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Recent Nobel Prizes in astrophysics/cosmology:

1983: Chandrasekhar, Fowler

1993: Hulse, Taylor

2002: Davis, Koshiba, Giacconi

2006: Mather, Smoot

2011: Perlmutter, Schmidt, Riess

2017: Weiss, Barish, Thorne

2019: Peebles, Mayor, Queloz

2020: Penrose, Genzel, Ghez

Are they really the Kerr black holes of general relativity?

Black holes play a key role in modern physics



What do we know about 
black hole solutions beyond GR?
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Figure 2.1. This diagram illustrates how Lovelock’s theorem serves as a guide to classify modified
theories of gravity. Each yellow box represents a class of modified theories of gravity that arises from
violating one of the assumptions underlying the theorem. A theory can, in general, belong to multiple
classes. See Table 1 for a more precise classification.

2. Extensions of general relativity: motivation and overview

2.1. A compass to navigate the modified-gravity atlas

There are countless inequivalent ways to modify GR, many of them leading to theories
that can be designed to agree with current observations. Cosmological observations
and fundamental physics considerations suggest that GR must be modified at very
low and/or very high energies. Experimental searches for beyond-GR physics are a
particularly active and well motivated area of research, so it is natural to look for a
guiding principle: if we were to find experimental hints of modifications of GR, which
of the assumptions underlying Einstein’s theory should be abandoned?

Such a guiding principle can be found by examining the building blocks of
Einstein’s theory. Lovelock’s theorem [187, 188] is particularly useful in this context.
In simple terms, the theorem states that GR emerges as the unique theory of gravity
under specific assumptions. More precisely, it can be articulated as follows:

In four spacetime dimensions the only divergence-free symmetric rank-2
tensor constructed solely from the metric gµ⌫ and its derivatives up to second
differential order, and preserving diffeomorphism invariance, is the Einstein
tensor plus a cosmological term.

A guiding principle to modified GR: Lovelock’s theorem

[Sotiriou+, 0707.2748]
[EB+, 1501.07274] 

In four spacetime dimensions the only 
divergence-free (WEP) symmetric rank-2 
tensor constructed solely from the metric
and its derivatives up to 2nd order, and 
preserving diffeomorphism invariance, 
is the Einstein tensor plus L.

Generic modifications introduce 
additional fields (simplest: scalars)

Minimal requirements:
• Action principle
• Well-posed
• Testable predictions
• Black holes, neutron stars
• Cosmologically viable



Orbital period derivative:

For black hole binaries,                       and dipole vanishes identically
Quadrupole:

Result extended to higher PN orders; it is exact in the large mass ratio limit
[Will & Zaglauer 1989; Alsing+, 1112.4903; Mirshekari & Will, 1301.4680; 
Yunes+, 1112.3351; Bernard 1802.10201, 1812.04169, 1906.10735]
Ways around: matter (but EOS degeneracy), cosmological BCs (but small corrections), or
curvature itself sourcing the scalar field: dCS, EsGB [Yagi+ 1510.02152]

(Often) black hole binaries are the same as in GR! Scalar-tensor: no-hair theorems



Expand all operators in the action in terms of some length scale 
(must be macroscopic to be relevant for GW tests). 
Theories: sum over curvature invariants with scalar-dependent coefficients

and more specifically, at order 

Einsteinian cubic gravity (+parity-breaking) - causality constraints [Camanho+ 1407.5597]
Next order, no new DOFs [Endlich-Gorbenko-Huang-Senatore, 1704.01590]

Systematically exploring small corrections: the effective field theory (EFT) viewpoint

[Cano-Ruipérez, 1901.01315; Cano-Fransen-Hertog, 2005.03671. See also work by Hui, Penco…]

EsGB dCS (dilaton+axion)



Horndeski Lagrangian: most general scalar-tensor theory with second-order EOMs

Set:

Shift symmetry: invariance under                         ,  i.e.

EsGB is a special case of Horndeski and of quadratic gravity
[Kobayashi+, 1105.5723; Sotiriou+Zhou, 1312.3622; Maselli+, 1508.03044]

Einstein-scalar-Gauss-Bonnet gravity: a loophole in no-hair theorems



Integrate by parts, divergence theorem:

The RHS vanishes for stationary, asymptotically flat spacetimes; if  
both terms on the LHS vanish separately, i.e.

In alternative, linearize the scalar field equation: 

is an effective mass for the perturbation – tachyonic instability

Will not discuss here – Sotiriou’s talk

Black hole spontaneous scalarization

[Silva+, 1711.02080]



Binaries in Einstein-scalar-Gauss-Bonnet: analytical and numerical progress

• EsGB: subclass of Horndeski theory that evades no-hair theorems
Scalarized solution exist, can be stable, can differ sensibly from GR
Interesting phenomenology for spin-induced scalarization

• BHBs produce dipolar radiation: post-Newtonian work
[Yagi+ 1510.02152; Julié+, 1909.05258; Shiralilou+, 2105.13972]

• Effective-one-body: work in progress
[Bernard+, Julié+Baibhav+EB…]

• NR mergers: 
inspiral, weak coupling [Witek+ 1810.05177]
head-on, full theory [Ripley-East 2105.08571]

• Related work also in dynamical Chern-Simons
[Okounkova+ 1705.07924, 1906.08789, 1911.02588, 2001.03571]
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FIG. 6. (Color online) Scalar waveforms, rescaled by the
extraction radius Rex = 100M , sourced by an equal-mass,
nonspinning BH binary whose waveform  4,22 is displayed
in the bottom panel for comparison. t̂ = 0M indicates the
merger time. We show the l = m = 2 (top panel) and l =
m = 4 (mid panel) modes of the scalar field. During the
inspiral phase we also display the PN waveform (black dashed
lines, see Appendix B 2). In the right panels we zoom in on
the merger-ringdown phase and observe a modulation due to
the presence of both scalar-led and gravitational-led modes.

dxc = 1.8M and dxh = 1.0M . We estimate the numer-
ical error to be about (i) � 4,22/ 4,22 . 1.5% in the
gravitational waveforms; (ii) ��22/�22 . 1.5% in the
scalar waveforms; and (iii) . 0.5% in both the gravita-
tional and scalar phases. The corresponding convergence
plot is shown in Fig. 5.

