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AID quantum gravity Most general action

Action to study

We start straight with [arxiv:1602.08475, arXiv:1606.01250]
MER
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This is the most general action to study linear perturbations
around MSS.

Thanks to the Bianchi identities one can further achieve
Fr () =0in D = 4 and Fr,(0J) = const in D > 4.



AID quantum gravity Most general action

Pure gravity arguments why infinite derivatives appear

We start with
s= [ aPay/=g (Po+ Y P ][(Ourin
) I

Here P and O depend on curvatures and O are operators
made of covariant derivatives.

Everywhere the respective dependence is analytic in IR.
Let’s name it general analytic gravity

Excluding all the terms which vanish around MSS and mas-
saging others we arrive to the action on the previous slide.



AID quantum gravity Quadratic action

Spin-2 on MSS:
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The Stelle’s case corresponds to Fy = 1 such that

_ )/ _ 2 _ R
P(D)Stelle =1 MIZD)\fROR i MI%A -1 (D — E)

This is an obvious second pole which will be the ghost.



AID quantum gravity Quadratic action

Spin-0 on MSS:

So
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This zs the ghost in Einstein-Hilbert case Fp = 0, but it is
constrained and is not physical.

Thus, S(CJ) can have one root as a function of [J and as such
generate one more pole in the propagator and it will be not

a ghost. That is like, F([]) = const

This would be exactly the scalar mode of a local f(R) grav-
ity.



AID quantum gravity More real world

What else can AID quadratic action serve for?

o If we just start with the initially proposed quadratic in
curvature action it can accommodate many interesting so-
lutions without requiring any other more general gravity
model.

e For example, any conformally flat metric which satisfies
[JR = r1R with constant r; is a solution.

e In particular, Starobinsky inflation is an exact solution
here.

e Solution representing a ghost-free bouncing scenarios also
were found.



AID quantum gravity More real world

We put forward the idea that the quadratic in curvatures
AID action is enough to attack quantization of gravity!



AID quantum gravity FRW

Physical propagators around FRW:

(6A0F(O) — 1)(2A0Fw (O) + 1)

PO;P — O5 = T
2A(F () + 3Fw (D))

h;jOth — Oy = D2AXIFw(0) + 1)

We want no ghosts in the tensor sector which implies there
is a canonical graviton only and also no ghosts in the scalar
sector which means at most a scalaron.



Physics

AID quantum gravity

Physical excitations
Effectively we modify the propagators as follows
0 —m? — g(0)
Recall, in D =4 in (— + +4)
L = %¢(D — m?)¢ — good field

—[ gives a ghost, +m? gives a tachyon (for real m).

Consider

L= (0~ m?)(0 - )

This Lagrangian describes 2 physical excitations and the
second one is a ghost. The higher degree polynomial in []

will just produce more ghosts.



AID quantum gravity Physics

Analytic Infinite Derivative (AID) way around

To preserve the physics we demand
G(0) = (O —m?)e* )

where o([J) must be an entire function resulting in the fact
that the exponent of it has no roots.

Thus

L = %cﬁ(D — m2)620(5)¢

So, yes, we can incorporate infinite number of derivatives
by employing properties of entire functions.



AID quantum gravity FRW

FRW continued:
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Then, avoiding all odds:
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AID quantum gravity Non-local scalar field

Non-local scalar field [arxiv:2103.01945]

Consider AID scalar field action:

1 _ A
L = —§¢(D - 'm2)f 1(D)¢ - Z¢4

and we use here (+ — ——) signature.

Again, we demand the form-factor to be an exponent of an
entire function. We also normalize it as f(0) = f(m?) =1 to
preserve the local answers in the IR limit.

We can adjust the fall rate for large momenta by choosing

the form-factor. Power-counting convergence requires the fall
faster than ~ 1/p?.



AID quantum gravity Non-local scalar field

Tadpole and fate of the Wick rotation
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AID quantum gravity Non-local scalar field

Fish and one-loop unitarity

As a matter of definition we write amplitudes in Euclidean
signature and analytically continue the result to Minkowski
values of external momenta. [Pius,Sen,arXiv:1604.01783]

)\2

= —1

327r4I(p )

We compute the integral with euclidean internal momentum
k and also account for poles shown above.



AID quantum gravity Non-local scalar field

Result for the fish graph with f(0) = e®-

I(p) = —m°
2372 2 2 1
| o e®P” — ap’Ei(ap?) — e*P /2 4 Easzi(apz/Z)

For aa — 0 we restore the logarithmic singularity common in
the cut-off regularization using the fact that for small values
of the argument

Ei(z) = v+ 1logz+ =z

2
A (1(VE) + IV + I(Va))

Miotal = —1i
total 39



AID quantum gravity Non-local scalar field

Result for the fish graph with f(k?) = f(—k?)

2
M(p) = -

64 3 /OO Jl(pm)Jl("’”“’)Jl(qm)f(kz)f(qz)dkdqdw

L3 n | 25 2/ f(z)dz

If f(z) is an integrable function than the last term gives an
apparently universal ~ 1/ p? contribution for any even form-
factor.

We can show numerically that the model remains weakly
2

coupled in contrast to f(p?) = e~ P
4 4 4
Examples used were f = e P and f = e 1(0:P7)—7—log(p7)



AID quantum gravity Higgs inflation

Non-local Higgs inflation as a toy model [arxiv:2006.06641]

The bottom-line AID modified action is as follows:

L= MiRp+ ¢ —V(¢)

o([J) is an entire function

and we return here to (— + ++) signature.

We can make ¢ = 0,00 to be ghost-free vacua but all the
way in between effective new modes appear. Namely, this
depends on algebraic roots of an equation

0%V (9)
O p?
Choosing the potential we may have several points where its

second derivative vanishes. For all other values ¢ we have
infinitely many new effective modes.

I:I GZJ(D) —



AID quantum gravity Higgs inflation

What are these new modes? — Half of them are ghosts!

e As long as the second derivative of the potential is non-
zero there is an infinite number of new modes with complex
conjugate masses squared and all are heavy with |/m| > Mp

e The following condition
(Im(m?))? < 9H*Re(m?)

guarantees no classical growing behavior for these new ef-

fective modes in an (A)dS space-time characterized by the
Hubble rate H.

e It is important to understand that values of m are governed
mainly by the shape of the entire function and also by
the value of H originating from the potential while the
restriction which excludes growing classical behavior does
not depend on the entire function.



AID quantum gravity Summary

Conclusions and Outlook

e A class of analytic infinite derivative (AID) theories has
been considered targeting the goal of constructing a UV
complete and unitary gravity. These models have clear
connection with SFT.

o It features many nice properties, like native embedding
of the Starobinsky inflation, finite Newtonian potential at
the origin, presence of a non-singular bounce, healing of
non-renormalizable models including Higgs inflation, etc.

e We provide an explicit computation showing that the phys-
ical propagator depends on just one entire function despite
previous studies where two independent functions were
considered.

e We describe how unitarity is maintained in AID field the-
ories and perform certain explicit checks including the Op-
tical Theorem verification.
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