DOUBLE-HIT SIGNATURE OF MILLICHARGED PARTICLES IN 3D SEGMENTED NEUTRINO DETECTOR

Dmitry Gorbunov, Igor Krasnov, Yury Kudenko, <u>Sergey Suvorov</u>

Quarks-2020 New Physics at the Intensity Frontier 7.06.2021

OUTLINE

MCP phenomenology

Design of the new 3D scintillator neutrino detector

Sensitivities studies

MILLICHARGED PARTICLES

• MilliCharged Particle (MCP) are hypothetical particles carrying the fractional charge $O(10^{-3})e$

- Extension of the SM (Phys. Lett. 138, (115). 1984)
- additional symmetries in high energy scale (Phys. Rev. B 166, 2 (196). 1986)
- Possible contribution to the dark matter (Phys. Rev. D 85, 101302(R). 2012)

- Neutrino experiments are expected to have good sensitivity to MCP detection (Phys. Rev. Lett. 122, 071801. 2019)
- In particular, we found a brand-new 3D scintillator detector SuperFGD to have a good performance for MCP search

MCP PRODUCTION

- MCP (χ) are characterised with mass (m_{χ}) and effective charge (ϵ)
- Scalar meson (π^0, η, η') can decay only through 3-body decays:

$$X o Y \chi \bar{\chi}$$
 e.g. $\pi^0 o \gamma \chi \bar{\chi}$ $\eta o \gamma \chi \chi$

▶ The branching ratios of these processes are described with:

$$Br(X \to Y\chi\bar{\chi}) = \epsilon^{2} \cdot Br(X \to Y\gamma) \cdot \frac{2\alpha}{3\pi} f_{X\to Y} \int_{4m_{\chi}^{2}}^{m_{\chi}^{2}} \frac{dm_{\chi\chi}^{2}}{m_{\chi\chi}^{2}} \left(1 + 2\frac{m_{\chi}^{2}}{m_{\chi\chi}^{2}}\right) \left(1 - 4\frac{m_{\chi}^{2}}{m_{\chi\chi}^{2}}\right)^{\frac{1}{2}}$$

$$\times \left(\left(1 + \frac{m_{\chi\chi}^{2}}{M_{X}^{2} - M_{Y}^{2}}\right)^{2} - 4\frac{m_{\chi\chi}^{2}M_{X}^{2}}{(M_{X}^{2} - M_{Y}^{2})^{2}}\right)^{\frac{3}{2}} |F_{XY}(m_{\chi\chi}^{2})|^{2},$$

$$X \to Y \in \{\pi \to \gamma, \eta \to \gamma, \eta' \to \gamma, \omega \to \pi^{0}, \phi \to \pi^{0}, \phi \to \eta\}$$

$$f_{\pi \to \gamma} = f_{\eta \to \gamma} = f_{\eta' \to \gamma} = 1, \quad f_{\omega \to \pi^{0}} = f_{\phi \to \pi^{0}} = f_{\phi \to \eta} = \frac{1}{2}$$

MCP PRODUCTION

Vector meson (ρ, ω, ϕ) can decay through 2-body $V \to \chi \bar{\chi}$

$$Br(V \to \chi \bar{\chi}) = \epsilon^2 \cdot Br(X \to e^+ e^-) \cdot \left(1 + 2\frac{m_\chi^2}{m_{\chi\chi}^2}\right) \sqrt{1 - 4\frac{m_\chi^2}{M_V^2}} \qquad V \in \{\rho, \, \omega, \, \phi\}$$

While 3-body channel is also possible: e.g. $\omega \to \pi^0 \chi \bar{\chi}$

- Comparing 2 and 3-body decays modes:
 - > 3-body decay modes are less probable
 - scalar mesons are more likely
 to be produced in proton-target collision

MCP PRODUCTION

The MCP productions branching ratios, assuming $\epsilon=1$

MCP DETECTION

- ▶ There are few channels for the MCP detection:
 - Small dE/dx e.g. in the long scintillator bars
 - ➤ Single high energy delta-electron production. (<u>arXiv:2011.08153</u>)
 - Coincidence of 2 delta-electron production. (JHEP 07 (2019) 170)
- Various neutrino experiments already performed such a study + sensitivities studies
 - -> constraints on ϵ

T2K EXPERIMENT

- Tokai-to-Kamioka (T2K) is a long-baseline accelerator neutrino experiment
 - Precise measurements
 of the neutrino oscillation parameters
 - \blacktriangleright Search for the CP-violation in ν oscillations

- J-PARC accelerator provides intense 30 GeV proton beam
 - Beam hits the Carbon target producing various mesons
 - Charged mesons are focused and further decay into neutrinos
 - Intense meson beam could be used for MCP search in the near detector

T2K NEAR DETECTOR

- ▶ Near neutrino detector (ND280) is a magnetised complex detector
 - ▶ Measurements of the flux × cross-section
 - Reduction of the systematic uncertainties of the oscillation analysis

