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basic to quantum physics

universal
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traditional approach:

(rale™ M xo) = (x1]e ™ |xo)

i.e.,analytically continue tot = —ih
"Euclidean time” =inverse temperature
This trick has dominated rigorous QFT

However, interference and thermal
equilibrium are quite different physically

and gravity is in general incompatible
with thermal equilibrium (Jeans instability)

ON DISTRIBUTIONS OF CERTAIN WIENER FUNCTIONALS®

BY
M. KAC

1. Introduction. The purpose of this paper is to present a unified approach
toward the problem of calculating the distribution function of the Wiener
functional

(1.1) f V(x(r))dr

where x(¢) is an element of Wiener’s space (0<¢< «) and V(x) is subject to
certain restrictions. The most severe of these restrictions is that V(x) be non-
negative, or somewhat more generally, bounded from below.

Our principal result is the following: if a(a; £) is the distribution function
of (1.1), then

1.2) fo i fo vexilmor==ssikelu il f_:d:(x)dx,

where {(x) is the fundamental solution (Green'’s function) of the differential

equation
ay
dx?

(1.3) —;— — (s+ uV(x)y =0, x # 0,

subject to the conditions
Y(x) — 0, x— £ o,
| ¢ (2| < M, x#0,
V(+0) — ¢(-0) = — 2

The existence and uniqueness of such a fundamental solution are parts of the
assertion.

The differential equation (1.3) is quite similar to the equation of Schréo-
dinger in quantum mechanics. In fact, the results of this paper were strongly
influenced by the derivation of Schrodinger’s equation which we found in a
hitherto unpublished Princeton Thesis of R. P. Feynman. The principal
motivation behind the investigation of the distribution functions of func-
tionals (1.1) is the following: Let X;, X, « + - be identically distributed ran-
dom variables each having mean 0 and variance 1. Let furthermore

Presented to the Society, October 25, 1947; received by the editors October 17, 1947.
(*) This investigation was begun while the author was a John Simon Guggenheim Memorial
Fellow. It was completed under an ONR contract.
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Instead of rotating fime we deform integration contour in the path integral,
exploiting a method for performing highly oscillatory integrals due to

Picard-Lefschetz

who gave a general criterion for whether a given saddle is n
relevant to a real integral (in arbitrary finite dimension)

our work: flow the contour to find the relevant “Lefschetz thimbles” (or steepest
descent contours)

new approach to defining Lorentzian (real time) path integrals
(J. Feldbrugge, NT in prep)



Our definition implies the following exact formulo

Real, positive
probability measure

.S[x] Slxc] .
[Dx e n ”=”zel " f 619"93) dpin (1, 6x)

nc ]"C phase, reduces to Maslow
sum over reIevant/ \ in semiclassical limit

classical solutions ] .
contour in space of complexified paths,

over which Pl is absolutely convergent

classical theory organizes the quantum theory
classical solutions can still interfere
the formula should apply to gravity



Highly oscillatory integrals

e.qg., Gaussian (Fresnel integral)

Euler spiral

[=lim F(R)=e"r

R—eo

Conditionally, not absolutely convergent




What about higher dimensions? Infinite dimensionse



R R
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D=2 : square cutoff }%1_{{)10[ dxf dye'™™ YY) = lim F(R)> =imn
R J-p

R— 00
?

R
D=2 : round cutoff  lim 2m f rdr e’ = Z(e!R” — 1) NOLIMIT
0

R—>00

iitD

R . e 4 ['(2
D>2 : sharp cutoff f rD=ldr e~ — LglR*RD-24 4 2(2)+
0)
D>2 : smooth cutoff © - _(1)2 e?ﬂg) .
(allows cancellations, f dre’” e \R) ~——225(1- ort.)

which are physical)



The result for a smooth cutoff (taken o infinity at the end) is
obtained without using a cutoff at all, by using Cauchy's theorem.

Assuming cutoff function is singular only at infinity, can deform
contour to steepest descent contour and then take cutoff to infinity

. . . (2
For example, define “f “ drrP~le™" "as [* drrP~tei™ e ®" = [* drf(r)

and deform contour to steepest descent plus “arc at infinity”:

\L 0

- J iLdOe'l f(L e'?)

