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Christodoulou, Hawking, Smarr

Reversible and Irreversible Transformations in Black-Hole Physics*

Demetrios Christodoulou
Joseph Henvy Laboratovies, Princeton Univevsity, Princeton, New Jersey 08540
(Received 17 September 1970)

The concepts of irreducible mass and of reversible and irreversible transformations
in black holes are introduced, leading to the formula E*=m; *+ (L*/4m; ?) +p? for a
black hole of linear momentum p and angular momentum L.

Gravitational Radiation from Colliding Black Holes

S. W. Hawking
Institute of Theovetical Astronomy, University of Cambvidge, Cambridge, England
(Received 11 March 1971)

It is shown that there is an upper bound to the energy of the gravitational radiation
emitted when one collapsed object captures another. In the case of two objects with
equal masses m and zero intrinsic angular momenta, this upper bound is (2—V 2)m.

Mass Formula for Kerr Black Holes

Larry Smarr*

Centev for Relativity Theovy, Physics Department, The University of Texas at Austin, Austin, Texas 78712
(Received 29 September 1972)

A new mass formula for Kerr black holes is deduced, and is constrasted to the mass
formula which is obtained by integrating term by term the mass differential and which
congists of three terms interpreted, respectively, as the surface energy, rotational en-
ergy, and electromagnetic energy of the charged rotating black hole. A comparison is
suggested between a rotating black hole and a rotating liguid drop which leads to a spec-
ulation that Kerr black holes may develop instabilities.

A=4n[2M?+ 2t - L2 - MPQH)V2 - @] —

M=2TA+2QL+®Q

°J, Bekenstein, Ph,D, thesis, Princeton University,

1972 (unpublished).

dM=TdA + QdL+®dg

we say T =effective surface tension, ©=angular
velocity, and & =electromagnetic potential.



Carter derivation of Smarr formula

General derivation of Smarr formula for regular stationary 5, _ ! }{ DY EMdS,,,
axisymmetric Einstein-Maxwell black holes was given 4
by Carter (1973) based on Komar conserved charges J = —— j[ DYm*dY

where k# = 0; and m/ = 0/ are the Killing vectors associated with time
translations and rotations around the z-axis.

Because the integrand D"k" is antisymmetric, one can apply the Ostro-
gradsky theorem to transform

1 1
M=) —¢ D'k'dx,, +— [ D,D"k" k=0/0t
szﬁé;n kdu+47r/DDdeM, /

where ).,, are the spacelike surfaces bounding the various sources, and the
second integral is over the bulk. Using again the fact that £ is a Killing
vector and the Einstein equations, we obtain
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Similarly, for azimuthal Killing vector m, one finds the angular momentum

0

1
J = — — D"mtdY,,, /T“V “dS,, —
%:871' S, " por e " 0P

Combining M and J together, one derives Smarr formula for electrovacuum

A 1 v
M = ks +2Q5J + ®yQ Where K2 = — = (D*€Y) (Du&y)
4 2 N
for rotating Killing vector & = k + QQgm which is timelike outside the horizon and
becoming null on the horizon

K
Its differential form gives the first law | ¢M = 8_7rdA + QpdJ + PpdQ

surface gravity

Note, that the norm of spacelike rotational Killing m becomes null on the polar axis,

2 Ma? 2sin 6
for Kerr, e.g., m? = g,y = a?sin? 0 (1 N r_2> | Ma szn
a T 1+ %COSQQ

i.e. polar axis is a Killing horizon of m



Taub-NUT o Menersme

2
ds® = —f(r)?(dt — 2n (cos 8 + C) dyp)* + [GE + (n* +r?) dQ?
2 .2
f(r,«)Q — r 2GMr —n Time identificationt — t+ 1/4n Role of parameter C
n? + r? makes Misner string non-observable.

