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4th order gravity

« The 4th order gravitational action quadratic in the curvature is
power-counting renormalizable:

1
= 4 — 2 nv
S 16”do x\=g(R + aR? + R, R*)

« Unitarity is violated at the tree-level: I = Npy + VBTG by,
1 :PO :732 mO = (3C¥ + :8)1_/;/2
(k) =1 p +— — , — 1,)
(k) GR 2k2+m§lk2+m§ m; '—(_518)

Spin-2 ghost degree of freedom

« Conflict: Unitarity VS Renormalizability!

[Stelle, 1977, PRD]



Unitarity VS Renormalizability

« Einstein’s GR is unitary but non-renormalizable, while 4th
order quadratic gravity is power-counting renormalizable but
non-unitary!

Several (recent) attempts:

Asymptotically safe gravity [Reuter, Wetterich, Eichhorn, Saueressig, Platania,......]

e 4th order gravity with Fakeons [anselmi & piva 2017+]

 A4th order gravity with unstable ghOStS [Donoghue, Menezes, Salvio, Strumia...]

e Lee-Wick gravity theories [Modesto & Shapiro 2016+; Anselmi & Piva 2017+]

* Nonlocal gravity theories [Born, Pais, Yukawa, Efimov, Krasnikov, Kuz’min, Moffat,

Woodard, Tomboulis, Dragovich, Aref’eva, Volovich, Koshelev, Siegel, Biswas, Mazumdar, Modesto, Froloy,
Zelnikov, Rachwal, Starobinsky, Kumar, Tokareva, Boos,......]



Unitarity VS Renormalizability

« Einstein’s GR is unitary but non-renormalizable, while 4th
order quadratic gravity is power-counting renormalizable but
non-unitary!

Several (recent) attempts:

° Asymptotically safe gravity [Saueressig’s yesterday talk]

 Nonlocal gravity theories [koshelev’s and Kumar’s yesterday talks]



Ghosts

« 4-derivative theory (-+++): GHOST!

~

p2 —ic p?+m?—ie

L=%¢D(1——)¢ V(p) = M) =

Optical theorem:

Sts =1, S=1+iT = 2m{T}=T*'T ("=0"

Tree-level amplitude: \ /
AN

Im{T} = 9 (p°)[6(p?) — 6(p? +m?)]

Non-positive definite: violation of unitarity!



Beyond 4-derivative theories

GHOST!

« 4-derivative theory (-+++):
’ 1 / 1

Lzqum(l_—)qb V(p) = in(p):pz—ie_pz +m? — ie

« Generalized higher-derivative theory:

L—l FO)(@m-m?)¢p = ill(p) = ! !
~2¢ mIe = W) = r o

- Question: Is there any higher-derivative operator F(—p?)
such that the propagator is ghost-free? YES!

 Nonlocality can help us!



Local VS Nonlocal

Local (polynomial) Lagrangians:
L; =L (¢, 00, 024), N L))

Nonlocal (non-polynomial) Lagrangians:

1
Ly = Lys (gb, 0¢,0%d, ..., 0", ...,ePd,In(D) qb,Egb, )



Local VS Nonlocal

« Local (polynomial) Lagrangians:
L; =L, (¢p,00, 624), N L))

* Nonlocal (non-polynomial) Lagrangians:

1
Lni = Lt (qb, 3,02, ..., 0", ... In(0) ¢, ¢, )

@g field theory and p-a@

[Witten, Freund, Zwiebach, Aref’eva, Volovich,
Dragovich, Kosheley, Sen, Siegel,....]




Generalized higher-derivative Lagrangian

Scalar field Lagrangian:

1
L=—Z¢F@¢-V(®),
\\, Entire function

(good IR limit F(O) —» —0O + m?)

Weierstrass’ theorem:

N
F(O) = e 7@ n(—D + ml-z)ri, N < oo,
i=1

y(0O) is another entire function.

N is the number of zeroes m?; r; is the multiplicity of each zero



Generalized higher-derivative Lagrangian

« Scalar field Lagrangian:

= ——¢F(D)¢ V(¢),
\\, Entire function

(good IR limit F(O) —» —0O + m?)

« Weierstrass’ theorem:

F(O) = e 7@ n(—D + ml-z)ri, N < oo,

 Propagator:

eV( -p?)
(- ﬂ



Generalized higher-derivative Lagrangians

N
F(O) = e 7® H(—EI +m?)"
=1

« N=1, =1, y(0) =0 = 2-derivative theory (Klein-Gordon)
F(O) = -0+ m?

« N=2, =1, y(0O) =0 = 4-derivative theory with ghost

F(O) = (-0 + m?) (1 - %)

« N =2 and/orr; =2 (with m; real) = ghosts!



Generalized higher-derivative Lagrangians

N
F(O) =ev® H(—EI +m?)"
=1

e N=1, rn=1,y(@™=#0

= infinite-derivative theory with one real zero
F(O) = e "® (-0 + m?)

