ They promise to be good candidates for fast simulation models in HEP

▶ GANs and VAEs briefly covered in this talk, did not get to other models, e.g.
based on Normalizing Flows or Mixture models

▶ Performance evaluation of a trained model is always tricky

Summary

Artem Maevskiy, NRU HSE 36

Thank you!

amaevskij@hse.ru

SiLiKhon

Artem Maevskiy

Artem Maevskiy, NRU HSE

hse_lambda

37

http://hse.ru

›

Backup

›

GAN

Artem Maevskiy, NRU HSE

▶ Noise samples:

Let’s put it in formulas

Artem Maevskiy, NRU HSE

𝑧C ∼ 𝑝" 𝑧
where 𝑝" is some simple PDF we can sample from, e.g.𝒩 0, 𝕀 .

▶ Generated samples:
𝑥C# = 𝐺+ 𝑧C

where 𝐺+ is the generator network with parameters 𝜃.

▶ Discriminator network (with parameters 𝜙):
𝐷0 𝑥

returns the probability for 𝑥 being a real sample rather than a generated one

▶ Measure of similarity between the generated and real samples:

𝐿D = max
0

𝔼.∼, . log𝐷0 𝑥 + 𝔼"∼,% " log 1 − 𝐷0 𝐺+ 𝑧 → min
+

Log-likelihood for discriminator prediction

Probability the sample
was generated

40

Training the networks

Artem Maevskiy, NRU HSE
https://arxiv.org/abs/1406.2661

41

https://arxiv.org/abs/1406.2661

›

Problems with GANs

▶ If we re-write the loss using 𝑝EFG,+ 𝑥 – the distribution of 𝑥# = 𝐺+ 𝑧 , and

expand the expectations as integrals:

The optimal discriminator solution

Artem Maevskiy, NRU HSE

𝐿D = max
0

*
.
𝑝 𝑥 log 𝐷0 𝑥 + 𝑝EFG,+ 𝑥 log 1 − 𝐷0 𝑥 𝑑𝑥

▶ it’s easy to show that max0 is obtained at 𝜙∗ 𝜃 with:

𝐷0∗ + 𝑥 =
𝑝 𝑥

𝑝 𝑥 + 𝑝EFG,+ 𝑥
▶ So the objective becomes:

𝐿D = 𝔼.∼, . log
𝑝 𝑥

𝑝 𝑥 + 𝑝EFG,+ 𝑥
+ 𝔼.∼,)*+,& . log

𝑝EFG,+ 𝑥
𝑝 𝑥 + 𝑝EFG,+ 𝑥

= − log 4 + 𝐽𝑆𝐷 𝑝 || 𝑝IJK,+
Jensen–Shannon divergence 43

▶ In case 𝑝 and 𝑝EFG,+ have non-overlapping support:

Vanishing gradients

Artem Maevskiy, NRU HSE

𝐿D = 𝔼.∼, . log
𝑝 𝑥

𝑝 𝑥 + 𝑝EFG,+ 𝑥
+ 𝔼.∼,)*+,& . log

𝑝EFG,+ 𝑥
𝑝 𝑥 + 𝑝EFG,+ 𝑥

= 𝔼.∼, . log
𝑝 𝑥
𝑝 𝑥

+ 𝔼.∼,)*+,& . log
𝑝EFG,+ 𝑥
𝑝EFG,+ 𝑥

= 0 = 𝑐𝑜𝑛𝑠𝑡

▶ No meaningful gradient, can’t learn

44

▶ Assume at some
point the generator
has learned one of
the modes

▶ No meaningful
gradients to drive
the solution towards
covering the other
modes

Mode collapse

Artem Maevskiy, NRU HSE 45

›

Wasserstein GAN

▶ The problems with GANs are mainly due to Jensen–Shannon divergence
providing problematic gradients

▶ What if we try to find some other measure of distance between real and
generated distributions that doesn’t have these problems?

Alternative distance measure

Artem Maevskiy, NRU HSE 47

0.00

0.05

0.10

0.15

0.20

0.25

6 4 2 0 2 4 6 8 10

▶ Distributions 𝑃 𝑥 and 𝑄 𝑥
are viewed as describing the

amounts of “dirt” at point 𝒙
▶ We want to convert one

distribution into the other by

moving around some
amounts of dirt

Wasserstein distance

Artem Maevskiy, NRU HSE

Also called “Earth mover’s distance” (EMD)

▶ The cost of moving an amount 𝒎 from 𝒙𝟏 to 𝒙𝟐 is 𝒎× 𝒙𝟐 − 𝒙𝟏
▶ EMD(𝑃, 𝑄) = minimum total cost of converting 𝑃 into 𝑄

48

Why is it better?