Here it is not assumed

No curvature singularity at r=0, only distributional singularity on the polar axis (Misner string)
Not asymptotically flat (only locally AF)

Superposition of NUT and anti NUT gives AF solution with rotation (asymptotically Kerr)
Misner string contributes to Smarr-type relation (Hawking,Hunter, Mann....)

Areas of the back surfaces of an infinitely thin rods are finite per unit length:

p—0

limjé V922900d2dp # 0, finite area
2ip

In particular, the area of the horizon is the area of the infinitely thin horizon rod.



G.Clement, D.G. and M.Genouch,
Rehabilitating space-times with NUTs Phys.Lett. B750 (2015) 591-594

We revisit the Taub—NUT solution of the Einstein equations without time periodicity condition,
showing that the Misner string is still fully transparent for geodesics. In this case, analytic
continuation can be carried out through both horizons leading to a Hausdorff spacetime
without a central singularity, and thus geodesically complete. Furthermore, we show that, in
spite of the presence of a region containing closed time-like curves, there are no closed
causal geodesics . Thus, some longstanding obstructions to accept the Taub—NUT solution
as physically relevant are removed.

NUT wormholes Phys.Rev. D93 (2016) 024048

We show that supercritically charged black holes with a Newman—Unti—Tamburino (NUT) parameter provide
a new setting for traversable wormholes. This does not require exotic matter, but there is a price—the
Misner string singularities. Without assuming time periodicity to make Misner strings unobservable, we
show that, contrary to expectations, geodesics do not stop there. Moreover, since there is no central
singularity, the spacetime turns out to be geodesically complete. Another unpleasant feature of spacetimes
with NUTSs is the presence of regions where the azimuthal angle ¢ becomes timelike, signalling the
appearance of closed timelike curves (CTCs). We show that among them there are no closed timelike or
null geodesics, so the freely falling observers should not encounter causality violations.



Weyl coordinates

ds® = —e?Vdt? + 72V [eQ'V(dp2 +dz?) + p2d<b2}

This may be recognised as Laplace’s equation V2U = 0 for an axially sym-

U PP + -U P + U 2z — 0 metric function in an unphysical Euclidean 3-space in cylindrical polar co-
P ordinates, though the coordinates p, z,  here have a different meaning.
Once U is known, one has to integrate a system y , = (U’p2 + U,ZQ) , v, =2pU, U,

“axis” on which p = 0 is regular if,
and only if, v — 0 as p — 0.7 If this condition is not satisfied for some value
or range of z, then some kind of singularity occurs at these points.

Schwarzschild solution in Weyl coordinates reads U = Llog (R_ + 2z — m)

Ri+z4+m

2 2 +

eQU:R—I—_I_R—_Qm 627:(R++R—) —4m with R2:p2+(2:|:m)2
R, +R_+2m’ AR, R_ =

which is formally the Newtonian potential for a finite rod, located along

the part of the axis p = 0 for which |z| < m, whose mass per unit length is

o = +. Thus the “rod” has length 2m and its total mass is m.




G.Clement and D.G,,

Smarr formulas for electrovac Phys.Lett. B771 (2017) 457-461
Phys.Lett. B773 (2017) 290-294
spacetimes with line singularities Class.Quant Orau 35 (2018) ro-21, 214002

* Do Misner strings contribute to the BH entropy?

* Contribution of struts in binary BH solutions to Smarr mass formulas
* Extend to higher dimensions

* |Include U(1) vectors and scalar fields

* Describe individual contributions in binary BHs

* Clarify the role of Dirac strings in dyons

:> Use Rod structure analysis to ensure

* Unique description of disconnected components of horizon,
struts and MS singular components

* Express individual horizon masses in terms of parameters

e Clarify common and distinct feature of timelike and spacelike rods


https://old.inspirehep.net/record/1751583

Classes of metrics admitting rod structure

1. 4-dim Papapetrou (stationary axisymmetric)
ds* = —e?V (dt + Adp)* + e 2Vrde? + e (dr* + dz?)

