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Quantization of Gravity in the Black Hole  background
in the Regge-Wheeler harmonic basis

• We perform a covariant (Lagrangian) quantization of gravity in the Schwarzschild black hole 
background. We use the Regge-Wheeler gauge in the spherical harmonics basis for l > 1 modes. 

• For low multipoles Regge-Wheeler  gauge is not valid, we propose a background-covariant gauge 
condition for monopoles and dipoles well defined in perturbative quantum gravity. 

• We find that in a covariant quantization Faddeev-Popov (FP) ghosts are non-propagating for l > 1 
modes, but monopoles and dipoles, in general, have FP ghosts.

• In Schwarzschild coordinates all time derivatives acting on ghosts drop out, therefore monopoles 
and dipoles ghosts have instantaneous propagators. 

• Up to subtleties related to quantizing gravity in a space with a horizon, Faddeev's theorem
suggests a possibility of a canonical (Hamiltonian) quantization with ghost-free Hilbert space.

M4 = M2 ⇥ S2



Lagrangian/Hamiltonian quantization of gauge theories

Faddeev 1969
Fradkin, Tyutin, 1970, 
Fradkin, Batalin, Vilkovisky, 1977

The canonical Hamiltonian quanKzaKon procedure is fundamental: it involves the issue of the physical 
states and unitarity

Covariant  Lagrangian quanKzaKon is simpler, it is manifestly independent on the choice of the gauge-
fixing condiKon and choice of coordinates

According to Hamiltonian quantization gives the same results 
for gravitational observables, as the Lagrangian
quantization, under certain conditions

There are 2 types of gauge-fixing conditions

1. corresponds to the case of the unitary ghosts-free Hamiltonian in gauge theories and Hilbert 
space of states has a definite metric

2. corresponds to the case of the pseudo-unitary Hamiltonian: the S-matrix is pseudo-unitary in 
the Hilbert space of states with the indefinite metric. 

We have performed covariant  Lagrangian quantization of gravity in the black hole background. 
We use Regge-Wheeler gauge for l >1 modes and a new class of gauges for l < 2 where Regge-
Wheeler is not valid. 

We found evidence that the canonical Hamiltonian, when constructed,  will belong to a class of 
unitary ghost free Hamiltonians in our gauge.



De WiT-Faddeev-Popov covariant Lagrangian quanKzaKon of gravity in the background field 
method involves the set of constraints on gravitaKonal fields of the form

Due to gauge symmetries the naive Feynman path integral over quantum fluctuation of the metric h
in the gravitational background g is not well definedZ

dh eiS(g+h)

Z
dhJ�(g, h)�

⇣
�↵(g, h)

⌘
eiS(g+h)

�↵(g, h) = 0
The well defined path integral, suitable for the Feynman diagram computaKons involves a Jacobian

the Jacobian

is defined by the variation of the 
gauge-fixing function under the 
gauge symmetry

J�(g, h) = expTr ln Q↵
�(g, h)

��↵ = Q↵
�(g, h)⇠�

This Jacobian can be also presented with the help of 
anti-commuting FP ghosts

J� =

Z
dC̄↵dC� exp

i
R
d4x C̄↵(x)Q↵

�(g,h)C�(x)

The role of the Jacobian is to make the path integral independent on the choice of the gauge-fixing 
function

1967

The Background Field Method for Gravity 



The FP ghosts action is

C̄aD3abC
b
= C̄a

(�ab@3 + fabcA
c
3)C

b|Aa
3=0 = C̄a@3Ca (2.20)

The operator @3 is invertible, we can define @3Ca ⌘ C 0
a and the ghost action becomes simple

C̄aC 0
a (2.21)

These ghosts decouple.

Another useful example of a unitary gauge is the standard model. Our notations are that of Ch.
21.2 in [17], where the general class of ⇠-gauges are described. The unitary gauge is recovered from
the ⇠-gauge whe ⇠ goes to infinity.

We present here the unitary gauge directly by taking the gauge fixing function in the form

F↵ = �i(t↵)nm�0
mvn (2.22)

and computing the ghosts action for this gauge:

C̄↵(t↵v)n(t��)nC� = C̄↵µ
2

↵�C� (2.23)

Here the matrix µ2

↵� is the mass matrix of the massive vector bosons, it is invertible. We can change
variables C̃↵ = µ2

↵�C� and the ghosts action becomes

C̄↵C̃↵. (2.24)

They decouple.

Before we apply this general construction to the Regge-Wheeler gauge in gravity, we will describe
this general formalism and the concept of a gauge symmetry for gravitational theories.

2.2 The Background Field Method for Gravity

In the diffeomorphism invariant Lagrangian field theories of gravity usually considered (such as general
relativity, which will be the focus of this paper), the action S[g] is invariant under the local gauge
transformation

�gµ⌫ = £⇠gµ⌫ = rµ⇠⌫ +r⌫⇠µ (2.25)

We can apply the background field method to gravity, taking the total field �+ � to be

ḡµ⌫ = gµ⌫ + hµ⌫ (2.26)

where gµ⌫ is a background field and hµ⌫ is an integration variable in the path integral. In this context
eq. (2.25) takes the form

�hµ⌫ = r(g+h)
µ ⇠⌫ +r(g+h)

⌫ ⇠µ, �gµ⌫ = 0 (2.27)
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SBRST = Scl(g + h) + Sg.f.(g, h) + SFP (C̄, C, g, h)

BRST-BFV quantization in application to gravity

Z
dh dB dC̄ dCeiSBRST (g,h,B,C̄C)

SFP = C̄↵ ��↵

�h��
r(g+h)

� C�

Sg.f.(g, h) = B↵�↵(g, h)

Same path integral as in De WiT-Faddeev-Popov 
method

Our purpose is to construct the De Witt-Faddeev-Popov Feynman integral, and a corresponding  
BRST action for gravity in the black hole background in the Regge-Wheeler set up with expansion 
of gravitational perturbations in spherical harmonics.

This could have been done any time after 1967 Why now?

1975-1977

Becchi, Rouet, Stora,Tyutin, 
Fradkin,Batalin, Vilkovisky

De WiT-Faddeev-Popov 



Stability of a Schwarzschild singularity
Regge, Wheeler, 1957

Discovery of 
gravitational 
waves from 
black hole 
mergers

COVID-19

The interest to Regge-Wheeler set up with 
expansion of gravitational perturbations in 
spherical harmonics was gradually increasing 
from about 1995.

It was rapidly increasing after detection of 
gravity waves 

‘t Hooft: discreteness on BH micro-states 
in terms of  partial waves

Gaddam,Groenenboom,’t Hooft 2012.02357 

In the list of shortcomings: 
we do not know FP ghosts acKons 
in Regge-Wheeler gauge 

The positions u
� of the out particles are generated by the momenta p

�

of the in-particles. In partial waves:

u
�
`m = 8⇡G

`2+`+1 p
�
`m , u

+
`m = �

8⇡G
`2+`+1 p

+
`m ,

[u±`m, p
⌥
`0m0 ] = i �``0 �mm0 .

In terms of the coordinates u+ and u
�, the wave functions in u

+ and u
�

are each other’s Fourier transform.