 Propagator:




Generalized higher-derivative Lagrangians

N
F(O) = e 7™ H(—D +m?)"
i=1

e N=3 T, = 1, Y(D) =0 [local case y(O) = 0: Lee&V\./ick;.Modesto&Shapiro 2016+;
Anselmi & Piva 2017+ ]

= infinite-derivative theory with a pair of complex conjugate zeroes

F(D) = Le"’('j)(—lj +m?)(O+ iM?) (O - iM?)

M4~
() 2 o
— ,—y\a
=e 7 (—D+m)(1+m>
 Propagator:

M*ev(-p%) 1 p* + m?
Ti(v) =
(p) m* + M* |p?2+m? —ie p*+ M*



Generalized higher-derivative Lagrangians

N
F(O) =ev® H(—D + ml-z)ri
i=1

 N=o, =1y @ =3
MS
= infinite-derivative theory

with infinite pairs of complex conjugate zeroes

F(O) = M2(e~9/M5 — 1)

(00)

O O
=—e—V<D)|:|H —— 4+ 1| =——1
2nMst 12nMs €
£=1

 Propagator:
! - +2p? Y (-1
M2(eP’/ME — 1) pZ—ie 2MZ T £ p* 1 A2 M2 P2

il(p) =

[LB, Lambiase, Yamaguchi PRD]



Perturbative unitarity

StS=1, S=1+iT = i(TT-T)=T"T
i[{b|T*|a) — (b|T|a)] = Z(bIT+In)(nITIa)

(b|T|a) = (2m)*§™ (P, — P)(b|M|a)

i[(b|M*|a) — (b|M]a)]

n

a3k, 1 L - N
:Z ) @i ze; 2m)* WP, — ) ki | {b|M™[{k ){{k} M |a)
=1

M) 1=1




Perturbative unitarity

StS=1, S=1+iT = i(TT-T)=T"T
i[{b|T*|a) — (b|T|a)] = Z(bIT+In)(nITIa)

(b|T|a) = (2m)*§™ (P, — P)(b|M|a)

\

{i[(b|M+ a) — (b|M|a)] |
_ - d’k; 1 27)4 5@ "k b|Mt|{k k| M
_{Zn}:fzf 207 20, (2m) Pa_l=1 . | <D [{k DLk M |a)

\ J

! RHS

LHS




Perturbative unitarity

1 A g
L —§¢F(D)¢—§¢3 —Z¢4+K¢1/J2 +

k
P1 D3

P2 2!



Perturbative unitarity

_1 A g
L= ¢F@¢ — 507 =5 ¢" + 1 pP® + -

2

2im[(—i) >—< 1= }H =fdnf ‘>_f




Tree-level: nonlocality + real poles

_1 A g P ) pP3
L—§¢F(D)¢—§¢3—a¢4+’€¢¢2+"' p2> O <p4

eV (-p?)

F(DO) = e 7® (- 2y, T(p) = ,
(O)=e (—O + m*) ifl(p) D7+ mE =i

LHS = i[{p3, 4| M |01, 02) — (03, 04| M |p1, 02)]

1 1

— i/’lZe]/(—pz) —
p?+m?+ie p?+m?—ie

=220 (p®)S(p? + m?)



Tree-level: nonlocality + real poles

_1 A g P ) pP3
L—§¢F(D)¢—§¢3—a¢4+’€¢¢2+'“ p2> 0 <p4

eV (-p?)

F(O) = e7"® (-0 +m?), il(p) = y(m?) =0

p2 +m? —ie’

d*k 1
_ @ (p — Mk Wk | M
RHS f Gy 20 B 0P = k) ps, pal M Ik )k 101y, p)

= 2220 (p®)5(p? + m?)

= LHS

\\* Tree-level unitarity!



Tree-level: nonlocality + complex conjugate poles

_1 A g P ) pP3
L—§¢F(D)¢—§¢3—a¢4+’€¢¢2+"' p2> 0 <p4

p- >0
02 M4ey(-p?) 1 p? + m?
— oY@ (_ 2 — ; —
F(O) =e ( D+m)(1+M4>, if(p) mE 1 M4 [p2+m2—i6 p4+M4]
' . [y(m?) = 0]
LHS = i[{p3, pal M T |p1, 02) — (p3, 4| M |p1, p2)]
M4ev(=p?) 1 1
— lAZ —
m* + M* [p?2+m? +ie p?+m?—ie

4

M
= 2mA? e 0(p°)s(p? + m?)




Perturbative unitarity

So far, we have shown tree-level unitarity >—<

What about loops? 407 >O<

Unitarity of nonlocal theories with standard poles

[Sen & Pius 2015; Carone 2017; Briscese & Modesto 2018; Chin & Tomboulis 2018;
Koshelev & Tokareva 2021]

Unitarity of nonlocal theories with complex conjugate poles
[LB, Yamaguchi — arXiv:21XX. XXXXX]

We only consider one-loop bubble diagrams

1 A
L= P —5¢° =7 d* + K $y? + -



Bubble diagram: local 2-derivative case

k k
o 'e
p p
k—p k—p
M = (p|M|p) = ' lzj dk° d3k 1 1

(p) = pIMip) = (D) e 2m ) (2m)3 k? + m? —ie (k —p)?+m? — ie
Q1 = —wy + i€ Im[k?] 4 Re(p®) > 0
Q2 =p° — wi—p + i€
Q3 = wy — i€

P A Q

Q4_ = pO +(l)k_p — 1€

Wy = 1/]_{\2 + m?