< n—l'de_LZ/Rz
— 4

Note: [imits R —» oo, L - co don't commute



2

: . 1 : 5
e.g., quartic oscillator § = fo dt %(x?—x‘LT); H= —6675 = %(%+x4)
Classical equations of motion: 2 = —2x3
=3 countable infinity of classical solutions

31 e.g., for BCs x(0) =x(1) =0,
Xcn =nksn(nkt,—1), n=1,2..
(k = 2K(—1) ~ 2.622)

Jacobi elliptic function

714 Kf4
2T4

Energy E =

4

, 4
Action S =1_+%
6T




picture of the complex plane for each mode coefficient, showing

“height function” h with saddles and steepest descent contours

h = Re[i(x?-x")]
x=X+1Y




Wick Rotation

Take the Lorentzian theory and rotate T clockwise, T —» e 9T, 0 <0 <

T
7)

—sin 36

Classical solutions still satisfy the boundary conditions

Classical action S¢x - = Re[i S¢] X - sin 36
but relevant saddles must have Re[i S:]< 0 relevant

irrelevant

So the nontrivial classical saddles all disappear
iIn the rotation to iImaginary time

Conversely, recovering their effect from
an imaginary time calculation would be exponentially hard



eigenfunctions of O, where s(2) = %j 5x06x

/

X(6) = xc(6) + 8% 8x(D) = ) St Yu(®) 1
m=1 H

Expand fluctuations in Fourier modes

LS[x]
l.(x1—xo )? fH doxeh

Koy x0T) = < 21T i S il
2iThT f H d5xm67150 [x] f 1_[ dx,, + z (| dxp.+ dxnc)f 1_[ dXm
J° m=1 nc=1 J* J” 70 m#*nc,1

Free particle trivial thimble nontrivial thimbles




1
is =1 j dt(x(t)> —=V(x)) h = Reli S[x]]=4S[x] — S[x])
0]

T _ thimble:
. 0Tx — —20,gh — —l(x + afV[X)
gradient flow 00 = ~205h = =i(3 + 0,V [x])

N IS

<

RN

x(t) = X(t) +iY(t)

gradient flow for each
mode: can solve
analytically at small
and large | x|




Since, at large |x|, h decreases faster than quadratically on the

thimble , there exists a bounding Gaussian theory g,

safistying
h<g <0:

forall x(t) e J

This suffices to prove that the path integral exists



1)Only include modes m < N in nonlinear terms and take limit N — oo

Lebesgue’s dominated convergence theorem shows the limit exists
Bochner-Minlos theorem shows the measure du, .(h, 6x) exists,

ohase factor e%c®® qgrises from déx,, along thimble

.S[Xc] )
Zel R Jelgnc(‘sx) duy, . (h, 6x)

TlC ]TLC

2)Sum over classical solutions generally does nof converge:
IN NRQM the FPIl propagator is in general only a distribution



Time smoothed propagator does converge

but the result

e.g., quartic JT 3
. epends on
osclillator :
5 the smoothing
‘KS (x,0, T )‘
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K,(x,0,T) = f ar'e S K(x,0,T —T")
0



NS > classical solutions

St




Close interplay between quantum and classical pictures:

Constructive interference between quantum modes yields the
discrete set of classical solutions

Constructive interference between classical solutions yields the
semi-classical guantization of Einstein and Keller

| pdq

z —Zﬂ(n-l-%m)

All of this is clarified by our construction



The "weak density”

(& la Aharonov et al.)

exhibits the influence

of the quantum system on

a weak measurement made in
between state preparation and
sfrong measurement.

This Is how spacetime emerges
IN qguantum geometrodynamics




Einstein 1936

Application: gravitational miCrolensing  nakamura-beguchi 1999
i 1(i-1)’-9(%) |

W(w,i0)~ 0| d’%e where
For a point mass

i ¢=In(x), @ is frequency in units of 76_,
in thin lens approx

. . . —10° _M__v
0, is Einstein angle, =10 M, Gl

source

Wave optics effects will be observable in the future: contain much more information



Geometric opfics Wave optics multiple redshifts (ie 3d lens)
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Lensing of a binary system
w/ J. Feldbrugge (1909.04632; 2008.01154)



Cnacubo!
Thank you!