For distant observers, u± and p
± depend exponentially on time

⌧ = t/4GM:
u
±, p

±
! e

⌥⌧

Introduce tortoise coordinates (close to horizon)

u
+
in
= �in e

%in , u
�
out

= �out e
%out ; �in = (±) , �out = [±]

Rephrase the Fourier transformations in terms of the % coordinates.

The signs of �in and �out do not commute.
The relation is now invariant under time shifts:
%in ! %in � ⌧ ; %out ! %out + ⌧ .

20 / 32
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Example of  QFT loop computations in gravity in the background covariant generalized de Donder 
gauge

In the context of path integral quantization, we also often require the fields �i, and, correspond-
ingly, the infinitesimal gauge transformation parameters ⇠↵ to vanish sufficiently rapidly at large
distances as to allow us to neglect various integrals of total derivatives, which may be necessary to,
for example, derive the Ward identities or other familiar consequences of the gauge symmetry for
the Feynman diagrams. We see in our case that this additional restriction is already satisfied by the
asymptotics eqs. (2.33) and (2.34).

We can now consider, as an example the BRST action in the background covariant de Donder
gauge [11]. The background field gµ⌫ satisfies Einstein equations but otherwise is not specified. The
choice of the function F in eq. (2.10) is

Fµ = (r⌫h
⌫
µ � 1

2
rµh

⌫
⌫) (2.39)

Using our general formula (2.17) we find that in the singular gauge r⌫h⌫µ � 1

2
rµh⌫⌫ = 0 as well as in

the Feynman type gauge when we add to the action the gauge-fixing term

Sgf =
p
�g

1

2⇠
(r⌫h

⌫
µ � 1

2
rµh

⌫
⌫)(r�h

�µ � 1

2
rµh��) (2.40)

the ghosts action is
SFP =

p
�g C̄µ

(r�r�Cµ �R⌫µC
⌫
) + . . . (2.41)

where terms in . . . depend on h. Thus in de Donder gauge FP ghosts are propagating, their kinetic
term is C̄µ⇤Cµ

+ . . . .

3 Gravity in a Schwarzschild black hole background

3.1 Preliminaries

Now we would like to apply the general BRST construction to the Regge-Wheeler gauge where gravity
is considered in the background of the Schwarzschild black hole, ḡµ⌫ = gµ⌫ + hµ⌫ where gµ⌫ is given
in eq. (1.1). Thus we consider a 4D asymptotically flat spacetime (M, ḡµ⌫) which can be endowed with
coordinates (xa, ✓A) in which the metric takes the form where gµ⌫ the Schwarzschild metric, written
in the form eq. (2.26) (in particular, the spacetime will be a warped product, with M = M2 ⇥ S2).
Our formalism, based on that of [7], will be covariant with respect to two-dimensional (background)
diffeomorphisms of M2 which fix the 2-spheres of constant xa (i.e. which are “independent of angle”).
Letting Da denote the covariant derivative operator of (M2, gab), it is helpful to define

ra(x) = Dar(x) (3.1)

and
f(r) ⌘ gabr

arb = 1� 2M

r
(3.2)
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where FP ghosts are propagaKng

C̄⇤C and give important contribution’t Hooft, Veltman;
RK, Tarasov, Tyutin; Barvinsky, Vilkovisky; 
Goroff, Sagnotti; Van de Ven
1974-1992

What are ghosts actions in Regge-Wheler gauge?

Dirac gauge, 1959
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are

(a) L';„,=L0—(1/2n) a„h""b„),a+" —L 0
'

i—Tr ln(a„r+L(h" aga.
+a),h) .a.)b„~+a),h"~a,5c] ) . (4.63)

These are taken as the interaction Lagrangian.
(b) L(0)' is the Lagrangian of the linearized theory

L(())' ,'arh——"'—a„hvt, t'(n+—1)/2nja hr "a"h),
—;a„ha~h, h—=b„„k~". (4.64)

The lowering and raising of indices in (4.64) are done
by the Minkowski tensors b„„and b&".

(c) The free propagator of h"" is calculated from
(4.64) to be

D rrv, 1a(p) — 3' (2yn) brrvbXa brr) bva brrabv1

2(n+1)+ (brrvp1pa+b1aprrpv)
2

0', 1+ (brr)pvpa+brrapvp)
2

+br) prrpa+bvaprrp1) (4 65)

B. Linearized Form of Harmonic Condition

Consider the class of gauges described by the function

)/rrr =b' (aag) /r 3 a/rg) a) ~ (4.66)

We choose g„„asindependent variables. We then obtain
with the help of (4.13) (with )a=O), (4.32), and (4.24)

Q/rv g/ra++(arrg/rp 2a/rgorp)

&&(b' a,b.P+b'Pa b. bPa.). —(4.67)

The Feynman rules for the gravitational field in the
gauge B„j&'=0 were also obtained by Fadeev and
Popov.

0! II. '—-Bh Bh" —— — Bh Bh
2Q

n+1 2n+1+ a„ha„ho"— a„—ha~h, h= b~"h„„. (4.71)
2n So.

The raising of indices in (4.71) is accomplished by the
Minkowski tensor B~".

(c) The free propagator of h„„ is calculated from
(4.71) to be

D„v,), '(p) = 3'„„b—)„a„),b„,—b„,b„),—
+Dn+ 1)/p'j(a"p. p.+a.-p pi

-+a..P.P.+b,.P.P1)jP '. (4.72)-

The Feynman rules for n= —f were also given by
Mandelstam. '

C. Dirac Gauge

We give the arguments which show that the Smatrix
obtained by Popov and Faddeev' in the Dirac gauge"
coincides with the S matrix in the covariant gauges.
Consider the following set of gauge conditions:

Here

P 0—(Q g) pPj/r. „OO
p, /r—a $( g(3))1/3erl j—O (4.73)

' =—d tg,„=(1/ ");', .",= b '. (4.74)

In gauge (4.73) it is natural to use the first-order
formalism. We choose g&" and F&„q as independent
variables. With the help of (4.14) (with P=O), (4.15),
and (4.23) one 6nds

Q'30= p—2a;p'"I'030—2a;(g'"/g") p"I' 3'
+a;e"I',„' a;a,e"gv—' g, (4.7—5)

are

(a) L(r & L0 (1/2n)0'rr b V~ L(o)
—i Tr ln(b„„+Lh„.H+(a hp„——,'a„hp )
x(b-a.b.P+b Pa.b: b-P—a.)7a). (4.7o)

These should be taken as the interaction Lagrangian.
(b) L(0)' is the Lagrangian of the linearized theory

The generating functional is" 8 j0,—0 (4.76)

Q' =—2a &"—"(—g'")'"(-'g "'a —b'a ) (477)
Tdj (1/g00)g0mpd(( g(3))1/3—

&((3g/,„e"ag, ', a ai—,'t)/ a„), —(4—.78)—3 '= d(d) exp r dv J. — ('O'O" d '+d„d" )—'„."
20!