Waveforms: We present the background gravita-
tional waveform and the O(✏) scalar waveform for bi-
naries with mass ratio q = 1 and q = 1/2, 1/4 in Figs. 6
and 7, respectively. All presented waveforms are shifted
in time such that t̂/M = (t � tmerger � Rex)/M = 0
indicates the maximum in the dominant gravitational
mode as measure for the time of merger. The wave-
forms exhibit the typical morphology: a sinusoid with
increasing frequency that is driven by the orbital mo-
tion of the BHs, the highly nonlinear merger followed by
the exponentially damped ringdown. During the inspi-
ral we compare the numerical results to the analytical
expressions obtained at leading PN order in [24] (see Ap-
pendix B 2). We remark that these expressions depend
on the time-dependent orbital frequency ⌦(t), which, at
this PN order, can not be obtained with good approxi-
mation. Therefore, we extract the orbital frequency from
the numerical data (measuring, at each half-cycle, the
wavelength of the gravitational waveform). Within this
approach, which is similar to that used in [43], the com-
parison between PN and numerical results concerns the
amplitudes of the scalar waveforms, while their phases
agree by definition.

Interestingly, while the scalar signal for l � 2 is qualita-
tively similar to the gravitational waveform and displays
the classical chirp, the dipole is qualitatively di↵erent.
As shown in Fig. 7, the frequency of the dipole mode
grows as expected during the merger, but the amplitude
remains almost constant. This is a strong-field behavior
that is not captured by the PN approximation. A po-
tential explanation of this behaviour is that the scalar
configuration ceases to be dominantly dipolar before the
merger, i.e. the dynamical evolution of the scalar is more
complex and it involves additional oscillations and recon-
figuration. Our simulations, and in particular the time
evolution of the scalar distribution, do seem to be con-
sistent with this explanation, though limitations in reso-
lution do not allow us to make a conclusive statement.
In the post-merger phase the background approaches

a stationary spinning BH, so we expect to observe the
same multiple ringing discussed in the previous section
for an isolated BH. This is confirmed in the insets of
Figs. 6 and 7 and by the postmerger ringdown frequen-
cies extracted from the scalar waveform using the two-
mode fit (60) and presented in Table IV. Note that, in
contrast to the single BH case, the background is now a
perturbed BH plus gravitational radiation, both of which
modify the source term of the scalar field. In particular,
gravitational radiation seems to cause an enhancement of
the gravitational-led quadrupole modes, which dominate
over the scalar-led one in some configurations (see, e.g.,
the l = m = 2 case for q = 1, 1/2 in Table IV).
Finally, the scalar field monopole for the same values

of the mass ratio is shown in Fig. 8. The pre-merger
amplitude is larger for smaller values of the mass ratio q,
while the final amplitude is approximately independent
of q. This behaviour can be understood noting that the
post-merger amplitude is, as a first approximation, � '
↵GB/(2Mr) (see App. B 1 a), where (by construction) the
total mass M is the same in all cases, i.e., independent
of the mass ratio. Instead, when the two BHs are well
separated, the scalar field amplitude is

� ' ↵GB

2m1r
+

↵GB

2m2r
=

↵GB

2Mr

1

⌘
, (63)

for su�ciently large radii encompassing the entire binary.
Therefore, the ratio between the pre-merger and the post-
merger amplitude is expected to be determined by the
(inverse of the) symmetric mass ratio ⌘. In particular we
have 1/⌘ = 4, 4.5 and 6.25 for mass ratios q = 1, 1/2
and 1/4. These values are in agreement with Fig. 8.
Energy and momentum fluxes: Next, we inves-

tigate the energy radiated in gravitational and scalar
waves. We compute their energy fluxes using (52)– (53)
with (56), i.e. accounting for both the canonical scalar’s
and Gauss–Bonnet contributions to the energy flux. We
furthermore estimate the total radiated energy by inte-
grating Eqs. (52) and (53) in time, measuring it at dif-
ferent extraction radii and performing the extrapolation

EGW/M =EGW
1 /M +B/Rex , (64)



Bottom line:

In many theories, black hole solutions are the same as in GR

In EsGB gravity, black holes differ from GR 
because of curvature/spin induced “spontaneous scalarization”

and can produce dipolar radiation 

Can we test this with gravitational waves?



Parametrized post-Einstein 
formalism in the inspiral



Inspiral: GR solution known, parametrized post-Einstein formalism

[Yunes-Pretorius+, 0909.3328; Perkins-Yunes-EB, 2010.09010]
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data. Indeed, a similar approach was successfully pursued when carrying out tests
with Solar System observations, which led to the development of the parameterized
PN framework of Will and Nordtvedt [152–155].

The first attempt at such a generic test consisted of verifying the PN structure of
the waveform phase [156]. The idea was to decompose the Fourier-domain waveform
model into a frequency-dependent amplitude and a frequency-dependent phase, and
to then rewrite the phase as2

Ψ ( f ) =
n=7∑

n=0

αnv( f )−5+n, (18)

where αn are PN coefficients, which in GR are known functions of the parameters of
the binary (to be more precise , the individual masses m1 and m2 for non-spinning
black hole binaries), and v( f ) = (πm f )1/3 is the orbital velocity, with m the binary’s
total mass. The proposal was then to treat all of these coefficients as independent and
find the best-fit values by comparing the above template waveform with the data. One
can then draw error regions of each coefficient in the m1–m2 plane assuming GR is
correct to check for consistency, namely to check if there is a region where all of error
regions overlap. Later the authors only considered three out of eight coefficients, so
that correlations among parameters could be reduced and one could carry out a stronger
test by shrinking the error regions [157,158]. This procedure resembles binary pulsar
tests in the parameterized post-Keplerian formalism [7,159].

Although feasible in principle, the above test has a few limitations. First, it has
the strong bias of assuming Nature follows the same exact functional structure of the
PN approximation in GR, i.e. that the Fourier phase can be expressed as a series in
integer powers of velocity, with the leading-order term starting at v−5. Indeed, many
examples of modified gravity effects and modified gravity theories exist which do not
admit this structure; examples of this include dipole emission (∝ v−7), variability of
the fundamental constants (∝ v−13), parity violation in eccentric binaries (∝ v−7.3),
and massive gravitons in eccentric binaries (∝ v−9.3), to name a few. Second, the
framework does not allow for tests of modified gravity theories that lead predominantly
to amplitude modifications, without affecting the phase evolution much; examples of
this include gravitational birefringence [160–162]. Third, the framework assumes that
polynomials in velocity are a good basis to expand the Fourier phase during the entire
inspiral, including right up to plunge and merger. Today, we know that this is not the
case, with the series requiring arctangent corrections [163,164].

