SHiP and searches for new physics

Quarks workshop

Maksym Ovchynnikov (Leiden University)

June 8, 2021

Intensity frontier experiments

- New physics particles may couple to SM via
 - Effective higher-dimensional operators (Energy frontier),
 - ② Portals operators with dimension ≤ 4 (Intensity frontier): dark scalars, dark photons, Heavy Neutral Leptons (HNLs)
- Searches for the Higgs boson at the LHC pushed the energy frontier. The intensity frontier has remained unexplored
- HL-LHC as well as future colliders such as FCC will be able to explore Intensity frontier
- However, domain of "low" masses $m \lesssim m_B$ is complicated to explore

Parameter space to be probed

For the given mass range, what is the couplings range to be probed?

- Consider HNLs for instance. The upper bound comes from old experiments (such as PS191, CHARM, DELPHI)
- A natural lower bound on couplings (seesaw bound): HNLs must provide masses to active neutrinos
- Another bound comes from BBN
- HNLs with masses $m_N > m_\pi + m_l$ lead to an overproduction of primordial He if their lifetimes $\tau_N > 0.02 \text{ s} \text{a factor of 5}$ improvement as compared to previous estimate $\tau_N > 0.1 \text{ s}$

Parameter space to be probed

 Combination of old experiments, neutrino oscillations data and cosmological bounds → minimal mass in Neutrino Minimal Standard Model (vMSM)

Parameter space to be probed

Similar estimates exist for other portal models

SHiP [1504.04956]

- 1 m long W target, $N_{PoT} = 2 \times 10^{20}$ during 5 years of operation
- Hadronic absorber followed by muon shield
- $I_{min} = 50 \text{ m}, I_{fid} = 50 \text{ m}$
- The detector angle is $\theta \in (0; 25)$ mrad

SHiP

• SHiP is planned to be installed at the Beam Dump Facility (BDF)

What SHiP may tell about portals?

SHiP and searches for new physics

Two "types" of sensitivity:

- Based on the number of events
- Based on the ability to reconstruct parameters of model

The number of events sensitivity for HNLs:

- Significantly extends the probed mass range up to $m_N = m_B$
- Probes couplings very close to BBN/seesaw line

• Similarly, SHiP may probe unexplored parameter space for other portals

- HNLs may be clearly distinguished from other portal particles by decays $N \to I + \pi$. HNLs with masses $m_N < m_I + m_\pi$ may be identified by 3-body decays $N \to e + \bar{e} + \nu$
- The properties to be probed are:
 - \bigcirc HNL mass M_N
 - 2 the mixing angles U_{α}^2
 - number of HNLs
- To explain neutrino oscillations and baryogenesis, one needs two mass degenerate HNLs [0505013]. It is important to
 - 1 distinguish two quasi-degenerate HNLs
 - **3** measure the mass splitting $\Delta M = |M_1 M_2|$ and mixing angle differences $|U_{01}^2 U_{02}^2|$
 - Oheck consistency with active neutrino oscillations

SHiP may probe all of these parameters

• Mass measurements: from neutrinoless decays, e.g., $N \to I + \text{hadrons}$. At least O(10) events are required

 Dirac/Majorana HNLs: distinguishing lepton number violating/conserving processes (LNV/LNC) by spectra of decay products. O(100) events is required

[1912.05520]

• measure U_e^2 , U_μ^2 , U_τ^2 and check their consistency with active neutrino mixing by distinguishing different decay modes. For simulated results for an HNL with U_e^2 : U_μ^2 : $U_\tau^2 = 1:1:1$ and 100 (left) or 1000 (right) expected decay events the bounds are:

- SHiP is not currently approved
- After its proposal, a lot of other Intensity Frontier experiments searching for displaced decays have been proposed:
 - SPS-based (NA62-BD, SHADOWS)
 - 2 LHC-based (FASER, MATHUSLA, Codex-b,...)
 - O DUNE
 - **4** ...

How to compare qualitatively their sensitivities?

The sensitivity to decays of particles N with mass M_N and coupling U:

$$N_{
m decay\ events} pprox N_{
m prod} imes \epsilon_{
m tot} imes P_{
m decay} > N_{
m min},$$

where

N_{prod} is the number of produced particles,

$$N_{\rm prod} \approx N_{\rm mother} \cdot {\rm Br}_{N \, {\rm prod}} \propto U^2$$
 (1)

- ϵ_{tot} is the efficiency, $\epsilon_{\mathsf{tot}} = \epsilon_{\mathsf{geom}} \times \epsilon_{\mathsf{decay}} \times \epsilon_{\mathsf{det}} \times \mathsf{Br}_{\mathsf{vis}}$
- P_{decay} is the decay probability,

$$P_{\text{decay}} \approx e^{-\frac{l_{\text{min}}\Gamma_{N}}{c\gamma_{N}}} - e^{-\frac{l_{\text{max}}\Gamma_{N}}{c\gamma_{N}}} \approx \begin{cases} l_{\text{fid}}\Gamma_{N}/c\gamma_{N}, & \ell_{\text{decay}} \gg \ell_{\text{max}}, \\ \exp\left[-\ell_{\text{min}}\Gamma_{N}/c\gamma_{N}\right], & \ell_{\text{decay}} < \ell_{\text{min}} \end{cases}$$
(2)

where $I_{\text{decay}} = c \gamma_N / \Gamma_N$

• Lower bound ($I_{\text{decay}} \gg I_{\text{max}}$):

$$\begin{split} &U_{\text{lower}}^{2} \propto \chi_{\text{lower}} = \\ &= \sqrt{\frac{N_{\text{prod}}}{\text{Br}_{\textit{N prod}}} \times \epsilon \times \frac{I_{\text{fid}}}{\left\langle p \right\rangle} \times \frac{1}{N_{\text{min}}}} \end{split} \tag{3}$$