+Tr lnQ3~-' . (4.68)
Qd, — 1a,( g (3))1/3pl(a

+a i( g(3))1/3.puma a (4 79)

The Feynman rules for the perturbation calculation of
(4.68) in powers of

(4.69)

From (4.75)—(4.79), we obtain

().(') '=V' Q (" '= —b'V——'b"a a.
O, «),,o= 0,«)„'=-O. (4.8O)

Fradkin, TyuXn, Faddeev, Popov: 
canonical quanKzaKon, there is a unitarizing ghost-free Hamiltonian 

In the Lagrangian quantization one finds FP actions  with simultaneous ghost propagators,
like in Coulomb gauge in Yang-Mills: kinetic term has no time derivatives, only space derivatives.

It is known in the example of a Coulomb gauge in Yang-Mills theory that the ghosts loops with 
instantaneous propagators are cancelled by the loops of the instantaneous part of the gluon part of the 
propagator, in all orders of perturbaKon theory. In this case the equivalence of the Hamiltonian 
perturbaKve Feynman rules in QCD to the Lagrangian De WiT-Faddeev-Popov rules is clearly established. 



Regge-Wheeler, 1957 Zerilli, 1970, Martel and Poisson, 2004 

Gravity in a spherically symmetric Schwarzschild Black Hole Background 

An additional set of conditions has to be added to perform the canonical quantization, �↵(p, q) = 0.
It is required that the Poisson brackets of constraints with additional conditions have a non-vanishing
determinant, det ||{�↵,��

}|| 6= 0. The Poisson bracket

{�↵(t, ~x),�
�
(t, ~y)} = M↵

��3(~x� ~y) (1.3)

defines a differential operator M↵
� . There are two different choices of functions �↵. One, corresponds

to the case of the unitary ghosts-free Hamiltonian in gauge theories, the other corresponds to the case of
the pseudo-unitary Hamiltonian in gauge theories. In the second choice the S-matrix is pseudo-unitary
in Hilbert space of states with the indefinite metric. More details on this are in Sec. 6.

We will show here that in the Regge-Wheeler gauge [1–3] for l � 2 gravitational perturbations FP
ghosts in the covariant quantization method are absent. In l = 1, 0 sector in the admissible background
covariant gauges we propose here FP ghosts in covariant quantization are present and propagating,
in general. However, in Schwarzschild coordinates in covariant quantization FP have only space
derivatives. Therefore they belong to the the first group of theories mentioned above: case of unitary
Hamiltonian in gauge theories. We will also provide a non-trivial evidence that this covariant result is
in agreement with the one originating from a canonical quantization according to [10].

The subtleties regarding the choice of coordinates and presence of the black hole horizon in
the background metric, which were absent in quantization theorems in [10, 12, 18, 19], will be also
addressed here. Basically, we will see here that the Feynman rules and FP ghosts actions in covariant
quantization performed here lead to the standard BRST-type action [20, 21].

2 Gravity in a Schwarzschild Black Hole Background

Consider a 4D asymptotically flat spacetime (M, ḡµ⌫) with spacetime manifold of the form M =

M2 ⇥ S2 which can be endowed with coordinates (xa, ✓A), a = 1, 2 in which the metric takes the
form

ḡµ⌫ = gµ⌫ + hµ⌫ (2.1)

with gµ⌫ the metric of the Schwarzschild black hole written in a “spherically symmetric” form

gµ⌫dx
µ
dx⌫ = gab dx

a
dxb + r2(x) d⌦2

2 (2.2)

Here r(x) is defined globally and invariantly by

4⇡r(x)2 ⌘ Area

⇣
SO(3) orbit of x in M

⌘
(2.3)

Here and below all indices will be raised and lowered with the 2D background metric gab.
Our formalism (based on that of [3]) will be covariant with respect to two-dimensional (back-

ground) diffeomorphisms of M2 which are constant on the S2. Letting Da and ✏ab denote the covariant
derivative and volume form on (M2, gab) respectively, it is helpful to define

ra(x) = Dar(x) and ta(x) = �✏abrb(x) (2.4)
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derivative and volume form on (M2, gab) respectively, it is helpful to define

ra(x) = Dar(x) and ta(x) = �✏abrb(x) (2.4)
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covariant 
derivative

An additional set of conditions has to be added to perform the canonical quantization, �↵(p, q) = 0.
It is required that the Poisson brackets of constraints with additional conditions have a non-vanishing
determinant, det ||{�↵,��

}|| 6= 0. The Poisson bracket

{�↵(t, ~x),�
�
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��3(~x� ~y) (1.3)
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to the case of the unitary ghosts-free Hamiltonian in gauge theories, the other corresponds to the case of
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M4 = M2 ⇥ S2

f(r) ⌘ gabr
arb = �gabt

atb = 1� 2GM

r

gab =
1

f(r)

⇣
� tatb + rarb

⌘
✏ab =

1

f(r)

⇣
� tarb + ratb

⌘

Due to the warp factor r2(x), there are "cross-terms" Christoffel symbols for the coordinate system 
which prevent the simple factorizaKon

DA denote the covariant derivative on

which furnish an orthogonal (but not orthonormal) basis of vector fields on M2; in particular, ta is
the background Killing vector associated to the stationary isometry of the background Schwarzschild
spacetime. Defining

f(r) := gabr
arb = �gabt

atb = 1�
2GM

r
(2.5)

we have that
gab =

1

f(r)

⇣
�tatb + rarb

⌘
(2.6)

Due to the warp factor r2(x), there are “cross-term” Christoffel symbols for the coordinate system
eq. (2.2) which prevent the simple factorization

dxµr(g)
µ 6= dxaDa + d✓ADA (2.7)

where we have let DA denote the covariant derivative on (S2,⌦AB). These “cross-term” Christoffel
symbols are given by

�
a
AB = �r gabrb⌦AB, �

µ
aB =

1

r
ra �

µ
B (2.8)

Note that the remaining “cross-term” Christoffel symbols vanish, i.e. �A
ab = 0.

“Schwarzschild coordinates” cover the right outer domain of communications of a Schwarzschild
black hole, and are adapted to its Z2 o R “staticostationary” isometry:

gab dx
a
dxb = �f(r) dt2 +

dr2

f(r)
(2.9)

Here r is the function defined by eq. (2.4) and t is an affine parameter along the timelike orbits of ta

which obeys tarat = 1 in the given patch. It is useful to note that, in these coordinates,

radx
a
= dr, ra@a = f(r)@r (2.10)

ta@a = @t (2.11)

Note that ta =
�
@
@t

�a is timelike throughout this patch, asymptoting to a null vector along the event
horizon and a unit time translation at infinity. Note that the slices {⌃t} of constant t are everywhere
spacelike and constitute a family of Cauchy surfaces for this patch (they will not be Cauchy, or even
defined, outside of this patch).