An extension and generalization of this method that resolves all of the above prob-
lems is the parameterized post-Einsteinian (ppE) approach [165]. In this framework,
one extends the GR waveform model via

h̃( f ) = ÃGR( f )
[
1 + αppE v( f )a

]
eiΨGR( f )+iβppE v( f )b , (19)

2 The terms α5 and α6 contain contributions that depend on ln v, which the authors treat as constant in
[156]. In their follow-up papers [157,158], they modified Eq. (18) by adding further terms of the form∑

k αn,l ln v.
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How will the bounds improve? Depends on detector timeline

[Perkins+, 2010.09010]

Both CE and ET

Only CE

No CE, no ET



How will the bounds improve? Number of sources and SNR evolution over time

[Perkins+, 2010.09010]



Generic bounds at different PN orders

A term                   in the phasing is of
PN order

Multiband (MB) sources best 
at negative PN orders

MBH better than SOBH 
at negative PN orders

Terrestrial slightly better than LISA MBHs 
at positive PN orders

Terrestrial network improvement matter
most at negative PN orders



Bounds: are Earth-based sources better? Analytic scaling and Neff

[Perkins+, 2010.09010]
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Table 2 Mapping of ppE parameters to those in each theory for a black hole binary

Theory βppE b

Scalar–tensor
[36,179,
180]

− 5
1792 φ̇2η2/5 (

m1sST
1 − m2sST

2
)2 −7

EdGB, D2GB
[23]

− 5
7168 ζGB

(
m2

1s
GB
2 −m2

2s
GB
1

)2

m4η18/5 −7

dCS [181] 1549225
11812864

ζCS

η14/5

[(
1 − 231808

61969 η
)

χ2
s +

(
1 − 16068

61969 η
)

χ2
a − 2δmχsχa

]
−1

EA [182] − 3
128

[(
1 − c14

2
) (

1
wÆ

2
+ 2c14c

2+
(c++c−−c−c+)2wÆ

1
+ 3c14

2wÆ
0 (2−c14)

)
− 1

]
−5

Khronometric
[182]

− 3
128

[
(1 − βKG)

(
1

wKG
2

3βKG
2wKG

0 (1−βKG)

)
− 1

]
−5

Extra
dimension
[183]

25
851968

(
dm
dt

)
3−26η+34η2

η2/5(1−2η)
−13

Varying G
[151]

− 25
65536 ĠM −13

Mod. disp. rel.
[184]

π2−αMDR

(1−αMDR)
DαMDR

λ
2−αMDR
A

M1−αMDR

(1+z)1−αMDR
3(αMDR − 1)

In scalar–tensor theories, black holes acquires a scalar charge for a cosmologically evolving scalar field
[179,180]. Such a scalar charge is proportional to sST

A ≡ [1+(1−χ2
A)

1/2]/2. sGB
A is related to the black hole

scalar charge µ in D2GB in Eq. (37) as µGB
A = 2(αGB/m2

A)s
GB
A . The dimensionless coupling constant in

quadratic-curvature theories is defined by ζGB,CS = 16πα2
GB,CS/m

4. Propagation speeds wÆ,KG
i in Lorentz-

violating theories are summarized in Table 1. dm/dt = dm1/dt+dm2/dt can be calculated from Eq. (17).
λA ≡ h A1/(α−2), where h is the Planck constant. The distance DαMDR is defined in Eq. (22)

the results of [191–193] to non-spinning binary systems on quasi-circular orbits in
scalar–tensor gravity at 2PN relative order.3 Such waveforms introduce PN corrections
to the mapping presented in Table 2. Julié and Deruelle [195,196] use these higher order
PN results to begin to extend the effective-one-body (EOB) formalism of Buonanno
and Damour [197] to scalar–tensor gravity. Such resummed waveform models cannot
be analytically mapped to the ppE waveforms directly.

All the mappings in Table 2 (except for the last one) originate from non-GR effects
created at the level of generation of GWs, while such waves in general acquire modi-
fications also at the level of their propagation. The dispersion relation of the graviton

3 By imposing the stringent constraints set by current astrophysical observations (cf. Table II of [194]),
they find that dipolar radiation is subdominant to quadrupolar radiation for most prospective GW sources: in
the absence of spontaneous scalarization, the dipole term can dominate only at frequencies f ! 100 µHz
in binary neutron star or neutron-star/stellar-mass-black-hole systems, and at frequencies f ! 5 µHz
in neutron-star/intermediate-mass-black-hole systems. Therefore, ground- and space-based GW detectors
would only observe binary systems whose inspiral is driven by the next-to-leading order flux.

123



Mapping to theories: two examples (dipolar radiation and EdGB)



Bounds: improvements (generic vs. specific)

[Perkins+, 2010.09010]



Can we parametrize ringdown
in modified gravity theories?



Gravitational perturbations of a Schwarzschild BH: Regge-Wheeler/Zerilli equations

Isospectrality: the odd/even potentials

have the same quasinormal mode spectrum [Chandrasekhar-Detweiler 1975]
Scalar, electromagnetic and (odd) gravitational perturbations:

[e.g. EB+, 0905.2975]

Can we parametrize ringdown? Scalar/EM/gravitational perturbations in GR



Maximum of                                    is                                      , so corrections are small if:

Generic (but decoupled) corrections to GR potentials

[Cardoso+, 1901.01265]

Modifications to the gravity sector and/or beyond Standard Model physics: expect 
• small modifications to the functional form of the potentials – parametrize!
• coupling between the wave equations (more later)



QNM frequency correction coefficients 
by direct integration [Pani, 1305.6759]
Asymptotics:

Damped oscillatory behavior for large j

Fitting the numerics by

confirms this.