4U 4U 4U

1
(a,? + =0, +a§) U = —‘;7 [(0,A)? + (0, A)?] , O, (—a A) + 0, (678ZA) —

eZJLU

Ar

€4U

8ZU = —8ZU + QTQTU({?ZU — W&AA@A .

2. Static generalized Weyl metrics in D dim (Emparan and Reall 2002) with
D-2 commuting orthogonal Killing vectors

Once U and are found, O,v = —0,U +r [(arU)2 — (82U)2}

we have to integrate

(0, A)* = (9. 4)°]

D—2
ds® = —e?V1dt? + Z e2Vi(dx')? + e* (dr? + dz?) Z U, =logr,

1=2
2 2
with U7 satisfying three-dimensional flat space Laplace equatlons (8 + = 8 + 0; )

=0



Introduce the auxilirary angle y so that we have the following metric for
3D Euclidean space:

dr? 4 r?dy? + dz? = do$ + do5 + dz?

01 =rCOSy, 09 =r1rSinvy

In 3d vector notation
the Gram matrix

equation reads G_lﬁzG — (G_lﬁa)z

Consider now A=0, then

G;;(r,z) diagonal matrixin the D-2 space spanned by Killing vectors

D-2

ds® = —eQUldas% + ) eQUialaz:,L-2 + e2Y(dr? + dz?)
1=2

D-2

Y U;=logr

=1



Regularity
G(r,z) smooth for r > 0 = solution regular forr > 0

But det G(0, z)=0, so on the polar axis the singularities may be present
Exclude strong curvature singularities Ry po RH*P7 — oo for r — 0O
but allow for delta-function singularities for curvature (struts, Misner strings)

Forr>0: G 1V2@ = ((}‘_1§G)2 (for the static solutions)

But as r->0 IT (eigenvalues of G) =r2 — 0

two eigenvalues — 0forr - 0 ©=> RyuypsRMP7 — o0

To avoid this, require dim(ker(G(0,z))) =1 except at isolated values of z

(“turning points”) @4,a,,...,@y for which dim(ker(G(0,z))) > 1



Divide z-axis into N+1 intervals [a,_,a,], k=1,...,N+1 (85 = -00, ay,4 = 00)

z
all al2 = = o= ale
We call an interval [a, ,,a,] a rod of the solution G(r,z)
dim(ker(G(0,z))) =1fora, , <z<a,
.0
For all N+1 rods [a, ,, a,] we can find a vector V() = U%k‘)ai
X

such that
G(O, Z)’U(k) = 0 for z E]a,k_l,a,k[

We call v, the direction of the rod [a, ;,a,]
The rod-structure of a solution:

The rods (intervals) [a,_4,a,] and their directions v ,,, k=1,2,...,N+1.



For diagonal matrx G (static 4d or generalized Emparan-Reall cases)
all rod directions are orthogonal.

Rod [a,_4, a,] Is a line source for the potential U,
The reason for calling the intervals [a, ,, a,] rods

_ 1.2U; . :
Gy = *e NB: Misner strings are rods too

V2U; = 276°(0) pi(2)

1 z € rod with direction ==
pi(z) — , ox
0O otherwise

In the diagonal case the rod structure is in the one-to-one correspondence

with solutions

The same is conjectured for the non-diagonal (stationary) case



Kerr solution

is defined by the following three rods two of which are semi-infinite

_0_ _0_ _0_ 0
Ox2 | Ozl + 82 o2 | o2

! I
- ()( a

% + 96%2 dir. of [-o,a] rod  —» not orthogonal to directions of [-oc,-a] &
[or, 0]

Q) :angular velocity of Kerr BH

The rod directions may be time-like, spacelike and null as vectors in D-space

Horizons are finite timelike rods

Rod directions are constant on each chosen rod (cf. constancy of horizon
angular velocity)



Finite timelike rods are BH horizons

Rod is eigenvector of Gram matrix with zero eigenvalue G, (0,2)I% =0, 2z € [z, 2n+1]
Consider D=4 stationary axisymmetric.The direction of a rod defines a Killing vector field 1},
of the space-time, written in the basis consisting of £ = 0, and m = 0,