3 Regge-Wheeler Decomposition

3.1 Decomposition into Spherical Harmonics

It is helpful to take advantage of the spherical isometries and orientability of the background—and, in
particular, of the explicit spherical symmmetry of our background gauge choice eq. (2.2)—to expand
the field hµ⌫ in spherical harmonics of definite parity. In the “spherical” coordinates eq. (2.2), the
components of hµ⌫ transform under the action of the background SO(3) spherical symmetry associated
to each two-sphere of fixed xa (and under parity ✏ ! �✏) as three scalars hab, two vectors haA, and one
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It is almost 2D gravity
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2D geometry



Decomposition into Spherical Harmonics on S2

Due to the warp factor r2(x), there are “cross-term” Christoffel symbols for the coordinate system in
eq. (1.1). which prevent the simple factorization (here DA is the covariant derivative on (S2,⌦AB))

dxµrµ 6= dxaDa + d✓ADA (3.3)

These “cross-term” Christoffel symbols are given by

�
a
AB = �r gabrb⌦AB, �

A
aB =

1

r
ra �

A
B (3.4)

Note that the remaining “cross-term” Christoffel symbols vanish, i.e.

�
A
ab = 0, �

a
bA = 0 (3.5)

We will consider two different coordinate systems xa on the M2 manifold. The first is (t, r), the usual
Schwarzschild coordinates. The second is (v, r), where the advanced-time coordinate v is defined by
v = t+ r + 2M ln(r/2M � 1). In these coordinates the M2 part of the Schwarzschild metric takes
the form

gab dx
adxb = �f dt2 + f�1dr2 = �f dv2 + 2 dvdr, (3.6)

The concept of gauge symmetry in QFT context is fully compatible with the one in general relativity as
long as the gauge functions, for example as functions of (t, r) or (v, r), are falling off at large (t, r)

or (v, r) in the corresponding M2 manifold. In particular, as the function of r they are expected to
behave as in eq. (2.33).

3.2 Decomposition into Spherical Harmonics

It is helpful to take advantage of the spherical isometries and orientability of the background—and, in
particular, of the explicit spherical symmmetry of our background gauge choice eq. (1.1)—to expand
the field hµ⌫ in spherical harmonics of definite parity [5–7]. In the “spherical” coordinates eq. (1.1), the
components of hµ⌫ transform under the action of the background SO(3) spherical symmetry associated
to each two-sphere of fixed xa (and under parity ✏ ! �✏) as three scalars hab, two vectors haA, and
one (symmetric) second-order tensor hAB . We can thus resolve hµ⌫ into spherical harmonics (see
appendix B) of definite parity as

hµ⌫ =
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@
pab p(+)
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p(+)
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with

pab =
1X

`=0
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|m|`

h`mab Y
`m (3.8)
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computation of quantum gravity effects in Regge-Wheeler gauge [5–7] at very high energy and under
some specific assumptions. One of the important assumptions was that Faddeev-Popov (FP) ghost
contribution [8] in Regge-Wheeler gauge is of a sub-leading order in energy. It was also stressed there
that the low multipole modes in spherical harmonics basis on the Regge-Wheeler framework have
additional issues which need to be addressed.

The assumption in [1, 2] that the FP ghosts are negligible at high energies was based on analogy
with the computation in eikonal quantum gravity in [9] in a flat space background. However, in a flat
background in de Donder gauge used in [9] the ghost action is well known, these are propagating
ghosts. Meanwhile in black hole background in Regge-Wheeler gauge in spherical harmonics basis the
ghost action was not known.

Feynman rules in gravity in the background field method in general class of gauges have been
derived in [10–13]. They were developed and applied mostly in the background-covariant harmonic
gauge, de Donder gauge which is 4d Lorentz covariant. The contribution of the propagating FP ghosts
was important there. The purpose of this note is to perform the BRST quantization of gravity in the
Regge-Wheeler gauge in the black hole background.

The black hole background splits the 4d space into a product M = M2 ⇥ S2 of two 2d submani-
fols:

ds2 = gµ⌫dx
µdx⌫ = gab dx

adxb + r2⌦AB d✓Ad✓B, (1.1)

the two-dimensional tensor gab and the scalar r are functions of the coordinates xa = (x, y), and
⌦AB = diag(1, sin2 ✓) is the metric on the unit two-sphere. For the perturbations of the gravitational
field hµ⌫ over the background metric gµ⌫ an ansatz was proposed in [5] such that each component
of gravitational perturbations is given by an expansion in spherical harmonics, with the coefficients
depending only on xa coordinates for each of the l,m even and odd-parity harmonics.

We will explain here that the Regge-Wheeler gauge is a valid gauge for l � 2 modes but it is
not an admissible gauge for low multipoles l = 0, 1. A class of gauges which are valid for l = 0, 1

perturbations was studied in [6, 7]. Here we will introduce a gauge slightly different from these, it will
be designed to have decoupled FP ghosts in this low multipole sector.

Our plan is the following. We will remind in Sec. 2 the general formula for the BRST quantization
in gauge theories in the background field method of DeWitt [10] in the form useful for gravity in the RW
gauge where perturbations are expanded in spherical harmonics. We will describe the Regge-Wheeler
framework for gravity in the Schwarzschild black hole background using the formalism developed in
[7] in Sec. 3. We will apply in Sec. 4 the general BRST formula for perturbations with l � 2 where
Regge-Wheeler gauge is a bona fide gauge, and will find that the FP ghosts decouple. We will study
the cases with l = 0, 1 using a new gauge fixing, construct the ghosts action and find out that they also
decouple (???), in Sec. 5. In Sec. 6 we will give a summary of our results. In Appendix A we will
present our notations. In Appendix B we will discuss the issues in the low multipole sector (???).
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X
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h`ma X`m
A (3.9)

p(+)

AB = r2
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1X
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X
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K`m
⌦ABY

`m
+
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G`mY `m
AB

1

A p(�)
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1X
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X
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AB (3.10)

Here Y `m
(✓A) are the usual unit-normalized spherical harmonics on S2. The even-parity vector

and tensor spherical harmonics are Y `m
A ⌘ DAY `m and Y `m

AB ⌘
⇥
DADB +

1

2
` (`+ 1)⌦AB

⇤
Y `m,

respectively, while the odd-parity vector and tensor spherical harmonics are X`m
A ⌘ �✏ B

A DBY `m

and X`m
AB ⌘ �1

2

⇥
✏ C
A DCDB + ✏ C

B DCDA
⇤
Y `m respectively, where ✏AB is the volume element of

the round unit sphere. Note that pab is an M2 tensor and a S2 scalar; paA is both an M2 vector and an
S2 vector; and pAB is an M2 scalar and an S2 tensor.

This decomposition eqs. (3.7) to (3.10) completely specifies the angular dependence of the pertur-
bation hµ⌫ . In particular, the coefficient functions h`mab , j`ma , K`m, G`m, h`ma , h`m

2
are “independent of

angle” (constant on each of the 2-spheres of constant xa) and so can be regarded as fields on M2.