N




Bubble diagram: local 2-derivative case

k k
O 30X
p p
k—p k—p
o = (oIM|p) = . lzj dk© d3k 1 1
(p) =(p p) = (—i) . 21 (21)3 k2 + m? — ie (k — p)2+m? — ie
Im[k°] 4 Re(p®) >0

Q1 = —wg t+ i€
Q2 =p° — wy—p + i€
Q3 = wy — i€

Q4_ = pO +(l)k_p — i€

Wy = 1/]:2 + m?

N

Re[k°]




Bubble diagram: local 2-derivative case

d3k 1 1 1
(21m)3 2wk 20wk —p |P° — Wk — Wg—p T i€ PO+ Wi + Wiy

M(p) = A*

LHS = 2Im{M (p)}

d3k 1
= 277,'}.2 (27_[)3 Zwkak_p 9(p0 — a)k_p)5(p0 — Wy — a)k_p) = RHS

Optical theorem
(unitarity) is satisfied!

1
x+e

=P.V. G) F ind(x)




Bubble diagram: nonlocal with real poles

k k | Re(p®) > 0

k—p k—p
dko d3k e)/(_kz) ey(_(k_p)z)
2w ) (2m)3 k? + m? —ie (k — p)?+m? — ie

M) = (pIMIp) = (D22 j@

|m[k0]n
* Liouville’s theorem implies the
presence of singularities at
infinity!
Q1 Q;
e O

o o Re[k°]

Q3 Q4




Singularities at infinity

- Example of singularity at infinity: y(—=k?2) = —k2 = (k°)2 — k2

kO = ke, kK € R,

B2 72 G 2
— plK”sin 29 ;K cos 29

COo1nveg

Cconvg




Contour prescription

In local two-derivative theories starting from Minkowski is
equivalent to starting from Euclidean

In nonlocal theories starting from Minkowski is NOT well-defined
because of divergencies at infinity

Define the contour ¢ to be the imaginary k° —axis
Complexify internal and external energies: k° € C, p°€eC

To avoid poles and pinchings deform the contour in finite-distance
region of the complex plane by keeping the ends fixed at +ic

Analitically continue external energies to real values

Nonlocal theories + real poles [Sen & Pius 2015]

Nonlocal theories + complex conjugate poles [LB, Yamaguchi - arXiv:21XX.XXXXX]



Bubble diagram: nonlocal with real poles

k k Re(p®) > 0
, ) \ e(p”)
( >_ p)< k p
k—p k—p
[ dkO [ d®k  e?CKD e¥ (k=P
= (p|M|p) = (-i)A
M) = lip) = 02 | G- | e G
Im[k°]
* Pinching: 1
Q,=0; © poza)k+a)k_p Q1 Q;
e o N
o o R:e[ko]
A @ Q4




Bubble diagram: nonlocal with real poles

* Region [: Re(p®) > 0

Re[Q;] <Re[Q3] & p° <wy+ wrp

Im %] I

L J @ >
Re[k]

Q 2
1 -;\J—I 3 Q4
el




Bubble diagram: nonlocal with real poles

Re[Q;] > Re[Q3] & p° > wy + wrp

Im[%°] I

Py N

Q>

Q1 /\‘ Q4
o (’ Qa@ ] . kO

s\

3

'[C



Bubble diagram: nonlocal with real poles

* Region lI: Re(p®) > 0

Re[Q;] > Re[Q3] & p° > wy + wrp

Im[k°] I

Q1 Q2 Q4

'[C

so R\ /7

e[k"]




Bubble diagram: nonlocal with real poles

* Region lI: Re(p®) > 0
Re[Q2] > Re[Q3] & p° > wy + wr_y
Im[ko} I
I
| 0,
Ql Q4-
’ Q E ’ Ee[ko]
1 ©° ¢




Bubble diagram: nonlocal with real poles

* Region lll: close to the pinching

Re(p®) > 0
Re[Q;] = Re[Q3] & p° = wy + wi—p
Im[k°] I
I

Q
Q1 |
P '@ ® >

0 C, Re[k"]
k, Pinching can generate
an imaginary part!




Bubble diagram: nonlocal with real poles

Kk k Re(p®) > 0
) . \ (»°)
p 14
k—p k—p
dkO d3k e)/(_kz) e)/(_(k_p)z)

ju— —q 2
M(p) = (=04 j]ucr 2 ) 2n)3 k% +m? —ie(k —p)?+m? —ie

= M;(p) + Me, (p)

k» Gives an imaginary part!

d3k 1

LHS = 2Im{M = 2mA*
m{ (p)} & (27'[)3 Zwk2wk_p

0(p° — wie—p)8(p° — Wk — W)

g Same Cutkosky rules of
local two-derivative case!



