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Introduction

GW astronomy provides new windows to test GR, in particular in
the strong field regime.

Ringdown phase of a BH merger is interesting for modified gravity
models; it can be described by BH linear perturbations.

Consider the most general framework of scalar-tensor theories
with a single scalar degree of freedom: DHOST theories

Perturbations of BH in DHOST theories studied in a few papers

Quasi-normal modes: Schroedinger-like method and alternative
approach

Based on DL, Noui & Roussille 2103.14744 & 2103.14750



DHOST theories

 Traditional theories: L(V ¢, ¢)

« Generalized theories: £(V, NV, ¢, Vi, ¢)

DHOST: most general family of covariant scalar-tensor theories
with a single scalar DOF

Traditional
ST theories
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Horndeski
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DHOST theories

« Action of quadratic DHOST [DL & Noui "19]

S = /dA":U\/—_g
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The functions F' and A; satisfy three degeneracy conditions.

Extension to cubic order (in @,,,)

[Ben Achour, Crisostomi, Koyama, DL, Noui & Tasinato '16]

Quadratic Horndeski
Al = —Ay=2Fx, A3=A;,=A5=0



Disformal transformations

Transformation 9w — Guw =C(X,0) 9, + DX, ) 0,00,¢

From an action S [¢, §,..] , one gets the new action

S[6, 9] = S [, G = C G + D bpd,]
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When standard fields are (minimally) included, two disformally

related theories are physically inequivalent !
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Black hole solutions

* One can find BH solutions with a nontrivial scalar field

d 2

— Metric: ds® = —A(r)dt* + i + 7’ (d¢92 + sin”6 dSOQ)
A(r)

— Scalarfield:  ¢(t,r) = qt + x(r), [Babichev & Charmousis ‘13]

[q # 0 possible in shift-symmetric theories ]

.
. Stealth Schwarzschild: A(r) =1 — 78 X(r)=—¢

F(X)=1+a(X +¢*)+ B(X +¢*)?/2
« Non-stealth (BCL): [Babichev, Charmousis & Lehebel "17]
Ay =(1-=)(1+=), ¢=0 X(r)
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Black hole perturbations

« Time Fourier transform:

f(t,r) = /dw fw,r)e”

+ Axial (or odd) modes: ho(r), hi(r)
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« Polar (or even) modes: Ho, i, Hy, K (and 0¢)
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Axial modes in GR

* The linearised metric eqs yield only 2 independent egs

dy h
— = M(r)Y(r Y =
b= MOYE), v = (1)
or, in a Schroedinger form, [Regge & Wheeler ‘57] Z: — Kiffné
2y . | p— —
d’]:% + ((U _V(T))Y:O go.sé— _
[ 7, tortoise coordinate ] Zj
« Asymptotically (7. — —00, +00) S U
6—73th(7,,) ~ Ae—iw(t—r*) + Be_iw(t_|_f,«*)
outgoing ingoing

* Quasi-normalmodes: A, ., =0 and B, =0

Wy, = WRnp +F1Wrn (wry < 0)



Axial modes in DHOST

 The equations have a similar structure:

dY (2/r4-aum' —de—k2iA®/r%>

o MY, M= _iT A + il

which can be rewritten, via Y () = P(r) Y (r) , as

@_ 1w nW 1 v
dr,  \V(r) —w?/c*(r) iwn¥

« After the time redefinition ¢ — ¢ —/‘If(r)d”'“ , one gets

dQ}Afl w2 ~
—V(r)) Y =0
" (c2<r> m) 1

where V(r) and c(r) depend on the choice n(r).




Axial modes in stealth Schwarzschild

The matrix depends on

1/2 3/2 . 2
T Crs' r Ca- r—rg | F:(l—l—C)r’ A:l_ 1
(r—rs)(r—rgy) (14 Q)r (r—mrg)? roor—r,
where (¢ = 2¢°a, ro = (1+ Qs [(=0: GR]
If 7. is the tortoise coordinate then o(r)= — 9
V1+C(r—rs)

If 7«=+/1+([r+ryln(r/r,—1)] sothat ¢(r) =1 one finds

V_l(r) — (1 — ?"g) 2()\ ™ 1)T _ 37°g [ see also Tomikawa &
= r (1+¢)r3 Kobayashi ‘21 ]

This can be understood via a disformal transformation to the
« frame » where A, =0.