Correction coefficients and their asymptotic behavior

[Pani, 1305.6759]

III. RESULTS

The most important results of our analysis are the
numerical values of the complex factors e!j and dsj, which
were obtained via high-precision direct integration of the
relevant equations. Figure 1 and Table I show representa-
tive results for the coefficients e!j and dsj in (10) and (11)
for odd gravitational and scalar modes, respectively.
Results for all fields and the lowest multipole numbers
l ¼ jsj, jsþ 1j;…; 10 are available online [30]. Our
calculated e!j (and dsj) have a five-digit accuracy for j≲ 30.

A. Isospectrality

A remarkable result in GR concerns the isospectrality of
potentials (2) and (3). These potentials are sometimes
referred to as “superpartners,” since they can both be
obtained from a “superpotential” W0 [4,31]:

fV! ¼ W2
0 ∓ f

dW0

dr
−
λ2ðλþ 2Þ2

36r2H
; ð12Þ

W0 ¼
3rHðrH − rÞ
r2ð3rH þ λrÞ

−
λðλþ 2Þ
6rH

: ð13Þ

When the potentials are perturbed from their GR values
as in Eq. (6), isospectrality will in general be broken, unless
the coefficients αþj are related in some way to α−j .

The linearized superpartner relations now yield

2
dδW
dr

¼ δV− − δVþ; ð14Þ

4
W0

f
δW ¼ δVþ þ δV−; ð15Þ

with δW the induced change in the superpotential W with
respect to its GR value W0 [Eq. (13)].
Let us admit that the theory predicts a set of α−j . The

relations above give us a unique possibility for αþj , namely,

αþ0 ¼ α−0 ; αþ1 ¼ α−1 ; ð16Þ

αþ2 ¼ α−2 þ 6ðα−0 − α−1 Þ
λðλþ 2Þ

;… : ð17Þ

These relations show that isospectrality is very fragile, and
that in general it will be broken.

IV. ASYMPTOTIC BEHAVIOR AND
CONVERGENCE OF SERIES

Having defined the “basis vectors” ej, it is crucial to
investigate their behavior, and the overall convergence of
the QNM frequency expansion (10). For large j, the
contribution to the potential from the jth term can be
described by a Gaussian profile depending on the tortoise
coordinate2 r⋆, i.e.,

fr2HδVj ¼ fα!j

!
rH
r

"
j
≃
α!j
ej

e−ðr&þrH ln jÞ2=ð2r2HÞ; ð18Þ

showing that the location of the peak is proportional to
− ln j (in terms of the tortoise coordinate r&). Moreover,

FIG. 1. Real and imaginary parts of the components e−j defined in (10) for j ¼ 1;…; 20 and odd-parity gravitational perturbations.

TABLE I. Real and imaginary part of a few of the first
frequency components for odd-parity gravitational (e−j ) and
scalar field (d0j ) perturbations with l ¼ 2. The full set of
frequencies up to j ¼ 100 is provided online [30].

j rHe−j rHd0j
0 0.24725þ 0.092643i 0.15782þ 0.054078i
1 0.15985þ 0.018208i 0.11307þ 0.015119i
2 0.096632 − 0.0024155i 0.076570þ 0.00016782i
3 0.058491 − 0.0037179i 0.051121 − 0.0032973i
4 0.036679 − 0.00043870i 0.034527 − 0.0024724i
10 0.0036853þ 0.0065244i 0.0050350þ 0.0037363i

2The Gaussian fit (18) represents a good approximation for the
peak of the potential’s modifications fr2HδVj. Although its pre-
cision is limited for large values r⋆, far from the maximum of the
function, the fit is accurate enough for the purposes of this section.
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since the amplitude of fδVj is proportional to 1=j for large
j, we can expect that ej → 0 for j → ∞. Following [32], a
perturbative expansion of the QNM frequency yields the
following correction:

ejα!j ∝
Z

∞

−∞
dr"fr2HδVjΦ2

0; ð19Þ

where Φ0 is the unperturbed mode itself.
Let us assume that fδVj has support only in

−rH ln j − rHσ ≤ r" ≤ −rH ln jþ rHσ, with a constant
σ ¼ Oð1Þ (the particular choice of σ does not affect our
results). Then the integral can be estimated as follows:

ejα!j ∝
Z

−rH ln jþrHσ

−rH ln j−rHσ
dr"fδVjΦ2

0

¼
Z

−rH ln jþrHσ

−rH ln j−rHσ
dr"

α!j
ej

e−ðr"þrH ln jÞ2=ð2r2HÞe−i2ω0r"

¼
α!j
j
j2irHω0 × constant: ð20Þ

In conclusion we find

ej ∝
j2iω0rH

j
¼ j2irHωR−2rHωI

j
¼ e2irHωR ln j

j1þ2rHωI
; ð21Þ

where ω0 ¼ ωR þ iωI . Equation (21) shows that the basis
frequency ej decays as 1=j1þ2rHωI , and oscillates as
sinð2rHωR ln jÞ. For tensor perturbations3 with l ¼ 2,
we have ej ≃ e1.5i ln j

j0.64 . This result is also confirmed by a
numerical study of ej for large j. We fitted our large-j
numerical results to the following functional form:

ej ∼
κ
jβ
sinðγ ln jþ ζÞ; ð22Þ

with ðκ; β; γ; ζÞ numerical coefficients to be determined. We
find β ≃ 0.66 and γ ≃ 1.5, in very good agreement with the
analytical estimate of Eq. (21). Figure 2 compares the fit
with the actual data for ej. The agreement is extremely
good, and it is strong evidence in support of the asymptotic
behavior (21).
Having assessed the asymptotic properties of the basis

ej, we can now study in detail the convergence of the
frequenciesωQNM. We assume that the effective potential of
the specific theory under consideration is C∞, such that we
can expand it for large distances as δV ¼

P∞
j¼0

aj
rj , where

the aj’s are constant coefficients. Moreover, following our
formalism developed in Sec. II, we expand the corrections
with respect to the Schwarzschild term according to Eq. (6),

such that a mapping exists between the α!j and the
coefficients of the theory aj, i.e., α!j ¼ r2H

aj
rjH
. To study

the convergence of the QNM expansion (10), we can
compute the ratio

ϒ ¼ lim
n→∞

!!!!
α!nþ1enþ1

α!n en

!!!!: ð23Þ

The series converges when ϒ < 1. Replacing the explicit
form of the expansion coefficients α!j , and using the fact
that the frequency basis vectors ej behave as in Eq. (22)—
or equivalently Eq. (21)—we find