Bubble diagram: nonlocal with real poles

d3k, ( d3k, (2m)*
— 4)(+ — _ +
RHS 2n)? ) 2n)? 20,20, S (p —ky —k)(p |IM™kq, ko)Xkq, ko | M |p )

. d3k 1 0 0
= 2mA (2n)? 20p200r_, H(p — wk_p)S(p — W, — a)k_p)

= LHS

Optical theorem
(unitarity) is satisfied!



Bubble diagram: nonlocal case + complex poles

. . | Re(p®) >0
— —— P X X »

. dKkO oV (—k?) eV (—(k—p)?)
M(p) = (=DAM L j 21) (2+m? — ie)(k* + M) [(k — p)2+m? — ie][(k — p)* + M7]

Qs = —Q Q¢ =p° — Qk—p Q7 Qg Im[k®]4 Qo Q1o
Q7 =-Q" Qg=p°— X X X X
Q=0  Quo=p"+Qp Q1 0Q,

) . o o
Q11 = Qi Q12 = p° + iy R

o o Re[k°]

O = \/1?2 +iM? Q3 Qa

— X X X X

ie—p = \/(k ~ DM Qs Qg Q11 Qq




Bubble diagram: nonlocal case + complex poles

k k | Re(p®) > 0
O+ XX
p p
k—p k—p
dk® [ d3k e¥ (=k%) oV (—(k=p)?)

M) = (OAM® L 2m ) (2m)3 (k?+m? — ie)(k* + M*) [(k — p)*+m? — i€] [(k — p)* + M*]

Im[k°] Q
* Pinchings with real and positive & 58 1 9 Cio
external momenta: X X X
Q=0Q; © p’=w,+ Wk—p Q1 Q;
e O N\
Q8 — Q9 & po — Qk* + Qk—p e o Rre[ko]
A Q3 Q4
Q=011 © P’ =0+
X X X X

Qs Qg T Q11 Q1



Bubble diagram: nonlocal case + complex poles

Im %] I

X Qs @\X
Qs

Re(p®) > 0
Q10
X
Re[k°]
X
Q12



Bubble diagram: nonlocal case + complex poles

Tm[k°] I Re(p?) > 0
Q7 0g \ Y10
X X\X) ) X
Q9
Q2
?1
® > 0
Q5 Q4 Re[kz ]
Q11
X X[ ) X
s Q¢ Q12
C

d



Bubble diagram: nonlocal case + complex poles

Im[k°] I Re(p?) > 0

Q2

Qs




Bubble diagram: nonlocal case + complex poles

Im (k"] I Re(p®) > 0
I
Q7 Qg Q
l Q B
Q2
Qj_ @ 5
Re[k']
1 Q3 CT Q4
Us
QS 1 Qll B* le
C=IUC,UBUDB"




Bubble diagram: nonlocal case + complex poles

Im (k"] I Re(p®) > 0
I N
Q7 <9 Q10
1 G B
Q>
Q4 R
’ @ Re[k)
1 Q3 CT Q4
Qs
. Q.
QS 1 Qll B* 12
C=1UC.UBUDRB"




Bubble diagram: nonlocal case + complex poles

k k 0
\ Re(p”) >0
p p
—(O= XX
k—p k—p
M (p)
( ')AZMSJ dk®  d3k eV (=k?) eV (=(k—-p)?)

= (—i

wepusus 27 ) (2m)° (k24+m? —ie)(k* + M*) [(k — p)*+m? — ie][(k — p)* + M*]

= M;(p) + M, (p) + Mp(p) + Mp-(p)

Mgz(p) = Mg(p) | = Imaginary contribution ONLY from the residue at Q,

LHS = 2Im{M (p)}

M8 d3k 1

=2 2 0 _ B 0 _ _ 3
mA (m*+M*)2 ) (27)3 Za)k2a)k_p9(p Wi p)5(p Wy — W p)

K, Same Cutkosky rules of
local two-derivative case!



Consistent Projection

« We have shown that the complex masses do not contribute to
the discontinuity across the real axis

« In other words, the Cutkosky rules only applies to the standard
propagator with one real mass:

il(p) =

M4e¥(-p?) 1 +p2+m2 , M* 00008 (12 412
m* + M* |p? +m? —ie p*+ M* Tty Mt (p7)o(p™+m?)

