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Spontaneous scalarization

There is need for models where new physics �appears� when 
gravity gets strong

Example: A theory with an extra scalar field

Thomas P. Sotiriou � Quarks, June 10th, 2021

Jordan frame action:

Redefinitions:



Spontaneous scalarization

  If                      then the theory will admit GR solutions 
around matter!


  However they will not necessarily be the only ones...


  The non-GR configuration is preferred for sufficiently 
large central density


T. Damour and G. Esposito-Farese, Phys. Rev. Lett. 70, 2220 (1993)

Scalar EOM:
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Einstein frame action:



Tachyonic instability

Taken from G. Esposito-Farese, arXiv:gr-cq/0402007

  Severely constrained by 
binary pulsar tests, 
unless there is a mass.


  This model only works 
for stars
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Scalar fields in BH spacetimes 

S.W. Hawking, Comm. Math. Phys. 25, 152 (1972).

  stationary, as the endpoint of  collapse


  asymptotically flat, i.e. isolated

The equation

admits only the trivial solution in a BH spacetime that is

The same is true for the equation

with the additional assumption of  local stability

T. P. S. and V.  Faraoni, Phys. Rev. Lett. 108, 081103 (2012)
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No difference from GR?
Actually there is...

  Perturbations are different!


  They even lead to new effects, e.g. superradiance�



  In general, relaxing the symmetries of  the scalar can 
lead to �hairy� solutions.


  Cosmic evolution or matter could also lead to scalar 
�hair�


E. Barausse and T.P.S., Phys. Rev. Lett. 101, 099001 (2008)

A. Arvanitaki and S. Dubovksy, Phys. Rev. D 83, 044026 (2011)

R. Brito, V. Cardoso and P. Pani, Lect.Notes Phys. 906, 1 (2015)

T. Jacobson, Phys. Rev. Lett. 83, 2699 (1999);

M. W. Horbatsch and C. P. Burgess, JCAP 1205, 010 (2012).

V. Cardoso, I. P. Carucci, P. Pani and T. P. S., Phys. Rev. Lett. 111, 111101 (2013)

C. A. R. Herdeiro and E. Radu, Phys. Rev. Lett. 112, 221101 (2014)
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Black hole scalarization

No-hair theorem for the action

provided that 
 
 
 
 
, 


That is, for the equation

trivial solutions are unique if  admissible, if  the effective mass is 
positive

  But if  it is negative then there can be�scalarization�!

H. O. Silva, J. Sakstein, L. Gualtieri, T.P.S, and E. Berti, PRL 120, 131104 (2018)
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Black hole scalarization
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GKerr =
48M2

(r2 + �2)6
�
r6 � 15r4�2 + 15r2�4 � �6

�

  For           : Schwarzschild and �
 �
Scalarization for �
�
�
 


  For            :     can change sign near the horizon �
�
Spin-induced scalarization when �
�
�

� = 0 G > 0

H. O. Silva, J. Sakstein, L. Gualtieri, T.P.S, and E. Berti, PRL 120, 131104 (2018)
D. D. Doneva and S. S. Yazadjiev, PRL 120, 131103 (2018)

G� 6= 0

A. Dima, E. Barausse, N. Franchini, and T.P.S, PRL 125, 231101 (2020)�
C. A. R. Herdeiro, E. Radu, H. O. Silva, T.P.S., and N. Yunes, PRL 126, 011103 (2021)�
E. Berti, L. G. Collodel, B. Kleihaus, and J. Kunz, PRL 126, 011104 (2021)


f 00(�0) > 0

f 00(�0) < 0



Nonlinear quenching

�  Quadratic coupling (minimal model) leads to radially 
unstable scalarized solutions


�  Exponential coupling is not

�  quadratic coupling scalar EOM linear in the scalar


�   large metric backreaction necessary to quench the 
instability


�  …or nonlinearity in the scalar, e.g. standard  �
potential term will do!

Explanation:
J. L. Blazquez-Sacedo et al.,  Phys. Rev. D 98, 084011 (2018)

H. O. Silva et al., Phys. Rev. D 99, 064011 (2019)

C. F. B. Macedo et al., Phys. Rev D 99, 104041 (2019)
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Nonlinear quenching
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FIG. 5. Charge-mass diagram for scalarized solutions with a quadratic scalar-Gauss-Bonnet coupling (⇣ = 0) and the scalar potential of Eq. (4).
The threshold mass M̂t corresponds to the dotted vertical line. For M̂ > M̂t scalarized solutions are radially unstable, while the Schwarzschild
solution is stable. When �̂ is large enough, we can have solutions with M̂ < M̂t. In this region there are two branches of scalarized BH
solutions: the upper branch (dashed lines) is unstable to radial perturbations, whereas the lower branch (solid lines) is stable. Blue dots mark
solutions with marginal stability, which correspond to the minimum mass, maximally charged scalarized BH for the given (µ̂, �̂).