3.3 Gauge Freedom in Spherical Harmonics

Note that, since the different spherical harmonics decouple from one another in the action, we can
make independent gauge choices (including the choice of background gauge on M2) for each choice
of (±)`m. In order to understand how the gauge freedom eq. (2.27) acts on a given harmonic, we
resolve the generator of our infinitesimal gauge transformation eq. (2.27) into spherical harmonics as

⇠µ = (⌅a,⌅
(+)

A )
| {z }

parity even

+ (0,⌅(�)

A )
| {z }
parity odd

(3.11)

with
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A , ⌅

(�)

A =
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⇠(�)`mX`m
A (3.13)

The ⇠`ma , ⇠(+)`m, ⇠(�)`m are “independent of angle” (constant on each of the 2-spheres of constant xa)
and so can be regarded as fields on M2. In terms of eqs. (3.12) and (3.13), eqs. (2.37) and (2.38) reads
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the coefficient functions with fixed l, m depend only on 2d coordinates xa

Ansatz with 10 
funcKons of x1, x2
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one 2D tensor,   two 2D vectors,  three 2D scalars

7 in even sector, 3 in odd
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All 4 functions with fixed l, m depend only on 2D coordinates xa

Gauge transformations

∇μ is the connecKon on the four-dimensional spaceKme (M4, gμν ), 

is the connecKon on the two-dimensional spaceKme (M2,gab), and

DA    is the connecKon on the round unit two-sphere (S2,ΩAB). 

An additional set of conditions has to be added to perform the canonical quantization, �↵(p, q) = 0.
It is required that the Poisson brackets of constraints with additional conditions have a non-vanishing
determinant, det ||{�↵,��

}|| 6= 0. The Poisson bracket

{�↵(t, ~x),�
�
(t, ~y)} = M↵

��3(~x� ~y) (1.3)

defines a differential operator M↵
� . There are two different choices of functions �↵. One, corresponds

to the case of the unitary ghosts-free Hamiltonian in gauge theories, the other corresponds to the case of
the pseudo-unitary Hamiltonian in gauge theories. In the second choice the S-matrix is pseudo-unitary
in Hilbert space of states with the indefinite metric. More details on this are in Sec. 6.

We will show here that in the Regge-Wheeler gauge [1–3] for l � 2 gravitational perturbations FP
ghosts in the covariant quantization method are absent. In l = 1, 0 sector in the admissible background
covariant gauges we propose here FP ghosts in covariant quantization are present and propagating,
in general. However, in Schwarzschild coordinates in covariant quantization FP have only space
derivatives. Therefore they belong to the the first group of theories mentioned above: case of unitary
Hamiltonian in gauge theories. We will also provide a non-trivial evidence that this covariant result is
in agreement with the one originating from a canonical quantization according to [10].

The subtleties regarding the choice of coordinates and presence of the black hole horizon in
the background metric, which were absent in quantization theorems in [10, 12, 18–20], will be also
addressed here. Basically, we will see here that the Feynman rules and FP ghosts actions in covariant
quantization performed here lead to the standard BRST-type action [21, 22].

2 Gravity in a Schwarzschild Black Hole Background

Consider a 4D asymptotically flat spacetime (M, ḡµ⌫) with spacetime manifold of the form M =

M2 ⇥ S2 which can be endowed with coordinates (xa, ✓A), a = 1, 2 in which the metric takes the
form

ḡµ⌫ = gµ⌫ + hµ⌫ (2.1)

with gµ⌫ the metric of the Schwarzschild black hole written in a “spherically symmetric” form

gµ⌫dx
µ
dx⌫ = gab dx

a
dxb + r2(x) d⌦2

2 (2.2)

Here r(x) is defined globally and invariantly by

4⇡r(x)2 ⌘ Area

⇣
SO(3) orbit of x in M

⌘
(2.3)

Here and below all indices will be raised and lowered with the 2D background metric gab.
Our formalism (based on that of [3]) will be covariant with respect to two-dimensional (back-

ground) diffeomorphisms of M2 which are constant on the S2. Letting Da and ✏ab denote the covariant
derivative and volume form on (M2, gab) respectively, it is helpful to define

ra(x) = Dar(x) and ta(x) = �✏abrb(x) (2.4)

– 4 –
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The ⇠`ma , ⇠(+)`m, ⇠(�)`m are “angle independent” (functions only of the two-coordinate xa) and can be
regarded as scalar and vector fields on M2.

In terms of these variables the gauge transformation in eq. (A.2) corresponds to

�pab = Da⌅b +Db⌅a � 2b�µ
ab⌅µ

�paB = Da⌅B +DB⌅a �
2

r
ra⌅b � 2b�µ

aB⌅µ

�pAB = DA⌅B +DB⌅A + 2rgabra⌅b⌦AB � 2b�µ
AB⌅µ (3.9)

The last terms in these equations are terms like b�⇢
µ⌫(g, h)⇠⇢. These terms do not involve derivatives

acting on gauge parameters ⌅µ = (⌅a,⌅±
) and the relevant ghost actions due to these terms do not

involve derivatives acting on ghosts. It is also important to stress here that all terms b�⇢
µ⌫⇠⇢ in 2D only

include scalars, vectors and tensors. And since these terms are at least linear or higher power in h, they
do not contribute to the ghosts propagators, they define the couplings C̄hnC where n � 1.

In all cases, with the exception of l = 0 monopoles, we do not have explicit all order in h terms
b�⇢
µ⌫(g, h)⇠⇢. However, their general properties that 1) they do not contribute to ghosts propagators will

be used below and 2) their 2D decomposition parts involves only proper representations of the Lorentz
group will be used in Appendix C where we study the non-linear parts of the ghost actions. These
general properties will be sufficient to establish our results. Moreover, in l = 0 case these general
properties will be confirmed in explicit expressions in all orders in h.

In gravity, the issue of boundary conditions is especially important, since this will affect the
asymptotics of the spacetime on top of which our fields propagate (as well as important physical
quantities such as the ADM mass and the flux of gravitational radiation measured at infinity). In the
context of asymptotically flat gravity that we consider here, this additional consideration places a
restriction on the asymptotic falloff of the ⇠µ which relate physically equivalent field configurations of
hµ⌫ [12, 23, 24]. With the background (2.2) the asymptotically flat boundary conditions are
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In terms of the decomposition eqs. (3.7) and (3.8), the falloff conditions read
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These falloff conditions for the gauge symmetry parameters exclude certain transformations of the
form (3.5) where the parameters ⇠µ do not vanish at infinity. We will make a choice of the gauge-
fixing functions which are not degenerate in the space of gauge symmetry parameters with asymptotic
conditions in eqs. (3.11), (3.12).
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to the black hole mass proportional to m0. For l = 1 odd-parity case the perturbed metric is shown
to describe a rotating black hole. One finds for l = 1 odd pertuvations that hv ⇠ a

r which represents
the Kerr metric linearized with respect to its angular-momentum parameter defined by a. Finally for
l = 1 even-parity case all perturbations are vanishing, even in presence of sources. However, this is
interpreted as a switch to a non-inertial coordinate system with regard to the original Schwarzschild
space-time.

Intuitively, one would expect that these low multipole modes are not quantized degrees of freedom.
We will find a support to this expectation in the process of quantization of gravity in the background of
the Schwarzschild black hole.

Meanwhile, classical solutions of Einstein equations for perturbations with for l � 2 are non-local
in time [7]. This indicates that the relevant degrees of freedom upon gauge-fixing and quantization are
quantized fields with standard creation and annihilation operators, which have Feynman rules to be
used in perturbative QFT computations.

4 Regge-Wheeler gauge for Modes with ` � 2

Regge and Wheeler have introduced their gauge in [5] to study stability of the Schwarzschild solution.
They assumed that small first-order departures from the Schwarzschild metric are possible, and solved
Einstein equations in presence of such perturbations. As fas as we know, the quantization of gravity
in this gauge was not performed and the path integral, such that the physical observables are gauge
independent, was not yet constructed. We will do it here using the set up in Martel and Poisson [7].