Artem Maevskiy, NRU HSE
https://arxiv.org/abs/1701.07875

49

https://arxiv.org/abs/1701.07875

▶ Say, we have a moving plan 𝛾 𝑥N, 𝑥O ≥ 0:

Formal definition

Artem Maevskiy, NRU HSE

𝛾 𝑥N, 𝑥O 𝑑𝑥N𝑑𝑥O – how much dirt we’re moving from
[𝑥N, 𝑥N + 𝑑𝑥N] to [𝑥O, 𝑥O + 𝑑𝑥O]

▶ Since we want to convert 𝑃 to 𝑄, the plan has to satisfy:

*
.-
𝛾 𝑥N, 𝑥O 𝑑𝑥N = 𝑄 𝑥O , *

..
𝛾 𝑥N, 𝑥O 𝑑𝑥O = 𝑃 𝑥N

▶ Then, the cost of moving from [𝑥N, 𝑥N + 𝑑𝑥N] to [𝑥O, 𝑥O + 𝑑𝑥O] is:

𝑥O − 𝑥N ⋅ 𝛾 𝑥N, 𝑥O 𝑑𝑥N𝑑𝑥O

▶ and the total cost is:

𝐶 = *
.-,..

𝑥O − 𝑥N ⋅ 𝛾 𝑥N, 𝑥O 𝑑𝑥N𝑑𝑥O = 𝔼.-,..∼P .-,.. 𝑥O − 𝑥N

Interpreting 𝛾 as a PDF

50

▶ Let 𝜋 be the set of all plans that convert 𝑃 to 𝑄, i.e.:

Formal definition

Artem Maevskiy, NRU HSE

𝜋 = 𝛾: 𝛾 ≥ 0, *
.-
𝛾 𝑥N, 𝑥O 𝑑𝑥N = 𝑄 𝑥O , *

..
𝛾 𝑥N, 𝑥O 𝑑𝑥O = 𝑃 𝑥N

▶ Then, the Wasserstein distance between 𝑃 and 𝑄 is:

EMD 𝑃, 𝑄 = inf
5∈7

𝔼8!,8"∼5 𝑥9 − 𝑥:

Optimization over all transport plans – not too friendly

▶ Dual form (Kantorovich-Rubinstein duality):

EMD 𝑃, 𝑄 = su𝑝
; #<:

𝔼8∼=𝑓 𝑥 − 𝔼8∼>𝑓 𝑥
Optimization over Lipschitz-1
continuous functions acting in 𝓧 → ℝ

51

▶ 𝑓 is Lipschitz-k continuous if

▶ there exists a constant 𝑘 ≥ 0, such that
for all 𝑥N and 𝑥O:

Lipschitz continuity

Artem Maevskiy, NRU HSE

𝑓 𝑥N − 𝑓 𝑥O ≤ k ⋅ 𝑥N − 𝑥O

img from https://en.wikipedia.org/wiki/Lipschitz_continuity

52

https://en.wikipedia.org/wiki/Lipschitz_continuity

[intuition behind the dual form]

Artem Maevskiy, NRU HSE 53

[intuition behind the dual form]

Artem Maevskiy, NRU HSE 54

▶ The function can be expressed as a
neural net – discriminator (‘critic’ in
the original paper)

▶ Lipschitz-1 continuity can be
replaced with Lipschitz-k continuity

– In such case we’ll estimate 𝑘×EMD(𝑃, 𝑄)

– Can be achieved by clipping the weights
of the critic: 𝑤 → clip(𝑤,−𝑐, 𝑐)with
some constant 𝑐

WGAN

Artem Maevskiy, NRU HSE

EMD 𝑃, 𝑄 = su𝑝
; #<:

𝔼8∼=𝑓 𝑥 − 𝔼8∼>𝑓 𝑥

https://arxiv.org/abs/1701.07875

▶ The expectations can be estimated as
sample mean

We wouldn’t know what 𝑘 is, but it
doesn’t matter: all we want is to
minimize the EMD!