Near the rod interior 12 = G pl%1% ~ +a(z)p* and e?¥ ~ c?a(z) (c constant)

Thus the quantity p~2e~2"(? has a finite limit on the polar axis

Finite timelike rods correspond to black hole horizons, the associated surface gravity

| 1/2
it = (Ll /2)* = tim (=p~2e > Guliyly )

Is constant on the axis. The normalized rod direction [ = (1/ky, Qg /ky) contains
the angular velocity of the horizon which is also constant on it. Therefore the normalized rod

vector is constant along the rod. Similarly, the normalized spacelike rods have constant on them
spacelike eigenvectors [, = (1/k,, Q,/k,) This defines “spacelike surface gtravity” Knp,



Surface gravity of spacelike rods

12 As we will see later, spacelike rods define distributional
Ky, = lim (p—Qe—QVGablglg) singularities on the polar axis, to which belong
p=0 struts, and Misner strings. Two constant parameters
(in 4 dims) are spacelike surface gravity and angular velocity

* The spacelike rod specifies an appropriate spacelike Killing vector in its vicinity
which becomes null on the rod itself. This resembles the case of horizon:
there the associated Killing vector is timelike and bemuse null on the rod

* The difference is that in the horizon case the full spacetime manifold admits
continuation into T-region, where the associated Killing vector is spacelike.
In the spacelike case no such continuation is possible

* Spacelike rod is associated with conical singularity, unless the Killing coordinate

is identified with the period 1\ 1/2
P Aw = % HKm (,0262V (Gabzgzg) )

p—0



Smarr-type mass formulas in presence of distributional sources on the axis

Start with Komar integral for mass at infinity A7 = ij{ DVkH'dx,,, and use Ostrogradski-Gauss to express

it over cylindrical surfaces surrounding rods

M = Z M where the Einstein-Maxwell equations were used, and Komar forms written in terms of metric
_ n

1 N | |
z M, = o j{ (476190, gra + 2(AFit — ALF#)] dS;
Xn
1
Similarly, from the Komar form for angular momentum J = —g Dym“dz we obtain/
1 y

Therefore we expressed asymptotical mass and angular momentum in terms of the surface integrals over the
rods. Now using the (corrected) Tomimatsu formalism (A. Tomimatsu, Progr. Theor. Phys. 72 (1984) 73)
we can pass to one-dimensional integrals along the rods, where the Ernst potentials are used

1 Zn41 —_
M, =- / (w0, ImE 4 20, (A, Imy)|dz € =F — ¢ +ix, Y =v+iu

4
v = Ay, o;u = Fp_leij (8]'1490 + wajv)

Zn+1

Zn o, x = —sz_lﬁijajw -+ Q(Uaﬂj — U(()Zu)

Wn, Zn—l—l
——1Imé€

1

Zn



_ 1 Zn+1
Similarly the angular momentum of a rod J. :_f w[—2 + wd.ImE + 20 (A, Imy)) — 2wPd. Imip] d=
is presented as the linear integral which 8 /-,

Is easily computed :% {—(Zn+1 o)+ [om (ImE/2 — @y Tmn) + A, Im] zn+1}
and using analogous representation for 1 W _—
the electric charge Qn = 4—/ wO,Im1) dzdp = —Im)
, W Zna1 — %
can be finally presented as J, = 7n (_ n+ : n o M, — an)n)
Note that the term proportional to the length
of a rod can pre presented as the product of B
the rod area and the surface gravity both for fntl T An @An
timelike and spacelike rods, since 4 8T
Z9 Z2
e.g. for horizonrods Ky = \/|e ?*|/|lwu|, A= j{d@/ \/1922900|dz = 27rf \/ |e2kl|w|dz ,
so that KEH 29 — 21 21 z1
TSy = c—An = ———
8 4

In Misner string case this gives you a choice to interpret this term as mechanical work produced by tension,
or as the Misner string entropy (Hawking, Hunter, Carlip, Mann, Bordo, Gray, Hennigar, Kubiznak...)