4.1 Fixing Regge-Wheeler Gauge
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�ja = Da⇠
(+)
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ra⇠

(+)
+ f (+)

a [h, ⇠] (4.5)

�K = �` (`+ 1)
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⇠(+)

+
2

r
ra⇠(+)

a + f(K)[h, ⇠] (4.6)

�G =
2

r2
⇠(+)

+ f(G)[h, ⇠] (4.7)

6This follows from the transformation

�pab = Da⌅b + Db⌅a � 2b�µ
ab⌅µ (4.1)

�paB = Da⌅B +DB⌅a � 2
r
ra ⌅b � 2b�µ

aB⌅µ (4.2)

�pAB = DA⌅B +DB⌅A + 2rra⌅a⌦AB � 2b�µ
AB⌅µ (4.3)

– 15 –

to the black hole mass proportional to m0. For l = 1 odd-parity case the perturbed metric is shown
to describe a rotating black hole. One finds for l = 1 odd pertuvations that hv ⇠ a

r which represents
the Kerr metric linearized with respect to its angular-momentum parameter defined by a. Finally for
l = 1 even-parity case all perturbations are vanishing, even in presence of sources. However, this is
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�ha = Da⇠
(�) � 2

r
ra⇠

(�)
+ f (�)

a [h, ⇠] (4.8)

�h2 = 2⇠(�)
+ f2[h, ⇠] (4.9)

where we have dropped the labels `m for brevity. The f [h, ⇠] are local (in xa) functionals of hµ⌫ and
⇠µ, which are each of the form

f [h, ⇠] = fa
[h]⇠a + f (+)

[h]⇠(+)
+ f (�)

[h]⇠(�) (4.10)

with coefficient functions f [h] obeying f [0] = 0. The explicit form of these functions will not concern
us7.

A key point is that, from the perspective of section 2, we are free to pick any basis on the space of
gauge transformations that we would like; we are not limited to the one canonical one picked out by
identifying the ⇠µ with spacetime covector fields. To this end we define

⇠̃a ⌘ ⇠a + Da⇠
(+) � 2

r
ra⇠

(+)
+ f (+)

a [h, ⇠] (4.11)

⇠̃(+) ⌘ 2

r2
⇠(+)

+ f(G)[h, ⇠] (4.12)

⇠̃(�) ⌘ 2⇠(�)
+ f2[h, ⇠] (4.13)

In terms of this new basis, eqs. (4.5), (4.7), and (4.9) simply read

�ja = ⇠̃a (4.14)

�G = ⇠̃(+) (4.15)

�h2 = ⇠̃(�) (4.16)

We can use the freedom eq. (4.15) to set G = 0 and subsequently use the freedom eq. (4.14) to set
ja = 0. We can also independently use the freedom eq. (4.16) to set h2 = 0. One can check that8, in
all cases, the required (finite) gauge transformation corresponds to a genuine gauge redundancy, i.e. is
a “pure gauge” diffeomorphism, according to the criteria of section 2.2.

These 1 + 2 + 1 choices
G = ja = h2 = 0 (4.18)

together exhaust the gauge freedom eq. (2.27) for ` � 2 modes. This gauge choice for the ` � 2 modes
is known as Regge-Wheeler gauge:

h̃(`�2)

µ⌫ ⌘
1X

`=2

X

|m|`

2

4
 
h̃`mab Y

`m
0

0 r2 K̃`m
⌦ABY `m

!
+

0

@
0 h̃(�)`m

a X`m
B

h̃(�)`m
b X`m

A 0

1

A

3

5 (4.19)

7These functions arise from projecting the term �2b�⇢
µ⌫ [h] ⇠⇢ onto the given spherical harmonic basis function.

8This follows from eq. (2.33) and the asymptotics

f
(+)

(G) [h] ⇠
r!1

O

✓
1
r4

◆
, f

b
a [h] ⇠

r!1
O

✓
1
r2

◆
, f

(�)
2 [h] ⇠

r!1
O

✓
1
r2

◆
(4.17)

where the above are specific instances of the notation of eq. (4.10).
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Even sector

Odd sector

Regge-Wheeler gauge
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7These functions arise from projecting the term �2b�⇢
µ⌫ [h] ⇠⇢ onto the given spherical harmonic basis function.

8This follows from eq. (2.33) and the asymptotics
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✓
1
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b
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r!1
O

✓
1
r2

◆
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(�)
2 [h] ⇠

r!1
O

✓
1
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where the above are specific instances of the notation of eq. (4.10).
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Ghosts do not propagate

+ non-linear 
h-dependent terms

Compare with Standard Model in a unitary gauge where Goldstone bosons are absent

�↵ = �i(t↵)nm�0
mvn C̄↵(t↵v)n(t��)nC� = C̄↵µ

2
↵�C� C̃↵ = µ2

↵�C�

Sghost = C̄↵C̃↵

=

ˆ
M

d
4x

p
g


C̄(+)

2

r2
C(+)

+ C̄a

✓
Ca + DaC

(+) � 2

r
raC

(+)

◆
+ C̄(�)

2C(�)

�
+O(h) (4.25)

The key point here is that the Fadeev-Popov ghosts do not have a nontrivial kinetic term, and so are
effectively nondynamical (i.e. are algebraic). Without a nontrivial kinetic term the field redefinition
analogous to eqs. (4.11) to (4.13)

C̃a ⌘
p

ḡ[h]
p
g

✓
Ca + DaC

(+) � 2

r
raC

(+)
+ f (+)

a [h,C]

◆
(4.26)

C̃(+) ⌘
p

ḡ[h]
p
g

✓
2

r2
C(+)

+ f(G)[h,C]

◆
(4.27)

C̃(�) ⌘
p

ḡ[h]
p
g

⇣
2⇠(�)

+ f2[h, ⇠]
⌘

(4.28)

does not introduce any interactions between h and C̄ or C̃ in the redefined action, even including the
effects from the nontrivial Jacobian. This allows us to simply write the full ghost action as

Sghost[h, C̃, C̄; g] =

ˆ
M

d
4x

p
g
h
C̄(+)C̃(+)

+ C̄aC̃a + C̄(�)C̃(�)

i
(4.29)

Note that the field redefinition above involve a change of the local measure of integration proportional
to �2(0). The role of a local measure of integration proportional to �4(0) in 4D gravity was studied
extensively in the past, especially when comparing the Hamiltonian quantization with the covariant one,
see in particular, [22]. Such terms correspond to quartic divergences ⇤4 in 4D and to quadratic ones ⇤2

in 2D. The basic conclusion is that one can work carefully using canonical Hamiltonian quantization
and discover the mechanism of cancellation of such terms during quantization. Alternatively, one can
rely on the fact that the regularization procedure in computation of Feynman diagrams will remove
such divergent terms. Therefore they can be ignored in the process of deriving correct Feynman rules.

We see that in the Regge-Wheeler gauge eq. (4.19), the FP ghosts do not couple to the propagating
metric degrees of freedom. In other words, we see that Regge-Wheeler gauge for 4D gravity in the
background eq. (1.1) is unitary.

