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Well known solutions of simple 

scalar field theories with a potential

i.e. theories with a Lagrangian of the form

With
A potential with two or more minima at 

different values             of the field, 

such that has the same value at 

these minima   

I.1. Domain wall field configurations
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« Sine-Gordon model » 
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Domain walls, 

most easily discussed in 1(t coordinate) +1(z coordinate) dimensions where

they are usually called « kinks »,

are solutions interpolating between two adjacent vaccua between

z =          and z =

E.g. for the Mexican hat model 

solution, the domain wall is

For the Sine-Gordon model 

solution, the domain wall is

Very similar looking solutions ! 



The similarity can be made more explicit using the change of variable 

Mexican hat model Sine-Gordon model

the canonical Mexican

hat Lagrangian is

transformed into

the canonical Sine-

Gordon Lagrangian is

transformed into

Such that the domain wall solutions read in both cases 

NB: in both cases one has 
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I.2. Domain wall energy, stability and vacuum topology

For a theory in the canonical class   

The energy of an arbitrary field configuration can be rewritten using the 

« Bogomolny trick » as   
time derivative z derivative

I.e. 

With

Vanish for domain wall

configurations 

« Topological » term

Bogomolny, 1976
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The topological term

Gives a lower bound on the energy of the field configuration,

And depends only on the values of the field at infinity.  

It can be linked to the trivially conserved current

yielding the « topological charge » 

2D Levi-Civita tensor

But any

function of 

Yields such

a conserved

currentE.g. the choice

yields the conserved charge 
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The stability of the domain wall configuration is guaranteed by the decomposition

Indeed, any local perturbation of the wall, with the same « topological charge »           

has an energy larger (or equal)  to the one of the wall (also )

NB: this argument is unrelated to the « topology » of the vacuum 

manifold being labeled by the disconected values   
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The stability of the domain walls can also be checked by computing the spectrum

of a perturbation around the wall

Decomposing such a perturbation      as  

It obeys the mode equation of motion 

with

And e.g. Mexican hat

Sine-Gordon

Stable perturbations

(including always the zero

mode                )              



II. Non standard scalar theories

and « k-defects » 



The recent years have seen a renewal of interest in scalar(-tensor) theories

with non trivial kinetic term for the scalar

K-essence

Bekenstein, Milgrom 1984

Armendariz-Picon, Damour, Mukhanov 1999

Armendariz-Picon, Mukhanov Steinhardt, 2000-2001

DGP decoupling limit, flat and curved space time Galileons

… Luty, Porrati, Rattazzi 2003

Nicolis, Rattazzi, Trincherini, 2008

C.D., Esposito-Farese, Vikman 2009

Horndeski and beyond Horndeski 1974

C.D., Gao, Steer, Zahariade 2011 

Zumalacarregui, Garcia-Bellido 2014

Gleyzes, Langlois, Piazza, Vernizzi, 2015...



For this talk, a related (and older) construction is that of the 

Skyrme model of Baryons  as solitons (here with a quartet of scalar fields ) 

Skyrme 1962

Skyrmions: 
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Several worked studied « k-defects » (Babichev 2006) in this renewed context

Babichev; Sarangi; Bazeia, Losano, Menezes, Oliveira;

Jin, Li, Liu; Adam, Sanchez-Guillen, Wereszcynski; 

Bazeia, Lobao, Menezes; Chagoya, Tasinato; Andrews, 

Lewandowski, Trodden, Wesley….

For this talk, a related (and older) construction is that of the 

Skyrme model of Baryons  as solitons (here with a quartet of scalar fields ) 

Skyrme 1962

Skyrmions: 

The existence of these k-defects all rely on a potential with a non trivial vacuum topology
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We assume that can be power expanded as  

(such that is set to zero, to avoid a potential) 

For a field configuration            , the field equations have the first integral

constant 

on shell

Pure k-essence              ? 

Does not admit a 

domain wall solution



Separable theories ? 

Some admits stable domain wall solutions



Separable theories ? 

Some admits stable domain wall solutions

E.g. looking for theories accomodating an tanh profile (i.e. the domain

wall profile of the mexican hat theory)

we have that, on shell

Implying the on shell functional relations



Separable theories ? 

Some admits stable domain wall solutions

E.g. looking for theories accomodating an tanh profile (i.e. the domain

wall profile of the mexican hat theory)

we have that, on shell

Implying the on shell functional relations

This can be used to « reconstruct » the theory admitting such a 

profile integrating the relation 
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One such family of theories has the Lagrangians

Finiteness of the energy implies

Yielding a                           domain wall with total energy

Constant

Positivity of the energy implies

Stability of perturbations further restricts



So, to summarize, the k-essence theories

Have stable domain walls with (exactly) the mexican hat model profile                          ,

stable perturbations, and no potential

in the sense that

One of the simplest (an interesting – see thereafter) such model is obtained by 

Which has                             and  
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III.2.1. Changing variables 

Using

This belongs to the family of theories of the form

Among which the mexican hat theoryConstants

For suitable ,                   is a (domain wall) solution of the field equation
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One unpleasant aspect of … 

… is the singularity at 

Changing variable

Yielding

No more singular at                     … but non standard kinetic terms

Gauss hypergeometric function
For 

(where ) 
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More on this change of variables 

Some special values of p lead to nicer forms

Elliptic integral of the first kind

Maps to the finite

The inverse mapping

with diverging at  

can be naturally extended on the whole real line for  

E.g.                         or  



So that the model …

… Extends naturally on the whole real line for   

And should yield domain walls interpolating between non adjacent vacuua

of the periodic function , where (cf. Sine-Gordon model)

NB: the domain wall profiles for the      variable are  
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Starting with the general form

The Hamiltonian density of an arbitrary field configuration reads

e.g. for the mexican

hat model we get

or, using the notation                    , 

The Bogomolny decomposition reads now simply

Kinetic energy
Vanishes for the 

wall configuration

Topological

term න
𝜓′

𝑐𝑜𝑠ℎ4𝜓
𝑑𝑧

Yielding the boundary

supported integral
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Considering the same decomposition for

With

We get

Defining

Must vanish in order to

have a domain wall solution 𝜓= ± z

Topological

term

න
𝜓′

𝑐𝑜𝑠ℎ4𝜓
𝑑𝑧

Yielding the boundary

supported integral

Where we recall that

Π(a,b): polynomial in a and b 
starting at quadratic order in a 
and vanishing in (a=0,b=0)
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The topological term yields the same total energy and conserved

charge  as in the canonical model

Using here

The left over term

Yields the « non topological » part of the energy

Associated to the same conserved current

For non canonical domain walls models, while the

total energy can be made everywhere positive, the 

non topological part of the energy can be shown to 

become somewhere negative.



E.g. for the model

with Lagrangian

With

Domain wall

solution: x=1, 

y=0

It is (only) a 

local minimum 

of the energy
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III.2.3. Wall perturbations

Writing

The mode functions obey at quadratic order

With

The choice κ = -5/4 yields perturbations 

identical to the one of the canonical model
« Mimicker model »
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Cubic vertices

Strong coupling off the wall
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This can easily be generalized in various ways

e.g. moving walls (as in the canonical theory) 

Sine-Gordon like and other wall

From e.g. 

k=1 yields Sine-Gordon like walls (breather ?)

With more than three non vanishing above, several

(locally stable) walls could coexist.
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Some problematic aspects

Strong coupling off the wall

Solutions are only locally stable and theories locally sound

Can this be changed in different theories

such as Horndeski and beyond ?

Phenomenology and related issues 

Wall decay ?

Early universe ?



Thank you for your attention !