« However, in the RHS we can still have intermediate states with
complex masses:

i[(b|T*|a) — (b|T|a)] = z (b|T* |nKn|T|a)
In)eF

« We need to make a consistent projection onto the physical
Fock space: F — Fpp



Consistent Projection

« We need to make a consistent projection onto the physical
Fock space: F - Fy,

i[(bIT*|a) = (bIT|a)] = z (D|IT* |n)(n|T|a)

IN)EFpn

« Thus, the RHS will be given by

M8 d3k, [ d3k, (2m)*
RHS = D (p — k., — +
S = i) @or ) @oraoae; 0P~ ks = k)p 1M ks, kaXk, ol p)

M3 d3k 1

= 2mA? 0 — w—p)8(p® — wp — W
n MMM ) (21)3 20, 20, 9(}9 Wi p)5(p Wg — Wk p)
p

= LHS
Optical theorem
(unitarity) is satisfied!



Some remarks

—(O0— XX >

Higher loops investigated in the case of real masses [sen & Pius 2015]

Higher loops complex conjugate masses not yet [Work in progress...]

More complicated vertexes will not affect the result as long as
they do not change the pole structure

In the gravitational case, proving the Cutkosky rules is not
sufficient. We also need to project away unphysical states due
to gauge invariance

What about infinite pairs of complex conjugate poles?
The same prescription should apply.



Outliook

Why do we care? Even about nonlocal theories with complex
conjugate poles???

First of all, it is very interesting that higher (infinite)-derivative
theories can be unitary

Nonlocal gravitational actions seem to be good candidate for
quantum gravity [Koshelev’s and Kumar'’s yesterday talks]

Loop corrections (e.g. due to matter) in nonlocal theories
introduce complex conjugate poles! Is then unitarity spoiled?
[Shapiro PLB 2015]

Our analysis ‘suggests’ that unitarity may still be satisfied.

Unitarity of p-adic string Lagrangian around tachyon vacuum:

1
Ly-adic = =5 $(e™7 = D+



Some open problems

How to define a ‘good’ classical limit?
Standard correspondence principle does not work especially in
presence of complex masses

How do define an Hamiltonian ? (is it really needed?)

Quantification of the causality violation?
Only at short distances...? [Tomboulis - private communications]

Huge arbitrarity in the choice of the entire function !?!

Nonlocal Lagrangians from first principles...?



Cnacubo 3a
Bawie BHUMmaHuel

Thank you
for
your attention!



Tree-level: nonlocality + complex conjugate poles

_1 A g P ) pP3
L—§¢F(D)¢—§¢3—a¢4+’€¢¢2+'“ p2> 0 <p4

p- >0
02 M4ey(-p?) 1 p? + m?
F(DO) =e7"@® (=0 (1 +—], T(p) =
(o) =e ( +m)( +M4> in(p) m* + M# [p2+m2—ie+p4+M4]

 In the RHS we need to project unphysical complex-mass states away

Ris = — [ LK L 4 5@ 1)ps, pa M YK M lr, o)
= mE M) @nyp 20 O 0T P P b P1 P2

M4
= 27'[).2 m@(p0)5(p2 + mz)

= LHS
\\* Tree-level unitarity!



Generalized quadratic action

* Locality, causality, unitarity , renormalizability, positive norms,
positive energies... too many requirements?

* Beyond fourth-order derivatives? Diffeomorphism invariance
allows more...

* Generalized quadratic gravitational action, parity-invariant and
torsion-free:

1
S = Spn + 35— d*x =g(RF,(D)R + R, F, (D)R* + R, F3(O)R¥VP7)

N<oo

n
O
Fi(O/M2) = z fin (_M2> ) I[N = Nonlocal]
n=0 5



Generalized quadratic action

S =

Generalized quadratic gravitational action, parity-invariant and
torsion-free:

1
Sen + 55— | A*xy=g(RF1(D)R + Ry Fo(D)RK + Rypo F3 (D)RFP)

By using

RuypsO"RMYPO = 4R, ,O"R¥ — RO"R 4+ O(R?) + tot.div.

uvpo

We can write

S =Spy + j d*x /=g (RF1 (DR + Ry F2(D)RF + O(R?))

321G



Generalized quadratic action

 Up to quadratic order around Minkowski the relevant part of the
action is:

1
S =Sgy + 300 d*x—g(RF1(O)R + R, F,(O)RH)

* Gauge independent part of the graviton propagator:

:])2 :PO
Hu,vpa(k) =2 + BPe

fk? — (f(k) —3g(k))k?

f@ =1+5F@0

g(O) =1-2F(0)0 - %TZ(D)D



Ghost-free higher derivative gravity

Up to quadratic order around Minkowski the relevant part of the
action is:

1
S =8y + % d*x \/—g(R?l(D)R + Ruvgjz(D)Rﬂv)

Gauge independent part of the graviton propagator:

:PZ :PO
Huvpa(k) = P2 + BPe

- Uk (f(k) — 3g(k)k?