5 FP Action for Monopoles and Dipoles

5.1 l = 0

It is convenient to use the advanced coordinates (v, r, ✓,�) where v = t + r + 2M ln(r/2M � 1)

where the background metric is

gab dx
adxb = �f dv2 + 2 dvdr (5.1)

and gvv = 0, gvr = 1, grr = f . Also ra = (1, f), ra = (0, 1)
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RW gauge

These fields come in the RW ansatz contracted with higher harmonics
on the sphere, absent in low mulKpoles 

Therefore RW gauge cannot be used for l=0,1

Glm = jlma = hlm
2 = 0

However Glm = jlma = hlm
2 = 0 at l=0

Glm = hlm
2 = 0 at l=1

Also the number of gauge symmetries/required gauge-fixing conditions  is differentm = �1, 0, 1. At l = 1(�) there is one gauge symmetry for each m = �1, 0, 1 and at l = 0(+) there
are two gauge symmetries.

⇠l�2 ) {⇠`m(+)
a , ⇠`m(+), ⇠`m(�)

} (4.5)

⇠l=1(+)
) {⇠1m(+)

a , ⇠1m(+)
} (4.6)

⇠l=1(�)
) {⇠1m(�)

} (4.7)

⇠l=0 ) {⇠00(+)
a } (4.8)

All functions in (4.5)-(5.18) can be regarded as fields on M
2, they depend only on xa coordinates.

They are scalars or vectors in 2D. The angular dependence of the perturbation hµ⌫ on ✓A coordinates
is codified by the discrete dependence on l,m(±).

The Regge-Wheeler gauge for l � 2 is

j`m(+)
a = G`m(+)

= h`m(�)
2 = 0 (4.9)

It is independent on the choice of coordinate xa on M
2, there is one vector and two scalars, a total

of the four gauge-fixing functions. Some of these fields are absent at l < 2 as one can see in eqs.
(4.2)-(4.4). Therefore Regge-Wheeler gauge for l < 2 is not valid.

4.2 Monopoles l = 0 and dipoles l = 1

An important feature of low multipole modes established in [2, 3] is the following. First off, the
Regge-Wheeler gauge is not valid and one has to impose a different set of gauges at l = 0, 1 since for
these modes some of the functions in eq. (4.9) are absent. In addition, it has been observed in [2, 3] that
classical equations of motion for small perturbations in this sector have a simple local in time solution.

This is associated with the feature of the low multipoles l = 0 and l = 1 that they do not contain
radiative degrees of freedom. The gravitational perturbations near future null infinity were studied
in [3] in the retarded coordinate system (u, r, ✓,�) where u = t � r � 2M ln(r/2M � 1). It was
shown there that the energy carried away by the gravitational radiation near future infinity at u, r ! 1

is proportional to l(l � 1). At the event horizon the radiation was studied in advanced coordinates
(v, r, ✓,�) where v = t+r�2M ln(r/2M �1) and again the result is proportional to l(l�1). In both
cases the radiation involves quadrupoles and higher modes, monopoles and dipoles drop from radiation
in agreement with the standard expectation that l = 0 and l = 1 perturbations have no radiative degrees
of freedom.

In absence of additional sources all solutions of Einstein equations for perturbations with l = 0, 1

can be gauged away according to [2, 3] by a choice of some coordinate transformation. In presence of
additional sources, like a point particle of the mass m0 moving towards the black hole, or a particle
orbiting a black hole with a fixed angular momentum a, solutions for perturbations take a specific form.
In l = 0 case one finds htt ⇠ m0

r , [2]. This solution for perturbations provides a correction to the black
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Monopoles and dipoles: no G, no ja, no h2

ja = G = h2 = 0

K = ja = 0

raha = 0

K = tarbhab = 0

Our choice of the 2D background covariant 
gauge-fixing for monopoles and dipoles

RW

Y `m
AB Y `m

A X`m
A



• Kinetic terms defining FP ghost propagators 

• Interaction terms

Now we have all informaKon to build FP ghost acKons => covariant quanKzaKon of gravity 
in the black hole background  

C̄↵X(g, h = 0)↵
�C�

C̄↵X(g, h)↵
�C�

C̄↵
⇣
X(g, h)�X(g, h = 0)

⌘

↵

�C�

l > 1 ghost kinetic terms 

We can integrate out C̄+ C̄�
, C+ = C� = 0

C̄↵X(g, h = 0)↵
�C� C̄aCa

C̄a
⇣
Ca + (Da �

2

r
ra)C

(+)
⌘
+ C̄+ 2

r2
C(+) + C̄�2C(�)

All ghosts in Regge-Wheeler gauge in l>1 sector are non-propagating! 



Kinetic terms for dipoles l=1 even

We can integrate out C̄+

C̄↵X(g, h = 0)↵
�C� C̄a

⇣
Ca + (Da � 2 ra)r

bCb

⌘

C̄a
⇣
Ca + (Da �

2

r
ra)C

(+)
⌘
� C̄+ 2

r2
(C(+) � r raCa)

C(+) = r raCa

Kinetic terms for dipoles l=1 odd

C̄↵X(g, h = 0)↵
�C� C̄(�)ra@aC

(�)

l=0, 1 monopole and dipole ghosts are propagaGng, in general
Non-linear terms do not change this fact

C̄K 2

r
raCa + C̄h

⇣
tarb(DaCb +DbCa)

⌘
Kinetic terms for monopoles l=0

We can integrate out 

C̄h
⇣
tarb(DaCb +DbCa)

⌘
C̄K raCa = 0

C̄↵X(g, h = 0)↵
�C�

Low multipoles



C̄a
⇣
Ca + (Da � 2 ra)r

bCb

⌘

C̄(�)ra@aC
(�)

C̄h
⇣
tarb(DaCb +DbCa)

⌘

In Schwarzschild coordinates
all time derivatives on ghosts drop

raCa ) f(r)Cr raDa ) f(r)Dr

taDa ) DttaCa ) Ct

)
)

)

C̄rCr + C̄tCt + C̄tDt f Cr + C̄r(Dr � 2) f Cr

Intregrate out Ct C̄t = 0 ) C̄rCr + C̄r(Dr � 2) f Cr

C̄(�)f@rC
(�)

raCa = 0

C̄hf(r)
⇣
Dr �

f 0

f

⌘
Ct

The analysis of non-linear terms is more complicated, but confirms that all ghost 
acEons in covariant quanEzaEon have no Eme derivaEves acEng on ghosts!

l=1 even

l=1 odd

l=0



Evidence for unitarity of H in our gauge for gravity in the black hole background

In general, the classical action with gauge symmetries

S(q, p,�) =

Z
dt(piq̇

i �H(q, p)� �↵�
↵(q, p))

L(q, q̇)
Can be given in the form with Lagrange multipliers l and 1st class constraints �↵(q, p)

1. corresponds to the case of the unitary ghosts-free Hamiltonian in gauge theories and Hilbert space 
of states has a definite metric

2. corresponds to the case of the pseudo-unitary Hamiltonian: the S-matrix is pseudo-unitary in the 
Hilbert space of states with the indefinite metric. 