ϒ ¼ lim
n→∞

!!!!
anþ1

an

nβ

nβþ1

sin½γ lnðnþ 1Þ þ ζ(
rH sin½γ ln nþ ζ(

!!!! ¼ lim
n→∞

!!!!
anþ1

an

!!!!:

The previous equation implies that, in our approach, the
convergence of the QNM frequencies depends on the
behavior of the coefficients of the (expanded) potential
for the specific theory of gravity.
As a nontrivial example to test the formalism, consider

the case

r2HδV ¼ 10−2
ρk0

ρk0 þ rk
¼ 10−2

X∞

j¼1

ð−1Þjþ1

"
ρ0
r

#
kj
; ð24Þ

where ρ0 is a constant, and α!j ¼ ð−1Þjþ110−2ðρ0=rHÞkj.
For this potential the convergence criterion reduces to

ϒ ¼ lim
n→∞

!!!!
ρnþ1
0

ρn0

!!!! ¼ jρ0j; ð25Þ

and therefore the perturbative formalism is valid if ρ0 < 1.

V. EXAMPLES

In this section we will provide some specific examples of
theories of gravity whose gravitational perturbations can be
described in terms of a master equation with the same
functional form of Eq. (1). In order to determine the domain
of validity and the accuracy of our semianalytical approach,

FIG. 2. Values of the frequency components e−j (red dots) for
the odd tensor modes with l ¼ 2, compared against the numeri-
cal fit of Eq. (22) (black dashed curve).

3Note that Eq. (19) holds regardless of the overtone number
and of the multipole number of the mode, if j is sufficiently large.
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Isospectrality follows from the existence of a “superpotential” such that:

Perturb to find conditions for isospectrality to hold:

Preserving isospectrality needs fine tuning!

Generic isospectrality breaking

[Chandrasekhar-Detweiler 1975]



EFT corrections quartic in the curvature lead to a modified Regge-Wheeler equation:

Trivially read off the correction coefficient:

Plug into

to find

in agreement with numerical integrations.

Example 1: EFT

[Cardoso+, 1808.08962]



Odd gravitational perturbations of Reissner-Nordström satisfy

A simple change of variables brings the wave equation in our “canonical” form, with

for small charge.
Read off coefficients to find:

Example 2: Reissner-Nordström

ΔI ¼ jImðωQNM − ωGRÞ=Imðωfull − ωGRÞ − 1j; ð36Þ

where ωfull is computed by numerically solving the exact
master equation without any approximation, and ωQNM is
given by Eq. (34). ForQ=M ¼ 0.2, for example, the QNMs
frequencies derived using Eq. (34) agree to within 0.05%
with those in Ref. [33]. The errors obtained for different
values of Q=M are listed in Table II.
The relative uncertainties ΔR;I grow with Q=M up to

∼10% (4%) for the real (imaginary) component of the
mode’s frequency when Q=M ¼ 0.5. This behavior is
consistent with the assumptions made to obtain Eq. (34),
in which we neglected terms that are order Oððα$j Þ2Þ, the
latter corresponding to ignoring OðQ4Þ corrections to the
RN perturbations. Therefore, for large values of Q, a better
accuracy would require to compute ωQNM by including
second-order terms in both αþj and α−j .

C. Scalars around a slowly spinning black hole

The massless Klein-Gordon equation □Ψ ¼ 0 around a
slowly rotating Kerr BH can be written as

f
d
dr

!
f
d
dr

"
Φþ

!
ω2 − fV0 −

4amMω
r3

"
Φ ¼ 0; ð37Þ

at OðaÞ, where f ¼ 1–2M=r, a=M is the BH angular
momentum, and we assumed Ψ ¼ e−iωtYlmðθ;ϕÞΦðrÞ=r.
We can rewrite this equation in the following form:

f
d
dr

!
f
d
dr

"
Φþ

#!
ω −

am
r2H

"
2

− f
!
V0 −

2amω
r2H

−
2amω
r2H

rH
r
−
2amω
r2H

!
rH
r

"
2
"$

Φ ¼ 0; ð38Þ

where we used rH ¼ 2M þOða2Þ. Thus

β00 ¼ β01 ¼ β02 ¼ −2amω0
0; ð39Þ

and we find

ωQNM ¼ ω0
0 þ

am
r2H

− 2amω0
0ðd00 þ d01 þ d02Þ: ð40Þ

Comparing these results with numerical data for l ¼
m ¼ 2 [4,30], we find the relative percentage errors
ðΔR;ΔIÞ listed in Table III. Our formula is a good
approximation for very small a=M ∼ 10−4. For a=M ∼
10−2 the agreement gets worse, especially in the imaginary
component. We find that a=M ≪ 10−2 is a necessary
condition for our approximation to be valid.

VI. STATISTICAL ERRORS

In this section we analyze the detectability of the
modifications of the QNM spectrum by space and terres-
trial GW interferometers. We follow the approach described
in Ref. [5], and we refer the reader to this paper and
references therein for further details. Since we are inter-
ested only in an order-of-magnitude estimate of the
associated observational errors, we assume that the mass
of the BH is known (and therefore that the fundamental GR
frequencies are known). For a more sophisticated analysis,
we refer the reader to Refs. [7,35].
The gravitational waveform measured by the interfer-

ometers is a linear superposition of two polarization states
of the form h ¼ hþFþ þ h×F×, where Fþ and F× denotes
the standard pattern functions (which depend on the source
orientation with respect to the detector and on a “polari-
zation angle”). In the frequency domain, the two GW
components are simply given by

h̃þðfÞ ¼
Aþ
lmnffiffiffi
2

p ½eiϕþ
lmnSlmnbþðfÞ þ e−iϕ

þ
lmnS⋆lmnb−ðfÞ';

h̃×ðfÞ ¼ −
iA×

lmnffiffiffi
2

p ½eiϕ×
lmnSlmnbþðfÞ þ e−iϕ

×
lmnS⋆lmnb−ðfÞ';

where the amplitude coefficients Aþ;×
lmn and the phase

coefficients ϕþ;×
lmn are real, Slmn represent the (complex)

spin-weighted spheroidal harmonics of spin weight 2,
which depend on the polar and azimuthal angles, and
b$ðfÞ are the Breit-Wigner functions:

TABLE II. Relative percentage errors on the real and imaginary
parts of the QNMs for RN BHs, as a function of the charge-to-
mass ratio Q=M.