Axial modes in stealth Schwarzschild

Using the disformal transformation

D 2¢
q v — C v Da ay 9 - = .
9gu Juv + ugb @ C 1+ ¢
one gets the metric
o, C (1 Tg\ g2 /Tt (1+O)r? —rrs 9 19
d3 _—1+C[ (1 T)dt 2 drdt 4 S 2 o (14 O

or, with dt = dt — Vdr

ds2—1igl—( r)dt +1+Cdr + (14 Q)r 2d§22]

which is Schwarzschild (up to coordinate rescalings).



Asymptotics of a diffential system

Instead of a Schroedinger-like approach, one can use directly the
initial first-order equations of motion and their asymptotic limit:

dY
E—:AH@Y, M(z)=M,z" +M,_12"" "4+ ... (2= o0)
<
The generic solution is of the form [Wasow ‘65]

Y(2) =X A F(2) Y, (z — 00)
There exists a well-defined algorithm to determine the diagonal
matrices Y (z) and A.  [Balser ‘9]
Idea: diagonalise, order by order, the matrix M, with Y (z) = P(z) Y (z)

dy — - - - dP
= MY Mz =P 'MP - P 1 —
—=MRE)Y, M) o



Axial modes of BCL black hole

A(r):(l—ri) (1+r—_>, Tm =74 —T—

T r
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1 0 )’M_1:2<—irm 0>
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« At spatial infinity:
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where 7. = / dr/A(r) (tortoise coordinate)

* Near the horizon: expansionin € =7 — 74+ vyields the asymptotic
solution

—iwty, —iw (TENT, _ 1
e YL~y g EENT) c(ry) =1



Axial modes of BCL black hole

« Computation of QNMs using a spectral method

: _ iwr W m o —1WwTQ f1 (T)
Ansatz: Y = e plT (1 —7ry/r) ((1 ) fg('r))

Decomposing in terms of Chebyshev polynomials,
filu) =) ainTn(u)
n

w=2"F "1 ¢e[-1,41]
r

one gets an algebraic
linear system

MN(LU) VN(Oéi,n) = O




Polar modes

The linearised metric equations yield
— 2 independent equations in GR (1 dof)
— 4 independent equations in DHOST theories (2 dof)

In GR, one gets a 2-dimensional system Y’ = MY, which can be
written in a Schroedinger form. [Zerilli 70]

In DHOST theories, the system Y’ = MY is now 4-dimensional,

with
Y = (K 6¢ H, Hp)

If there is no generalised Schroedinger-like system, one can still use
the asymptotic approach.



Polar modes of BCL black holes

* One can study the asymptotic behaviour of the 4-dim system at
spatial infinity and near the horizon, and extract the
independent modes.

« At spatial infinity, one gets

c T—iwrm e—iwr
i R 2 « gravitational » modes,
Y(r)~ | a_ B \wr 2 « scalar» modes
7“3
N R . N —— B
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« Similar results near the horizon _ *
= 0.1776 ¢=o001F |
1 Z £=0(GR) — |
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Conclusions

Analysis of the BH linear perturbations in DHOST theories

Axial modes: one can recover a Schroedinger-like equation with
some effective potential and propagation speed (which depend on
the choice of radial coordinate).

In stealth Schwarzschild, the gravitational modes “see” a
different Schwarzschild metric, corresponding to the DHOST
“frame” where the speed of GWs is constant.

Polar modes: the structure is much more complicated than in GR
(4-dim system). One finds “gravitational” and “scalar” modes.

Systematic approach to decouple the modes asymptotically.

Future work: other solutions; ultimately rotating blackholes...