An addiKonal set of condiKons has to be added to perform the canonical quanKzaKon, 

�↵(p, q)

1=1, …, n
a=1, …, m

�↵(p, q, �̇,�)

* =1,…, (n-m)

H(pA, q
A
,Pa, ⌘

a)

H(p⇤, q⇤)

A=1,…,(n+m)

a=1,…, 2m
2m FP anti-
commuting 
ghosts

n+m -2m = n-m
In our covariant quantization we have found that in Schwarzschild
coordinates there are no time derivative acting on ghosts, therefore
under canonical quantization there will be no canonical degrees of 
freedom associated with FP ghosts

A unitary ghost-free Hamiltonian is expected

The presence of the horizon is not taken into account yet, 
Eddington-Finkelstein and Kruskal-Szekeres coordinates?



Faddeev’s theorem and Hamiltonian origin of the FP ghosts in covariant quantization 

In canonical quanKzaKon, once the 1st class constraints 
are established, an addiKonal set of condiKons 
has to be added to perform the canonical quanKzaKon 

�↵(q, p)
�↵(p, q)

It is required that the Poisson brackets of constraints with additional 
conditions have a non-vanishing determinant det ||{�↵,�

�}|| 6= 0

The Poisson bracket defines a differential operator Ma
b 

{�↵(t, ~x),�
�(t, ~y)} = M↵

��3(~x� ~y)

In case of unitary Hamiltonian this operator does not involve time derivatives
However, it might involve space derivatives. 

In such case it offers a Hamiltonian origin of the  FP ghost actions  with simultaneous ghost propagators
in Lagrangian quantization.

We have computed det M↵
� for all  partial waves l. We have confirmed that, in general, there 

are Kme derivaKves. However, all of them drop in Schwarzschild coordinates. For example in l=1 even  

6.3 l = 1 even

We have 3 gauge fixing functions, for each m = �1, 0, 1, �↵ = {ja,K} which transform under 3
gauge parameters ⇠↵ = {⇠a, ⇠(+)

} as shown in eqs. (5.10), (5.11). The corresponding 3x3 matrix
||{�↵,��

}|| has the following determinant

det

0

B@
1 0 D1 �

2
r r1

0 1 D2 �
2
r r2

2
r r

1 2
r r

2
�

2
r2

1

CA = �
2

r2
�

2

r
ra
⇣
Da �

2

r
ra
⌘

(6.5)

In Schwarzschild coordinates ra = (0, 1) and ra = (0, f). Therefore the remaining determinant is

det |Sch

0

B@
1 0 D1 �

2
r r1

1 D2 �
2
r r2

0
2
r r

2
�

2
r2

1

CA = �
2

r2
�

2f

r

⇣
D2 �

2

r

⌘
(6.6)

Such a determinant is again algebraic and will contribute to the action as �2(0). In covariant as well as
in canonical quantization there are no ghosts at l = 1 even modes.

The non-linear terms also do not have time derivatives acting on ghosts in Schwarzschild coor-
dinates. Again, the absence of the ghosts action for l = 1 even modes provides an evidence that the
unitary Hamiltonian is available for these modes.

6.4 l = 1 odd

We have 1 gauge fixing function, for each m = �1, 0, 1, �↵ = {raha} which transforms under a
gauge parameter ⇠↵ = {⇠(�)

} as shown in eq. (5.20). In Schwarschild coordinates we see that the 1x1
matrix ||{�↵,��

}|| involves a derivative operator in r direction only. The corresponding FP ghosts
action shown in eq. (5.21) is not vanishing and leads to ghosts loop diagrams with the instantaneous
propagator.

Thus, the ghosts action for magnetic dipoles, which has only space derivatives in the action,
provides an evidence that the unitary Hamiltonian is available In Schwarschild coordinates.

6.5 l = 0

In Schwarschild coordinates we have now �↵ = {K,htr} and 2 gauge symmetries ⇠r, ⇠t given in eqs.
(5.24), (5.25). The corresponding Poisson bracket and its determinant are

det

0

B@

2
r

f(r)
1+f(r)hrr

0

@t �
f(r)@thrr

1+f(r)hrr
@r �

f 0(r)�@rhtt

f(r)�htt

1

CA = det

0

B@

2
r

f(r)
1+f(r)hrr

0

0 @r �
f 0(r)�@rhtt

f(r)�htt

1

CA (6.7)

Here again we can see that the determinant of the Poisson bracket is in agreement with the expression
for the action of the FP ghosts in the covariant method. There are only space derivatives on monopole
FP ghosts. Therefore in the covariant quantization they have simultaneous propagators and it is
expected that their loops will cancel with the simultaneous part of the gravitational fields.
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Such a determinant is again algebraic and will contribute to the action as �2(0). In covariant as well as
in canonical quantization there are no ghosts at l = 1 even modes.
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Here again we can see that the determinant of the Poisson bracket is in agreement with the expression
for the action of the FP ghosts in the covariant method. There are only space derivatives on monopole
FP ghosts. Therefore in the covariant quantization they have simultaneous propagators and it is
expected that their loops will cancel with the simultaneous part of the gravitational fields.
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Time derivaKves drop in Schwarzschild 
coordinates, but space derivaKves are 
present at l=0,1

l=0,1 FP ghosts have simultaneous propagators 

The canonical quantization of gravity  and the constructions of the Feynman path integral was so far 
performed only in a flat Minkowski space. 

Meanwhile in the black hole background in Schwarzschild coordinates there is a singular horizon. The 
concept of the Hamiltonian and of the physical states might be more complicated, moreover, the black 
hole puzzles may not be resolved in the context of a perturbative Feynman path integral. 

Nevertheless, according to Faddeev’s theorem valid in the flat background, the ghost free unitary 
Hamiltonian exists in the class of gauges studied here in the black hole background in Schwarzschild 
coordinates. 



We have found that in the covariant quantization in Schwarzschild coordinates there are no time 
derivatives acting on the ghost fields. This suggests that such a Hamiltonian, if explicitly constructed, 
might belong to the class of 

unitary ghost-free Hamiltonian    H(p∗, q∗),                                  ∗ = 1, . . . , (n − m) 

The reason this is a likely outcome of the canonical quantization is that the case of pseudo-unitary 
Hamiltonian in a Hilbert space of states with the indefinite metric, 

pseudo-unitary Hamiltonian H(qA, pA, ηa, Pa)                        n+m−2m = n−m

would be inconsistent with the absence of time derivatives on the ghosts, which we found in this 
work.  Here A = 1, . . . , n + m involves commuting fields, and a = 1, . . . , 2m involves anti-commuting 
fields. But we have just shown that all of our anti-commuting fields (FP ghosts and anti-ghosts) have 
no time derivatives, so they are not expected to contribute to a Hilbert space of states with a negative 
metric in a process of canonical quantization. 

Note that in Eddington-Finkelstein and Kruskal-Szekeres coordinates the situaKon is different and has 
to be studied. Although we have performed a covariant quanKzaKon in any of these coordinates, the 
canonical quanKzaKon, choices of gauges, and the issue of unitarity are sKll to be explored. 

Conclusion