Q=M ΔR ΔI

0.00 0% 0%
0.05 0.11% 0.042%
0.10 0.43% 0.17%
0.20 1.7% 0.66%
0.30 3.8% 1.5%
0.40 6.8% 2.6%
0.50 11% 4.2%

TABLE III. Relative percentage errors in the real and imaginary
parts of the QNM frequencies for scalar perturbations around a
slowly spinning black hole, as a function of the BH angular
momentum a=M.

a=M ΔR ΔI

0 0% 0%
10−4 0.0050% 0.83%
10−3 0.049% 5.1%
10−2 0.49% 34%
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Example 3: Klein-Gordon in slowly rotating Kerr

ΔI ¼ jImðωQNM − ωGRÞ=Imðωfull − ωGRÞ − 1j; ð36Þ

where ωfull is computed by numerically solving the exact
master equation without any approximation, and ωQNM is
given by Eq. (34). ForQ=M ¼ 0.2, for example, the QNMs
frequencies derived using Eq. (34) agree to within 0.05%
with those in Ref. [33]. The errors obtained for different
values of Q=M are listed in Table II.
The relative uncertainties ΔR;I grow with Q=M up to

∼10% (4%) for the real (imaginary) component of the
mode’s frequency when Q=M ¼ 0.5. This behavior is
consistent with the assumptions made to obtain Eq. (34),
in which we neglected terms that are order Oððα$j Þ2Þ, the
latter corresponding to ignoring OðQ4Þ corrections to the
RN perturbations. Therefore, for large values of Q, a better
accuracy would require to compute ωQNM by including
second-order terms in both αþj and α−j .

C. Scalars around a slowly spinning black hole

The massless Klein-Gordon equation □Ψ ¼ 0 around a
slowly rotating Kerr BH can be written as

f
d
dr

!
f
d
dr

"
Φþ

!
ω2 − fV0 −

4amMω
r3

"
Φ ¼ 0; ð37Þ

at OðaÞ, where f ¼ 1–2M=r, a=M is the BH angular
momentum, and we assumed Ψ ¼ e−iωtYlmðθ;ϕÞΦðrÞ=r.
We can rewrite this equation in the following form:

f
d
dr

!
f
d
dr

"
Φþ

#!
ω −

am
r2H

"
2

− f
!
V0 −

2amω
r2H

−
2amω
r2H

rH
r
−
2amω
r2H

!
rH
r

"
2
"$

Φ ¼ 0; ð38Þ

where we used rH ¼ 2M þOða2Þ. Thus

β00 ¼ β01 ¼ β02 ¼ −2amω0
0; ð39Þ

and we find

ωQNM ¼ ω0
0 þ

am
r2H

− 2amω0
0ðd00 þ d01 þ d02Þ: ð40Þ

Comparing these results with numerical data for l ¼
m ¼ 2 [4,30], we find the relative percentage errors
ðΔR;ΔIÞ listed in Table III. Our formula is a good
approximation for very small a=M ∼ 10−4. For a=M ∼
10−2 the agreement gets worse, especially in the imaginary
component. We find that a=M ≪ 10−2 is a necessary
condition for our approximation to be valid.

VI. STATISTICAL ERRORS

In this section we analyze the detectability of the
modifications of the QNM spectrum by space and terres-
trial GW interferometers. We follow the approach described
in Ref. [5], and we refer the reader to this paper and
references therein for further details. Since we are inter-
ested only in an order-of-magnitude estimate of the
associated observational errors, we assume that the mass
of the BH is known (and therefore that the fundamental GR
frequencies are known). For a more sophisticated analysis,
we refer the reader to Refs. [7,35].
The gravitational waveform measured by the interfer-

ometers is a linear superposition of two polarization states
of the form h ¼ hþFþ þ h×F×, where Fþ and F× denotes
the standard pattern functions (which depend on the source
orientation with respect to the detector and on a “polari-
zation angle”). In the frequency domain, the two GW
components are simply given by

h̃þðfÞ ¼
Aþ
lmnffiffiffi
2

p ½eiϕþ
lmnSlmnbþðfÞ þ e−iϕ

þ
lmnS⋆lmnb−ðfÞ';

h̃×ðfÞ ¼ −
iA×

lmnffiffiffi
2

p ½eiϕ×
lmnSlmnbþðfÞ þ e−iϕ

×
lmnS⋆lmnb−ðfÞ';

where the amplitude coefficients Aþ;×
lmn and the phase

coefficients ϕþ;×
lmn are real, Slmn represent the (complex)

spin-weighted spheroidal harmonics of spin weight 2,
which depend on the polar and azimuthal angles, and
b$ðfÞ are the Breit-Wigner functions:

TABLE II. Relative percentage errors on the real and imaginary
parts of the QNMs for RN BHs, as a function of the charge-to-
mass ratio Q=M.

Q=M ΔR ΔI

0.00 0% 0%
0.05 0.11% 0.042%
0.10 0.43% 0.17%
0.20 1.7% 0.66%
0.30 3.8% 1.5%
0.40 6.8% 2.6%
0.50 11% 4.2%

TABLE III. Relative percentage errors in the real and imaginary
parts of the QNM frequencies for scalar perturbations around a
slowly spinning black hole, as a function of the BH angular
momentum a=M.

a=M ΔR ΔI

0 0% 0%
10−4 0.0050% 0.83%
10−3 0.049% 5.1%
10−2 0.49% 34%
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At linear order in the spin parameter:

i.e.

Correction coefficients to the scalar wave equation:



We really want to solve the coupled                system

where each matrix element is perturbed:

If the background spectra are nondegenerate, coupling will induce quadratic corrections.
Allow to depend on . We need
• quadratic corrections in     , besides the linear diagonal terms
• coupling-induced corrections

(Einstein summation)

Coupled perturbations

[McManus+, 1906.05155]



Correction coefficients



Degenerate spectra (e.g. even/odd gravitational perturbations) need special care. Why?