Ghost-freeness condition:

fk) = e¥1(k) f(k) —3g(k) = e¥2(k),

l_l

Entire functions _
[Biswas et al., PRL 2012]



Ghost-free higher derivative gravity

« Nonlocal higher-derivative gravity theories can be ghost-free;
also known as Infinite Derivative Gravity (IDG)

S

= [ A (R + GuF@R™),  F(0) = ~27,(©0) = FO) = L

« Ghost-free propagator:

1 1 (Fips  Favpo
Huvpa(k) =mnp€5pa(k) =f(k)< l;(; — Skpz >

f(D) = e(O/M)

[Krasnikov 1987; Kuz’min, 1989; Tomboulis 1997; Biswas et al., 2006,2011; Modesto et al. 2011+]



Ghost-free higher derivative gravity

 Non-local higher derivative theories can be ghost-free:

1 , e~v(O/M3) _ 1
= — F(O)R™ F(DO) =
S 16n6fdx\/_g(R+Gw (OD)RHY), (D) =
« Ghost-free propagator:
y(—k?/MZ)[IGR y(-r2puz) jivos _ Fiivps
Hu,vpa(k) — € s H/,vaa(k) = € s 2 - 212

/

« Entire function, e.qg.

e_Y(D/MSZ) — e_lj/lvls2

[Krasnikov 1987; Kuz’min, 1989; Tomboulis 1997; Biswas et al., 2006,2011; Modesto et al. 2011+]



Nonlocal Lee-Wick: gravity sector

Nonlocal gravitational action:

S

1 4 1 ~y(D) o° — M* ny
:1671do xX~+—g SQ—GWER + Gyye VD R

Nonlocal graviton propagator:

eV (=p?) pr4 e (=% pp4 (P2 PO
Huvpa(p) = < g uvpa)

GR _
Pt + M4 s (p) = P4 + M4 P2 2p?

Ghost-free I<;|raviton propagator! Poles: massless spin-2
graviton pole + 1 pair of Lee-Wick poles




Nonlocal case: infinite complex poles

* Nonlocal scalar theory with infinite complex conjugate poles:

L=-Lglem/M 1),  F(D) = ME(e M — 1)

« Ghost-free propagator:

2

_p o
USRS WL RV ) Y M L
ju— j— e S —_—
P M2 (eP?/Ms — 1) p? yo p2 +i2nM2f  p? —i2mM?2¢
o Infinite pairs of complex
1 2 . 2 . 2
- = —1Y¢ conjugate poles: = i 2mMz ¥
sinh(iz/2) i{)ZOO( Y e Jugate P P s
[LB, Lambiase, Yamaguchi, PRD]




Nonlocal (infinite-derivative) case: gravity sector

* Nonlocal gravitational action:

1 . 1 , e O/Ms _ 1 o
52167'[do xX~+—g R—GwER — M5 Gy o2 R

 Nonlocal graviton propagator:

2
p
[1 = = P2 — P
uvpa(p) MSZ(BPZ/MZ 1) uvpa(p) MSZ(ePZ/Msz B 1)( uvpe — 5 s,uvpa)

« Ghost-free graviton propagator!

Poles: massless spin-2 graviton propagator + infinite pairs of
complex conjugate poles

[LB, Lambiase, Yamaguchi, PRD]



Ghost-free higher derivative gravity

e Linearized metric for a static point-like source:

ds? = —

VZ
e MSV2p(7)

(1+2¢()dt? + (1 —2¢())(dr? +r2dQ?)

= 4nGmSP#F) = ¢(r) = —GTmErf <M5r>

¢(T)~ - T GmMS
¢(r)~ — N

< oo

\

Singularity-free!

[Tseytlin, 1995; Biswas et al., 2006; Biswas et al., 2012]



Ghost-free higher derivative gravity

Scalar curvature:

B GmM3eMsT*/4

VT
Non-singular curvature invariants!
Conformally-flat at r=0!
Smearing of the (delta-) source due to non-locality!

The UV/short distances behavior is ameliorated!

[LB, Koshelev, Lambiase, Marto, Mazumdar, JCAP]



Ghost-free higher derivative gravity

* Linearized metric for a rotating ring source in IDG:

ds? = —(1 4 2¢())dt? + 2h - didt + (1 — 2¢(r))(dr? + r2d0?)

* Stress-energy tensor: z
5(x? + y* —a?) m
Too =mé(2) - , To; = Toovi, :\\ :
U, = —Yw, v, =xw, v,=0 "
* Differential equations:
?2
e MiV2p(7) = 46mb(2)8(x? + y* — a?),
?2
e MiV2h, () = —166Gmwys(2)6(x* + y* — a?),
?2

e_M_‘s??th},(F) = 166mwx5(z)6(x* + y* — a?)
[LB, et al. PRD]



Ghost-free higher derivative gravity

* Linearized metric for a rotating ring source in IDG:

ds? = —(1 4 2¢())dt? + 2h - didt + (1 — 2¢(r))(dr? + r2d0?)

e Solutions:

¢(P) =—Gm J:Od( Iu(iﬂofu(i.@oﬁlrfﬁ (Mis)’

” . _ ¢
hoe(x,3) = 4Gmaa f 4¢ 1, (a1, (ip0)Erfc (E)

0

hoy (x.y) = ~4Gmaa” J; 4¢ 1, (iad)1, (ipd)Erfec (Mi)

N

[LB, et al. PRD]



Ghost-free higher derivative gravity

Linearized metric for a rotating ring source in IDG:

ds? = —(1 4 2¢())dt? + 2h - didt + (1 — 2¢(r))(dr? + r2d0?)