- The upgrade of the TK experiment is scheduled for the next year (2022)
 - Near detector will be upgraded with a new neutrino target (SuperFGD)

arxiv:1901.03750

3D SEGMENTED NEUTRINO DETECTOR

- ▶ SuperFGD is built with 1x1x1 cm³ scintillator cubes
 - The detector dimensions are 192 x 184 x 56 cm
 - ▶ The total mass is ~2 tonns
 - ▶ 2M cubes and 60k cnahhels

- ▶ The readout is done with WLS fibers read by MPPCs
- Benefits for the MCP search:
 - Fine granularity (1cm)
 - Low energy threshold (40 photo-electrons per channel per MIP)
 - ▶ Low MPPC dark rate (0.5 kHz)
 - Good time resolution (~1ns)

NIM A 923, 134-138 (2019) JINST, 15(12).2020

Detector prototype

Event display for photon conversion

T2K FUTURE

- ▶ T2K was approved to collect 20×10^{21} Protons on Target (POT) by 2027
 - \blacktriangleright 0.5 \times 10²² POT with the new SuperFGD detector
- ▶ Afterwards it will be replaced with Tokai-to-Hyper-Kamiokande (T2HK) experiment
 - The completely new far detector will be used
 - The same accelerator and near detector are considered to be used
 - ▶ The MCP study will continue data accumulation!
 - The gaol is 2.7×10^{22} POT

T2K SIMULATIONS

- ▶ We estimated the meson outcome from proton collisions with T2K target
 - For these studies PYTHIA is commonly used
 - Not applicable for T2K case:
 - > 30 GeV is below PYTHIA validated kinematics region
 - > Secondary interactions are omitted critical for the meson production
- Geant4 was used
 - T2K target geometry was considered (Carbon cylinder ~1 m long)
 - Various physics lists were tested -> meet agreement about the charged meson production with QGSP_BERT
 - Not obligatory a sign of a robust neutral meson outcome, but no other reliable metric is there
 - No precise measurements of the neutral meson production at given energy scale

Ou	tcom	ne	for	in	itia	
30	GeV	рі	oto	n:		

Meson	#/proton
π^0	3.12
η	0.40
η'	0.15
ho	0.21
ω	0.12
ϕ	0.0051

MCP IN SUPERFGD

We expect to see 2 hits from delta-electrons Probability for 2 MCP scattering with electron kick out with $E_e > E_r^{min}$:

Detector length

efficiency

MCP free-path $\propto \epsilon^{-2}$

Electronics threshold is 1.5 p.e.
We estimated threshold at 100 keV
as we expect ~2-3 p.e. per channel
the detection efficiency is estimated as 92%

T2K SIMULATIONS

- The decay kinematics of each meson was simulated
 - Isotropic meson decay to MCP is considered and the boost towards parent meson direction is applied
- The off-axis position has a small effect on the detector acceptance
 - Mainly limited be the detector surface area 56 x 196 cm

- Distance from target to detector 280 m
- Benefit from meson kinematics
 - MCP are boosted towards the beam direction

SuperFGD geometrical acceptance

SENSITIVITIES

- Possible background source:
 - MPPC dark rate: Number of coincidence of two dark rate "hits" pointed to the beam target $\approx 2.5 \times 10^{-2}$ in case 2 fibres used for each hit $\approx 10^{-4}$ in case all 3 fibres are used per each hit for the whole T2K statistics (10^8 s 2.7×10^{22} POT)
 - Neutrino interactions:expected to leave a long(>5 cubes) track
 - Low-energy backgrounds
 to be studied during the data taking
- Based on expected $N_{events}(\epsilon)$ the sensitivities on ϵ could be set based on the expectation of 3 events

SUMMARY

- MilliCharged Particles are perspective window towards physics beyond SM
- Neutrino experiments have large potential for MCP search with large meson outcome
- SuperFGD is very sensitive to the MCP:
 - Fine granularity -> direction reconstruction
 - Low thresholds
 - Low MPPC dark rate -> low background
- Preprint is available arxiv:2103.11814

BACK UP

MCP DETECTION

Free path:

$$\lambda = \frac{1}{Zn_{det}\sigma(E_r^{min})} = \epsilon^{-2} \frac{m_e E_r^{min}}{2\pi\alpha^2 Zn_{det}}$$

With SuperFGD material:

$$\lambda \approx 1.2 \times 10^4 \times \left(\frac{10^{-3}}{\epsilon}\right)^2 \times \left(\frac{E_r^{min}}{100 \text{ keV}}\right) \text{m}$$

Coincidence of two hits above threshold:

$$P_{2h} = \frac{1}{2} \left(\xi \frac{L}{\lambda} \right)^2 = \frac{1}{2} \left(\frac{\left(\frac{\xi}{0.92} \right) 1.84 \,\mathrm{m}}{\left(\frac{10^{-2}}{\epsilon} \right)^2 \left(\frac{E_r^{min}}{100 \,\mathrm{keV}} \right) 14 \,\mathrm{km}} \right)^2 \approx 0.29 \times 10^{-8} \times \left(\frac{\epsilon}{10^{-3}} \right)^4$$

PRODUCED MESONS

Number of double hits events in SFGD For $\epsilon=10^{-3}$ and 2.27×10^{22} POT

MCP spectra at SuperFGD for $\epsilon = 10^{-3}$ and 2.27×10^{22} POT