• Upper bound $(I_{\text{decay}} \lesssim I_{\text{min}})$:

$$U_{\rm upper}^2 \propto \chi_{\rm upper} = rac{\langle p \rangle}{I_{\rm min}}$$
 (4)

 Using the analytic estimates, let us compare SHiP with other SPS current/proposed experiments (NA62, SHADOWS), and LHC-based experiments (FASER2, MATHUSLA)

- We will consider main production channels for GeV scale HNLs, dark scalars, dark photons and ALPs with fermion coupling:
 - \bigcirc decays of B, D mesons
 - proton bremsstrahlung

Analytic estimates: basic parameters

	SHiP	NA62×4	SHADOWS	MATHUSLA	FASER2
N_{PoT}	$2 \cdot 10^{20}$	$\sim 5\cdot 10^{19}$	$\sim 5\cdot 10^{19}$	$2.2 \cdot 10^{17}$	$2.2 \cdot 10^{17}$
/ _{min} m	50	100	10	40	480
<u>⟨I_{fid}⟩</u> m	50	100	20	100	5
$\frac{\theta_{\text{det}}}{\text{rad}}$	(0, 0.025)	$(0,5\cdot 10^{-3})$	(0.03, 0.09)	(0.48, 0.9)	$(0,2.1\cdot 10^{-3})$

	$\chi_{car{c}}$	$\chi_{bar{b}}$
SPS	0.004	$3 \cdot 10^{-7}$
LHC	0.1	$7 \cdot 10^{-3}$

 LHC-based experiments: smaller intensity but larger meson production probability

Analytic estimates: ϵ_{geom}

- ullet $p_{T, ext{mesons}} \sim m_h \Rightarrow$ distribution of mesons is peaked at the forward direction
- Bremsstrahlung: $p_T \lesssim \Lambda_{QCD}$ MATHUSLA and SHADOWS have poor sensitivity to dark photons

	SHiP	NA62x4	SHADOWS	MATHUSLA	FASER2
$N_B \cdot \epsilon_{geom}^B$	$8 \cdot 10^{13}$	$1\cdot 10^{12}$	$5\cdot 10^{11}$	$3 \cdot 10^{13}$	10^{13}
$N_D \cdot \epsilon_{ ext{geom}}^D$	$8 \cdot 10^{17}$	$2 \cdot 10^{16}$	$2\cdot 10^{16}$	$5\cdot 10^{14}$	$2 \cdot 10^{14}$
$N_{PoT} \cdot \epsilon_{geom}^{brem}$	10^{20}	$5 \cdot 10^{18}$	_	_	$2\cdot 10^{16}$

Analytic estimates: ϵ_{decay}

- $\epsilon_{\rm decay}$: compare the angular size of the detector $\theta_{\rm det}$ with characteristic angle between decay products $\xi \simeq m_X/E_X$
- MATHUSLA, FASER: $\epsilon_{\text{decay}} = \mathcal{O}(1)$
- Not the case for SHiP, NA62, SHADOWS

	SHiP	NA62x4	SHADOWS	MATHUSLA	FASER2
$\epsilon_{decay,\;B}$	0.4	$O(10^{-2})$	< 0.4	$\mathcal{O}(1)$	$\mathcal{O}(1)$
$\epsilon_{ ext{decay}, D}$	0.4	$\mathcal{O}(0.1)$	$\simeq 0.3$	$\mathcal{O}(1)$	$\mathcal{O}(1)$
$\epsilon_{ extsf{decay}, ext{ brem}}$	$\mathcal{O}(1)$	$\mathcal{O}(0.1)$	_	_	$\mathcal{O}(1)$

A toy Monte-Carlo estimate of ϵ_{decay} : decays of particles with $m=m_{B/D}$ (and m=1 GeV for bremsstrahlung) into two massless particles and requiring them to point to detectors

Analytic estimates: lower bound

	SHiP	NA62x4	SHADOWS	MATHUSLA	FASER2
χ lower, B	$4 \cdot 10^{-7}$	$8 \cdot 10^{-6}$	$6 \cdot 10^{-6}$	10^{-7}	$2 \cdot 10^{-6}$
χ lower, D	$3 \cdot 10^{-9}$	$2 \cdot 10^{-8}$	$8 \cdot 10^{-8}$	$4 \cdot 10^{-8}$	$5 \cdot 10^{-7}$
χ lower, brem	10^{-10}	10^{-9}	_	_	10^{-7}

$$U_{\text{lower}}^2 \propto \chi_{\text{lower}} = \sqrt{\frac{N_{\text{prod}}}{\mathsf{Br}_{N \text{ prod}}}} \times \epsilon \times \frac{I_{\text{fid}}}{\langle p \rangle} \times \frac{1}{N_{\text{min}}}$$
 (5)

- All of the experiments have worse sensitivity than SHiP for the production from D mesons
- SHiP is better for everything except for the production from B
 Disclaimer: LHC-based experiments may use benefits of production of h, W, Z at
 LHC

Analytic estimates: upper bound

	SHiP	NA62×4	SHADOWS	MATHUSLA	FASER2
$\chi_{ m upper,}$ B	2	1	6	0.1	3
$\chi_{ ext{upper, }D}$	1	1	2	0.03	2
$\chi_{ m upper,\ brem}$	3	1	_	_	2

- At on-axis experiments, particles have larger energies
- Upper bound probed by MATHUSLA is significantly weaker than the one probed by SHiP ⇒ smaller maximal mass probed

Analytic estimates: summary

Conclusions

- SHiP is a "golden standard" of the Intensity frontier experiment
- It suits perfectly for probing parameter space of all portal models (HNLs, dark photons, dark scalars, ALPs) with masses $m < m_B$