Diagonalize:

Corrections are linear in a

Use degenerate perturbation theory:

The degenerate case



Spectra are nondegenerate
The perturbed potentials read:

Corrected frequencies:

7
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FIG. 3. Fundamental axial ` = 2 QNM frequencies of Schwarzschild BHs in dCS gravity as function of �̄ for the tensor-led (left) and scalar-led
(right) modes. Solid lines refer to Eqs. (33) and (34); bullets were computed through a direct integration method. The inset shows the relative
di�erence between the two calculations for the real (solid black lines) and imaginary (dashed red lines) part of the modes.

One might have hoped that the corrections to the QNM
spectra from the coupling of the two degenerate fields would
allow for an expansion analogous to Eq. (4). Indeed, in the
absence of coupling, the argument of the square root in Eq. (28)
becomes a square, and we do recover a linear sum over single-
field expectation values. However, in general, the presence of
couplings makes this relation nonlinear. Therefore we provide
the values of the quantities �V (k)

�+ �V
(s)

+� for k, s = 0, ...10 and
` = 2 . . . 10 online [60]. In Table III we also list a small
sample of values of �V (k)

�+ �V
(k)

+� for ` = 2. In order to find
linear corrections to the QNM frequencies, these quantities
must be plugged into Eqs. (28) and (29). Note that �V (k)

++ and
�V (k)

�� are just the coe�cients d(k) for uncoupled (axial or polar)
gravitational perturbations.

VI. EXAMPLES

For illustration, we now apply the formalism to compute
QNM spectra for some classes of modified theories of grav-
ity that are known to lead to coupled perturbation equations.
Specifically, we consider two models where the coupling is
between scalar and tensor modes (dCS gravity [44] and Horn-
deski gravity [34]) and a model where the coupling is between
axial and polar gravitational perturbations (the EFT inspired
model [46] not considered in detail in Paper I), so that the
background QNM spectra are degenerate.

A. Dynamical Chern-Simons gravity

In dCS gravity, an e�ective low-energy theory with an ad-
ditional scalar degree of freedom [41], nonspinning BHs are
described by the Schwarzschild metric. The polar sector of

gravitational perturbations is the same as in GR, whereas axial
gravitational perturbations and scalar perturbations lead to a
coupled system of the form (1) [42, 71] with the following
potentials, in the notation of Eqs. (3), (6) and (8):

V11 = V� , (30)

V12 = V21 =
1

r
2
H

12
p
�r2

H

s
⇡
(` + 2)!
(` � 2)!

⇣
rH

r

⌘5
, (31)

V22 = Vs=0 +
1

r
2
H

144⇡`(` + 1)
�r4

H

⇣
rH

r

⌘8
. (32)

The parameter � appearing in the dCS action has dimensions
[L]

�4 and it sets the strength of the coupling, playing a role
similar to the Brans-Dicke parameter!BD. It is useful to intro-
duce a small dimensionless coupling parameter �̄ ⌘ ��1/2

r
�2
H

such that the equations decouple in the GR limit �̄ ! 0.
We first study how the parameter �̄ modifies the tensor-led

mode. Using Eq. (4) and reading o� the relevant coe�cients
from the potentials (30)–(32) we find

! = !0 + e
1221
(55)

 
12�̄

s
⇡
(` + 2)!
(` � 2)!

!2

. (33)

Proceeding similarly for the scalar-led mode, we find

! = !0 + 2d(8)144⇡`(` + 1)�̄2 + e(88)
⇥
144⇡`(` + 1)�̄2⇤2

+ e
1221
(55)

 
12�̄

s
⇡
(` + 2)!
(` � 2)!

!2

. (34)

These expressions illustrate the importance of specifying the
form of the coupling: since the o�-diagonal terms V12 and V21

Example 1: scalar/odd gravitational in dynamical Chern-Simons

[Cardoso-Gualtieri, 0907.5008; Molina+, 1004.4007]

Tensor-led Scalar-led



Example 2: scalar-led perturbations in Horndeski

[Tattersall+, 1711.01992]

The scalar-led perturbation is related to background
coupling functions in the Horndeski Lagrangian:

Corrected frequencies read (can set ):



The quartic-in-curvature EFT leads to a degenerate
perturbed eigenvalue problem:

where off-diagonal perturbations are given in
[Cardoso+, 1808.08962]

Direct integration vs. degenerate parametrization: 
good agreement, but quadratic corrections
could be useful

Example 3: odd/even gravitational coupling in EFT (degenerate) 9
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FIG. 5. Perturbations of the fundamental QNM frequencies with ` =
2 for axial and polar gravitational perturbations, coupled according
to the EFT model of [46]. The bullet points correspond to frequency
values obtained through a direct integration method. The insets show
a zoom for small ✏ where the behaviour of ! deviate from the linear
trend, and therefore from the linear approximation given by Eq. (28).

Fitting the two branches of QNM frequencies to a seventh-
order polynomial in ✏ gives a linear coe�cient (�0.1479 �

0.2729i)rH for the solid black branch, and (0.1480 +
0.2719i)rH for the dashed red branch. The linear corrections
are nonzero, as they should, because the uncoupled axial and
polar spectra are degenerate.

VII. CONCLUSIONS AND A COMPUTATIONAL RECIPE

We have extended the formalism of Paper I to compute QNM
frequencies of coupled fields as long as the perturbations they
induce are small deviations from the perturbation equations
for the Schwarzschild geometry in GR. Our main result is a
convenient, ready-to-use recipe to compute QNM frequencies
at quadratic order in the perturbations. We crucially allow
for the possibility of coupling between the master equations.
First-order (friction-like) terms in the field derivatives can be
accommodated through field redefinitions (cf. Appendix A).

We have found the expansion of the QNM frequencies for
uncoupled wave equations to quadratic order. Perhaps our
most interesting findings concern the QNM spectra of coupled
fields. When the coupling occurs between fields with nonde-
generate spectra at zero order in the perturbations, linear-order
corrections to the QNM frequencies vanish. However, when
the coupling occurs between fields with degenerate spectra, the

QNM frequency corrections are linear in the perturbations.
Our results significantly simplify the task of computing

QNM frequencies in any modified theory of gravity, or any
theory allowing for additional fields. The general recipe for
this calculation can be summarized as follows:

1) Derive the master equations for the perturbation vari-
ables in the given theory;

2) Eliminate first-order (friction-like) terms in the field
derivatives through field redefinitions, as described in
Appendix A;

3) Identify the relevant coe�cients ↵(k)
i j

in the perturbed
potentials �Vi j [Eq. (3)] appearing in the general coupled
system of Eq. (1); if these coe�cients are frequency-
dependent, compute their frequency derivative ↵0(s)pq .