Non-singular solutions:

0.0

-0.2F

I -04r

-0.6F

-0.8
0

— GR
— IDG
=== Multipole expansion in IDG 1

[LB, et al. PRD]



Ghost-free higher derivative gravity

Linearized metric for a rotating ring source in IDG:

ds? = —(1 4 2¢())dt? + 2h - didt + (1 — 2¢(r))(dr? + r2d0?)

Non-singular solutions:
.0 ———m—mr——v——~——r—7r—rr—rr7rr—r—r—r7r—T—r—r

-
=
- -
-] S
o e

& -10 — GR
— IDG ]
=== Multipole expansion in IDG
-15}
_2-0 M M M P | S T TN SR NN SN SR THN T RN TUN TUN TN S [ T T T S [N TUN SUN SUN T R T T T 1

2. 2,172

pP=(x"+y") [LB, et al. PRD]



Extra Slides: nonlocality

« Nonlocal action:

S = j d*xd*y p(x)K(x —y)p(y)

r d*k .
_ _ ik-(x—y)
= d4xd4yqb(x)j(2n)4F( k2)e™x=Y) g (y)

r d*k
| atxaty poF @) j e 1)

[

d*xd*y ¢ () F (D) (x)



Stringy inspired nonlocal theories

« Nonlocal scalar field:

= %(pe—y(D/Msz)(D —m?)¢ — V(¢),

N<oo

n
H
y(O/M$) = Z Yn (—2>
n=0 Ms \ Entire function:
 Ghost-free propagator: No extra poles!

y(-p?/M2)
(p) = °

p2_|_m2

Perturbative unitarity (optical theorem and Cutkosky rules)
[Pius & Sen 2015; Briscese & Modesto 2018; Chin & Tomboulis 2018]

Causality violation at microscopic scales (acausal Green functions and
local commutativity violation)
[Tomboulis 2015; LB, Lambiase, Mazumdar 2018]



Microcausality violation

* NO time-ordered propagator:

e 7@ (O —mH)(x) = id™W (x),

c = 0
000 = L) + Loy, | e = T8I0

(0.0)

q—1
e (o) = i Y —— 9 VW@ () — W@ ()]
ql X
q=1
Ak 0@ g=¥(-K?)
(q) _ ik-x 0 2 2
w (x)—j(zn)4e 0(k®)o(k* +m*) FYRIC)

[Tomboulis, PRD; LB, Lambiase, Mazumdar, NPB]



Microcausality violation

Acausal Green function (principal value + residues):

e( Mf) (O — mZ)GR(x —y) = i5(4)(x -y),

Ge(x—y)#0, for (x—y)*>0

0.0030 _——————————— _
0.0025} — 2n=2
f --. 2n=4
{].{]{32{]:— ' ons
0.0015 2n=10
o L
) i
{]_{]{11{]:—
ﬂ_ﬂﬂﬂﬁ}
0.0000f —
o 2z 4 & s 10 12z 14
112
[o] " =[xyl

[LB, Lambiase, Mazumdar, NPB]



Extra slides: spin projection operators

, 1 1
Frivpe = P (ﬁﬁﬂ O + Oyuq Svp) — §9nv Ope

| 1
PWM = 5(6‘”‘” w,, t E}'vap + vafﬂp,g + meﬂp),

0 — 1 0 —

:Ps,.{wpﬂ' - §9nv9pﬂ'r PW,,EL’I.F.{JE — mﬁl’a’}pﬁ

0 1 0 1
?SW,.H’U.DE}' = Tgeﬁvmpar '?WS,.H’LF.DJ = \{_gmﬁvgpﬂ'r
k k
Op =My — Opyy Wy = ;zv'



Extra Slides: Renormalizable nonlocal gravity

Kuzmin/Tomboulis’ entire function:

y(2) =T(0,P(2)) +v5 + log(P(2))

UV behavior:

[Kuzmin 1989, Tomboulis 1977]



Enlarging the class of ghost-free operators

Nonlocal propagator:

Poles:

(p) =

P2 + /Pt + i4m2 M2 L2

M? (e

p* =i2nMit = p° = iJﬁZ — i2mM2¢

— ie(®) J

—p2 + /Pt + i4n2M2e2

Im{p"}

Re{p°}

[LB, Lambiase, Yamaguchi, PRD]



Enlarging the class of ghost-free operators

Non-local gravitational action:

1 (., 1 L. eT/ME g
—_ vV v
S = 16”do X V=g \R = Guy = RH = M3 Gy ————RH

Nonlocal graviton propagator:

k? 1 1
Huvpa(k) = 12 ) Hﬁ5pcf(k) - 12 ) <:Puzvpa - E?s(,)uvpa>

M2 (eM_sz—l M2 (eM_3—1

Ghost-free graviton propagator! Poles: massless spin-2
grallviton propagator + infinite pairs of complex conjugate
poles

[LB, Lambiase, Yamaguchi, PRD]



Different type of nonlocal Lagrangians

P-adic string: [Freund, Witten, Frampton, Dragovich....]