IV. SCALARIZED BLACK HOLE SOLUTIONS AND
RADIAL STABILITY

In this section we solve the fully nonlinear equations to
construct scalarized solutions, and check their stability un-
der linear radial scalar and tensor perturbations. This is ac-
complished as follows. First, we integrate the field equations
outwards starting from the horizon, where we impose the con-
ditions (16)–(19). By matching the numerical solutions with
Eqs. (21)–(23) in the far region (r � rh), we can extract the
BH mass M̂ and the scalar charge Q̂. This procedure gives
us the unperturbed solution. Next we check stability. The
linearized field equations for radial perturbations follow from
the ansatz

' = '0 + "
'1
r
, (26)

ds2 = [A + "Ft (t, r)]dt2 + [B�1 + "Fr (t, r)] + r2d⌦2, (27)

where (A, B, '0) are functions of r which satisfy the zeroth-
order (background) field equations. By inserting Eqs. (26)
and (27) into the field equations (10) and (11) and expanding
up to first order, one can show that the equations for the per-
turbation functions reduce to a single second-order equation
of the form

h(r)
@2'1

@t2 �
@2'1

@r2 + k(r)
@'1
@r
+ p(r)'1 = 0, (28)

(see Appendix A and the supplemental M���������� note-
book [54]) where the coe�cients (h, k, p) depend only on the
background quantities and on r (cf. [33, 36, 37]). Eq. (28) can
be further manipulated to reduce it to a Schrödinger-like form,
but since this step is not necessary to analyze the stability of
the system, and generates more complicated coe�cients, we
prefer not to display it here (see [37] for details). A mode
analysis can be performed by looking for solutions of the form
'1(t, r) = '1(r)e�i!t , and by imposing the requirement that
'1(r) vanishes at the horizon and at infinity when searching

for unstable modes. These requirements (as in Sec. III) result
in an eigenvalue problem for !2 < 0.

Before applying this process in general, it is instructive to
perform a preliminary comparative study in order to discern
how self-interactions a�ect the stability of scalarized solutions.
In Fig. 4 we fix µ̂ = 0.05 and we compare the normalized imag-
inary mode for the scalarized solutions with the corresponding
calculation for the Schwarzschild case, as presented in Fig. 3.
When �̂  0.2, both the modes of the scalarized solutions
(dashed red) and the Schwarzschild modes (solid gray) con-
verge to zero when M̂ = M̂t . However, for �̂ > 0.2 the modes
tend to zero when M̂ = M̂min and Q̂ = Q̂max, and we found
no unstable modes for BHs with M̂ > M̂min and Q̂ < Q̂max.
We note also that the unstable mode frequencies typically de-
crease as �̂ increases, implying stability on longer time-scales.
Qualitatively similar conclusions apply to other values of µ̂.

The main results of our integrations are presented in Fig. 5,
where we show scalarized solutions in the (M̂, Q̂) plane for
representative values of µ̂ and �̂. The dotted vertical line
represents the threshold for the stability of the Schwarzschild
solution, M̂ = M̂t. Solid lines correspond to radially stable
solutions, while dashed lines correspond to radially unstable
solutions. Note that we use di�erent conventions for radial
stability with respect to Refs. [36, 37], where solid and dashed
lines have the opposite meaning.

When �̂ = 0, all scalarized solutions are in the region
M̂ > M̂t, where the Schwarzschild solution is stable. These
scalarized solutions are radially unstable, and it is plausible
that Schwarzschild BHs will be the end-state of gravitational
collapse. As �̂ increases, the solutions move into the region
where M̂min < M̂ < M̂t; the minimum mass M̂min corresponds
to the blue dots in Fig. 5. Schwarzschild BHs are unstable
in this region, so the BH can support a nontrivial scalar pro-
vided the scalarized solutions are stable. For M̂ < M̂min, both
Schwarzschild and scalarized BHs are unstable.

Our analysis reveals that the quartic self-interaction can
stabilize scalarized solutions with a quadratic scalar-Gauss-

V (�) =
1

2
µ2�2 +

1

2
��4Potential :



Models of scalarization

�                     and                               lead to DEF model 


�                                                          trades the�
�
coupling for a disformal coupling with matter

Minimal action for tachyonic instability

Most general up to field redefinition and nonlinear completion:

N. Andreou, N. Franchini, G. Ventagli, and T.P.S, Phys. Rev. D 99, 124022 (2019)
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Lmin = R� 2⇤� 1 + �R

2
(@�)2 +

2m2
��

2 � 2↵�2G + ��2R

4



Neutron star scalarization

G. Ventagli, A. Lehebel, and T.P.S, Phys. Rev. D 102, 024050 (2020)
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BHs and Ricci coupling

G. Antoniou, A. Lehebel, G. Ventagli, and T.P.S, arXiv: 2105.04479 [gr-qc]
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also leads to GR as a cosmic attractor!� > 0

G. Antoniou, L. Bordin, and T.P.S, PRD 103, 024012 (2021) 
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Perspectives

Scalarization �screens� new physics at low curvatures


  Linear instability in strong field, quenched nonlinearly

  Others fields? Vectorisation, tensorisation


  Other instabilities?


  Challenges: early universe, well-posedness

nonlinear terms

F. M. Ramazanoglu, Phys. Rev. D 96, 064009 (2017)

L. Annulli, V. Cardoso, L. Gualtieri, Phys. Rev. D 99, 044038 (2019)

…

F. M. Ramazanoglu, Phys. Rev. D 97, 024008 (2018)�
C. A. R. Herdeiro and E. Radu, Phys. Rev. D 99, 084039 (2019)�
…
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T, Anson, E. Babichev, C. Charmousis, S. Ramazanov, JCAP 06 023 (2019)�
W. E. East and J. L. Ripley, arXiv: 2105.0871 [gr-qc] 

...a mechanism that wants to become a theory. 

g̃µ⌫ [gµ⌫ ,�]rµr⌫� = m2
e↵ [gµ⌫ ,�]�+