For the individual black hole (this works for binary BH)

There is no contributions from magnetic charges or Mo — 20 T d

NUT charges, these notions are global because of H = HJH + HSH ™ HQH
Dirac and Misner strings

1
The string masses can be presented as M,, = 2Q0,,.J,, + §Ln + ®,,0,
The asymptotic mass, on the contrary, contains string Ln = zZnt1— 2n
terms in terms of spacelike rods

K, Am, ks, As,
M =Y (29, Ju, + + @1, Qu, |+ (295, J5, + 2220 + B, Qs,
= 41 S 4
where the string surface terms were presented in the “entropic” form. Note, that for the infinite rods

the corresponding length should be cut off. To cancel infinities, the infinite Misner and Dirac string
should be arranged in a symmetric way under North/South interchange.

This construction is applicable to multicenter axially symmetric solutions with struts ensuring
force balance needed for equilibrium. It follows that masse and angular momenta are additive
qguantities, which may look surprising since the bulk electromagnetic contributions are taken into
account. These are already included in the charge terms



Dirac strings (DS) gravitate

e Usually regarded as artefact of magnetic monopole vector potential

 When gravity is switched on, DS turns out to gravitate, i.e., DS is heavy

* |llustrated by difference between the horizon mass Smarr and total mass Smarr for
dyonic Kerr-Newman ds® = —F(dt — wdp)? + F71[e® (dp® + dz?) + p*de?]

¥ f Weyl coordinates by p = o(x? — 1)Y2(1 — y2)/2, 2 = oy

F = = o2k _ 7 P —— prolate spheroidal coordinates * > 1, y € [—1,+1]

fo= 0@ -1)-ad*(1-y?), T=(cx+M)?>+a%y? o2=M2-Q>*—P2—q?
2M (ox + M) — Q* — P?

w = —a(l—1y? 7 :
—Q(ox + M) + aPy 5 Oy = @ _
Ay = > , A, =—-Py—C—aA(l—-y") (M +0)2+a2 %

Horizon Smarr My =20y Jy + 21y S + (I)HQH does not contain magnetic charge, while total mass does

M =20yJ +2TyS + P + @HP , Where magnetic potential is @H =P(M +0)/% - The difference is due
to the Dirac strings given by the non-zero surface integral around the string:

1 i
M — T Yy ta ta pa
S+ — :F87T /24_ |g|g [g aygta i 2(9 AtayAa g Acp(?yAa)] dmdgp s o PQ(M—I—O')
2.0

This is valid only for symmetric gauge for DS (equal North and South segments)



Kerr-NUT

A dr? sin® 6
In Boyer-Lindquist ds® = 5 (dt + Pydp)® + (K + d‘92) Ty (adt — Prdyp)?,

Coordinates . 9 5 9 0
Py =2ncosf + 2s —asin“0, P.=1r"+a"+ n°— 2as,
E:PT+aP9:r2+(n+acost9)2, A =7r?—2mr + a® — n?,
p = \/Ksin 9’ P (7“ — m) cos @ one finds three rods

Passing to Weyl
coordinates

(—o0, —zu|, [—2H, 21|, [zH,00) With zg = rg —m, ryg = m + Vm? +n? — a?,
joining pairwise at z = £z and the directions with the parameters

TH — MM 0 ar 1 0

J — b K — 9 — K ‘
(mrg + n? — as) B 90rm —m) =7 2(n 4k s) =T

The rod [y defines the spacetime Killing vector £y = 0 + 0, which is timelike outside the
horizon, and becomes null on it. The rods [+ define the Killing vectors {+ = J; + Q4+, which
are spacelike outside the polar axis for |z| > zy and become null on the Misner strings. Their

norm in the vicinity of the polar axis for s =01s ~ , r? + (n + a)?