4a) If any two unperturbed spectra are nondegenerate, com-
pute corrections to the QNM frequencies by simple mul-
tiplications and additions using Eq. (4) and the tabulated
values of d

i j

(k)
and e

i jpq

(ks)
, which are available online [60].

4b) If any two unperturbed spectra are degenerate, com-
pute corrections to the QNM frequencies using Eq. (28)
and the tabulated values of �V (k)

±± and �V (k)

±⌥ defined in
Eqs. (D7) and (D8), which are also available online [60].

In Sec. VI we illustrate this procedure for three classes of
modified theories of gravity leading to coupled perturbation
equations: two models coupling the scalar and tensor modes
(dCS gravity [44] and Horndeski gravity [34]) and an EFT
model coupling the axial and polar gravitational perturba-
tions [46], where the background QNM spectra are degenerate.

While our expansion is theory-agnostic, we make assump-
tions about the e�ect of the modified gravity theory: the back-
ground should be perturbatively close to the Schwarzschild
metric, and the corrections to the “ordinary” potentials in the
GR master equations should be amenable to a power-series
expansion in inverse powers of the radial variable.

This results by construction in small corrections to the GR
QNM spectra (4). In general, as discussed in Paper I, new
nonperturbative frequencies (e.g., quasibound states emerging
from zero frequency for massive scalars) may appear in the
spectrum, and these are not captured by our formalism.

The assumption that the background is only perturbatively
di�erent from the Schwarzschild solution is slightly less re-
strictive than one might think. For example, in Paper I we
showed that slowly rotating Kerr BHs can be accommodated
within the formalism. Recent work on higher-derivative cor-
rections to the Kerr geometry [75] and on QNM frequencies
of rotating solutions for small coupling [53, 54] may allow
us to make progress on the calculation of QNMs in modified
gravity for rotating BH remnants, such as those observed by
the LIGO/Virgo collaboration [76] (see [77, 78] for a related
attempt at parametrizing deviations from the Kerr QNM spec-
trum).
Acknowledgments. We thank Macarena Lagos, Oliver Tat-
tersall and Aaron Zimmerman for useful discussions. E.B.



Parametrized merger/ringdown: a summary

Modifications to the gravity sector and/or beyond Standard Model physics:
• small modifications to the potentials
• coupling between the (matrix-valued) wave equations

We parametrized modifications by power laws, then computed perturbed QNMs for:
• linear corrections to diagonal terms [Cardoso+, 1901.01265]
• quadratic corrections + coupling [McManus+, 1906.05155]

General formalism – unless you can’t find wave equations [Langlois+ 2103.14750]
Examples:
• EFT, Reissner-Nordström, Klein-Gordon in Kerr for slow rotation
• scalar/odd gravitational dCS, scalar-led Horndeski, odd/even gravitational EFT

Needed generalizations:
• higher-order corrections (in particular, in degenerate coupled case)
• coupled gravitational modes with rotation – LIGO/Virgo remnants have spins 0.7 or so!



QNM calculations: limited sample (EdGB/EsGB, dCS), mostly nonrotating BHs
[Blazquez-Salcedo+ 1609.01286 (EdGB), 2006.06006 (EsGB); Molina+ 1004.4007 (dCS)]
Cano’s work: systematic small-rotation expansion + scalar QNMs 
Theories: sum over curvature invariants with scalar-dependent coefficients

and more specifically, at order 

Einsteinian cubic gravity (+parity-breaking) - causality constraints [Camanho+ 1407.5597]
Next order, no new DOFs [Endlich-Gorbenko-Huang-Senatore, 1704.01590]

Rotating BH QNMs in modified gravity: the EFT viewpoint

[Cano-Ruipérez, 1901.01315; Cano-Fransen-Hertog, 2005.03671. See also work by Hui, Penco…]

EsGB dCS (dilaton+axion)



Background solutions: 
algorithm to compute small-coupling corrections, up to order 14 in rotation

Scalar QNM calculations: “quasi-separable”
For zero coupling, can be separated in terms of spin-weighted spheroidal harmonics

In summary: second-order radial ODEs can be cast as wave equations via redefinitions of the 
radial variable/radial WF, and solved either numerically or via WKB

Note: not all potentials vanish at the horizon

Calculations of rotating BH QNMs in modified gravity: the EFT viewpoint

[Cano+ 1901.01315, 2005.03671; for EsGB, see also Pierini-Gualtieri, 2103.09870]



What do we learn from these 
parametrizations?



How many parameters?
If              for all sources ,
reabsorb

How many observables?

Need only 

Parametrized spectroscopy: how many observations do we need?

[Maselli+, 1711.01992]

Use a small-spin expansion and add parametric deviations to frequency and damping time
Assume you detect N sources, and q QNM frequencies for each source

Order in the spin expansion: need at least 4 or 5 in GR 

sources

modes/source

Expansion coefficients in GR Small, universal non-GR corrections



Complication: the coupling is often dimensionful

Use Bayesian inference (MCMC),           ,           (one mode), simple source distributions 
Einstein Telescope: constrain first three frequency coeffs and only the first damping coeffs

Width at 90% confidence gets better
as we get more observations:

Parametrized spectroscopy: a proof of principle

[Maselli+, 1711.01992]
[Carullo, 2102.05939]



Take-home messages

Black hole solutions beyond GR:
Stringent no-hair theorems: Kerr solution is still a solution in most beyond-GR theories
There are loopholes (e.g., EsGB)
Dipolar radiation from black hole binaries (e.g. in EsGB) can be tested in the inspiral (ppE)
Curvature/spin induced scalarization can be tested in inspiral, merger and ringdown

What can we say about beyond-GR black holes with gravitational waves?
ppE, black hole spectroscopy

Parametrized tests of GR with black hole ringdown: 
Nonrotating case quite well understood – but irrelevant to most “real” mergers
No parametrization if equations can’t be case in (coupled) Schrödinger-like form

Inverse problem: parametrize deviations; if measured, find the “true” theory of gravity
Technical obstacle: rotation in beyond-GR gravity is hard!