55

https://arxiv.org/abs/1701.07875

WGAN

Artem Maevskiy, NRU HSE

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values ↵ = 0.00005, c = 0.01, m = 64, ncritic = 5.

Require: : ↵, the learning rate. c, the clipping parameter. m, the batch size.
ncritic, the number of iterations of the critic per generator iteration.

Require: : w0, initial critic parameters. ✓0, initial generator’s parameters.
1: while ✓ has not converged do
2: for t = 0, ..., ncritic do
3: Sample {x

(i)
}
m

i=1 ⇠ Pr a batch from the real data.
4: Sample {z

(i)
}
m

i=1 ⇠ p(z) a batch of prior samples.
5: gw rw

⇥
1
m

P
m

i=1 fw(x
(i))� 1

m

P
m

i=1 fw(g✓(z
(i)))

⇤

6: w w + ↵ · RMSProp(w, gw)
7: w clip(w,�c, c)
8: end for
9: Sample {z

(i)
}
m

i=1 ⇠ p(z) a batch of prior samples.
10: g✓ �r✓

1
m

P
m

i=1 fw(g✓(z
(i)))

11: ✓ ✓ � ↵ · RMSProp(✓, g✓)
12: end while

The fact that the EM distance is continuous and di↵erentiable a.e. means that
we can (and should) train the critic till optimality. The argument is simple, the
more we train the critic, the more reliable gradient of the Wasserstein we get, which
is actually useful by the fact that Wasserstein is di↵erentiable almost everywhere.
For the JS, as the discriminator gets better the gradients get more reliable but the
true gradient is 0 since the JS is locally saturated and we get vanishing gradients,
as can be seen in Figure 1 of this paper and Theorem 2.4 of [1]. In Figure 2
we show a proof of concept of this, where we train a GAN discriminator and a
WGAN critic till optimality. The discriminator learns very quickly to distinguish
between fake and real, and as expected provides no reliable gradient information.
The critic, however, can’t saturate, and converges to a linear function that gives
remarkably clean gradients everywhere. The fact that we constrain the weights
limits the possible growth of the function to be at most linear in di↵erent parts of
the space, forcing the optimal critic to have this behaviour.

Perhaps more importantly, the fact that we can train the critic till optimality
makes it impossible to collapse modes when we do. This is due to the fact that mode
collapse comes from the fact that the optimal generator for a fixed discriminator
is a sum of deltas on the points the discriminator assigns the highest values, as
observed by [4] and highlighted in [11].

In the following section we display the practical benefits of our new algorithm,
and we provide an in-depth comparison of its behaviour and that of traditional
GANs.

8

56

▶ Weight clipping makes the critic less
expressive and the training harder to
converge

▶ Optimal 𝑓 should satisfy ∇𝑓 = 1 almost
everywhere under 𝑃 and 𝑄

▶ Also: 𝑓 : ≤ 1 ⟺ ∇𝑓 ≤ 1

▶ Can replace weight clipping with a
gradient penalty term:

WGAN-GP

Artem Maevskiy, NRU HSE

8 Gaussians 25 Gaussians Swiss Roll

GP = 𝜆𝔼 U.∼ℙ/0 ∇ U.𝑓 i𝑥 − 1 O ℙ U. ∶

i𝑥 = 𝛼𝑥N + 1 − 𝛼 𝑥O
𝛼 ∼ Uniform 0, 1

𝑥N ∼ 𝑃
𝑥O ∼ 𝑄

GP = 𝜆𝔼 U.∼ℙ/0 max 0, ∇ U.𝑓 i𝑥 − 1 O
or alternatively (‘one-sided’ penalty):

https://arxiv.org/abs/1704.00028
57

https://arxiv.org/abs/1704.00028

▶ There’s an argument that the (true) Wasserstein distance might not be ideal for
generative modelling

– being a function of L2 norm of the difference vector (e.g. per-pixel difference between
images)

▶ A curious reading:

– J. Stanczuk et. al. Wasserstein GANs Work Because They Fail (to Approximate the
Wasserstein Distance), https://arxiv.org/abs/2103.01678

Sidenote

Artem Maevskiy, NRU HSE

EMD 𝑃, 𝑄 = inf
5∈7

𝔼8!,8"∼5 𝑥9 − 𝑥:

58

https://arxiv.org/abs/2103.01678