M2 , _k?
S _ 2
Lp—adic = 2 Pe D/ Ms o, Hp—adic(k) =e Ms

SFT inspired nonlocal Lagra ngian: [Krasnikov, Arefeva, Koshelev, Biswas, Mazumdar,
Modesto...]

1 N —kz/Mg
Lspr = E‘PB_D/MS Do, Ngpr (k) = T k2

Nonlocal model with complex conjugate poles: [LB, Lambiase, Yamaguch PRD]

2
L = —%qb(e"':'/Msz ~ )¢, (k) =

M2 (ek*/Ms — 1)
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I. INTRODUCTION

HE theory of elementary particles which I propose
in the following pages is based on the current con-
ceptions of quantum mechanics and differs widely from
the ideas which Einstein himself has developed in regard
to this problem. I hope that it may nevertheless be ac-
ceptable as a contribution to this volume in honor of his
70th birthday, as it is based on his famous relation be-
tween energy E and mass m of a physical system,
E=mc, and as it can be interpreted as a rational
generalization of his (“‘special”’) theory of relativity.

Relativity postulates that all laws of nature are in-
variant with respect to such linear transformations of
space time x*=(x,!) for which the quadratic form
R=uxFx,=#—x* is invariant (the velocity of light is
taken to be unity). The underlying physical assumption
is that the 4-dimensional distance »= R* has an absolute
significance and can be measured. This is a natural and
plausible assumption as long as one has to do with
macroscopic dimensions where measuring rods and
clocks can be applied. But is it still plausible in the
domain of atomic phenomena?

Doubts have been expressed a long time ago, e.g., by
Lindemann (Lord Cherwell) (14) in his instructive little
book. I think that the assumption of the observability
of the 4-dimensional distance of two events inside
atomic dimensions is an extrapolation which can only be
justified by its consequences; and I am inclined to
interpret the difficulties which quantum mechanics en-
counters in describing elementary particles and their
interactions as indicating the failure of that assumption.

The well-known limits of observability set by Heisen-
berg’s uncertainty rules have little to do with this
question ; they refer to the measurements of coordinates

sponding to the particles with which one has possibly to
do. This is the problem which is now in the center of
interest: by estimating p and E for a particle observed
in the Wilson chamber or in a photographic emulsion,
one obtains a rough value of the rest mass which may
permit one to recognize the kind of particle with which
one has to do. If the value of P thus obtained is however
incompatible with the known particles a new one is
discovered. During the last year this has happened
several times, and one gets the impression that there
may be no end of it. New types of mesons are found
almost every week, and it seems to be not an extrava-
gant extrapolation to suppose that there is an infinite
number.

It looks, therefore, as if the distance P in momentum
space is capable of an infinite number of discrete values
which can be roughly determined while the distance R
in coordinate space is not an observable quantity at all.

This lack of symmetry seems to me very strange and
rather improbable. There is strong formal evidence for
the hypothesis, which I have called the principle of reci-
procity, that the laws of nature are symmetrical with
regard to space-time and momentum-energy, or more
precisely, that they are invariant under the trans-
formation :

Xp=2>Pr, Pr—>— Xp.

1.1)

The most obvious indications are these: The canonical
equations of classical mechanics :

at=0H/dpr, pr=—0H/dx* (1.2)

are indeed invariant under the transformation (1), if
only the first 3 components of the 4-vectors «* and p; are
considered. These equations hold also in the matrix or



1y, thal the 1aws Ol nature arec symmetrical witil
rd to space-time and momentum-energy, or more
isely, that the}r are invariant under the trans-
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- most obvious indications are these: The canonical
ations of classical mechanics
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indeed invariant under the transformation (1), if
r the first 3 components of the 4-vectors «* and p; are
sidered. These equations hold also in the matrix or
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szpzAkz 477k (VIL.5)
For a point charge at rest one has
- J1=j2=73=0, ja=ed(r), (VIL6)

where r=x—x, and § is a Dirac symbolic function.

Using ordinary units the solution of (VIL.S5) for this
case, which can be easily obtained by Fourier trans-
formation, reads

€ ¥ .
A1=A2=A3m0, A4=—Y(*‘), (VII7)
a a
where
Y (x) 2
x)=-—"
x(':rr)% 0

This modification of Coulomb’s law has already been
suggested by myself and published in collaboration with
Rumer (7) as long ago as 1931, and it appears later
sporadically in the literature, as a more or less arbitrary
assumption, while in the reciprocity theory it is a
necessity. The main features of this potential are these:
for x>>a 1t goes over in the Coulomb potential, for x—0

e~ 4dx.

(VILS8)

| it tends to the finite value A.—e/a(m)? and it leads to a |
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