RH =

. 2

: : _ _ L= 5 sin”“ 6
Obviously it vanishes on the polar axis 4n
The associated “surface gravity” k4, therefore, is not associated with particle acceleration,

neither with a redshift factor, so it can hardly be interpreted as Hawking temperature.



My = =2 (yo —y_) = — -
H 1 (X+ — x-) o m"‘TH 2r 1y
WH Ly CLQLUH w:l:( L:I:)
Jy = — | My — =2 = — aM Jy=—(Ms:——,
=" ( 1 2) oy D 2 2

where wi = F2n, Ly = 20 and L+ = R — o, with R a regularization length of the infinite rods
(R — o). For our symmetrical setting, s = 0, the sum of the string angular momenta is finite:

ch

JodJ =—-nMy—M)=-" oM, +M) J=Jy+Jr+J_=a(My+ My + M) =aM

rH
where the total mass M has the value m. Note also that the strings are always rotating in

opposite directions, {2+ = F1/(2n), even in the case where the horizon is non-rotating, a = 0.
But in this case the sum of their angular momenta is zero.

Note that the Kerr proportionality holds separately for the horizon rod, and for the sum of the
strings, as well as for the global quantities
Finally, we can write Smarr mass in M =2TygSy +20yJy + QQ+j+ + QQ_j_
“mechanical” terms:
wrly —wiMy

_ j:nz(n Fa)
4 2 21

where jj: = J:|: -+



Einstein-Maxwell dilaton

The bulk term now contain the scalar
field but still may be reduced to the
boundary term, so the mass additivity
still holds

The only difference with the EM case
is due to dilaton exponent in the

rod charges

We therefore again obtain

M =Y M,

(I.Bogush et al, in preparation)

1

_ L _ 2 200 2
8_167r, d*z +/ g(R 2(00)° — e F)

1 v
M_%:Ejénv kMdY,, + Mg

1 —2x () [
ME:ZE/E Ay {e 2 (F"A, — F'A,) }

1

T 4n

Qn f 6—204(;5Fitd2ti

m.

M, = 2T,5S, +20,J, + ¢,Q,



Example of Binary BH
with Kerr asymptotic

@ BH1 (M,Q,P,N)

Ergoregion

Strin

CTC region

G.Clement and D.G.,
Phys.Lett. B771 (2017) 457-461

Each BH has mass, electric and magnetic
charges and NUT charges: masses and
electric charges are equal, magnetic charges
and NUT parameters are opposite.

Such configuration has AF (Kerr) asymptotic
of rotating vacuum black hole, though it

has a complicated internal structure

inside the ergosphere. So it may seem

to violate uniqueness, but in fac it does not
because of singular string between two BHs.
The string is superposition of a struct
(rotating and charged “cosmic string”),
Dirac and Misner strings

BH2 (M,Q,-P,-N) Additivity of mass and angular momentum. M = M—I— + M_ + Mg

The sum of electric charges is canceled by the

charge of the string

J=Jyr+J_+Js



Conclusions

e Struts and Misner strings do contribute to asymptotic mass Smarr formulas

* The surface terms in Smarr formula for spacelike terms can be presented either in the
entropic form, or in mechanical terms, as work done by tension. Which interpretation is
correct still has to be discussed. Entropic interpretation is favored by analogy with BH as
Killing horizon, but there is not information loss nor the internal region of defect.

* Horizon mass Smarr formulas do not contain contribution of magnetic and NUT charges,
reflecting their global nature. Asymptotic mass Smarr formulas do contain ¢
contributions of Dirac and Misner strings or, in other parametrization, of magnetic
and NUT charges. Dirac strings are heavy. Only symmetric North/South configuration
is consistent for both Dirac and Misner strings

* Total mass, charges and angular momenta of aligned multi BH solutions with Kerr
asymptotic can be expressed additively as sums of analogous individual parameters of all
constituents including BHs, struts and Misner and Dirac strings



“Chanks!  Happy veseavch!
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