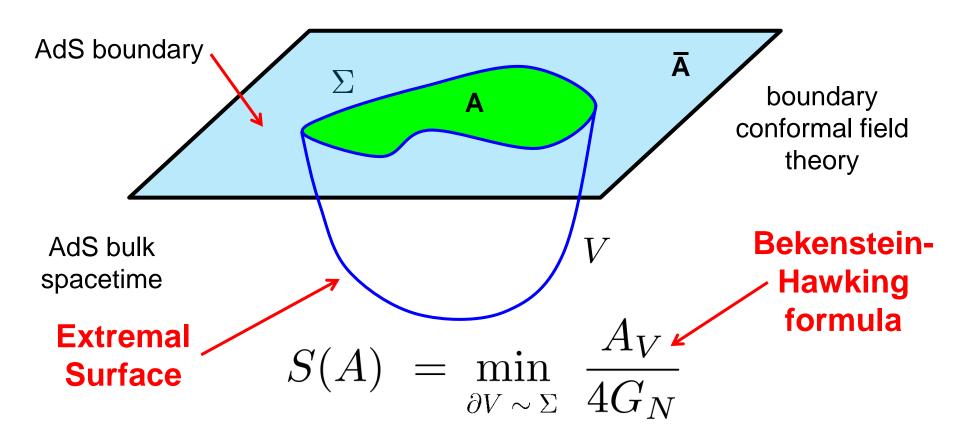
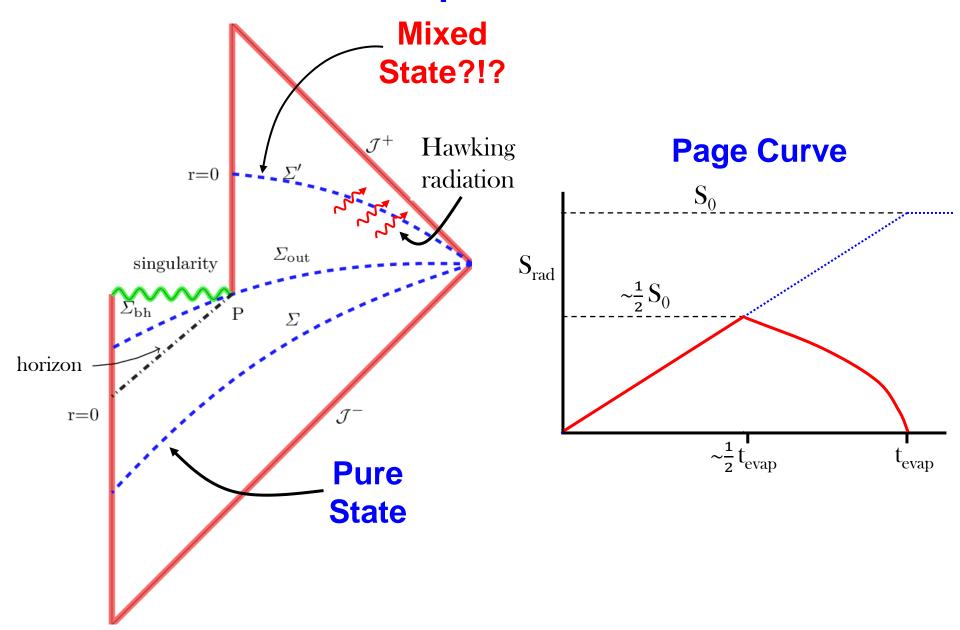


Holographic Entanglement Entropy:



- holographic EE is a fruitful forum for bulk-boundary dialogue:
 - new lessons about quantum field theories
 - new lessons about quantum gravity

Black hole information paradox:



New insights from Holographic EE:

 with recent progress, it is possible to compute the Page curve in a controlled manner!

Penington [arXiv:1905.08255]
Almheiri, Engelhardt, Marolf & Maxfield [arXiv:1905.08762]

Almheiri, Mahajan, Maldacena & Zhao [arXiv:1908.10996]

Island Rule:

- black hole coupled to an auxiliary non-gravitational reservoir (the "bath"), which captures the Hawking radiation
- entropy of the Hawking radiation is given by

$$S_{EE}(\mathbf{R}) = \min \left\{ \underset{\text{islands}}{\text{ext}} \left(S_{QFT}(\mathbf{R} \cup \text{islands}) + \frac{A(\partial(\text{islands}))}{4G_N} \right) \right\}$$

 evaluate the (semiclassical) entanglement entropy of quantum fields in the bath region R combined with various space-like subregions in the gravitating region, ie, islands, which also contribute the usual Bekenstein-Hawking entropy

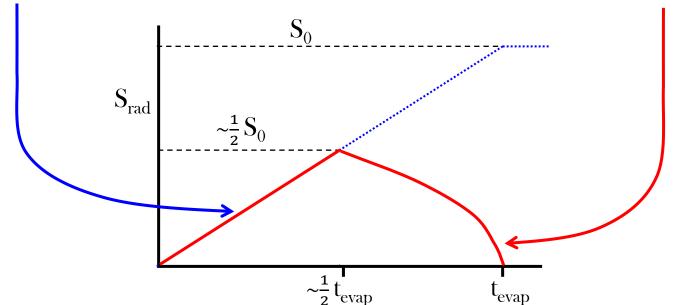
Island Rule:

- black hole coupled to an auxiliary non-gravitational reservoir (the "bath"), which captures the Hawking radiation
- entropy of the Hawking radiation is given by

$$S_{EE}(\mathbf{R}) = \min \left\{ \underset{\text{islands}}{\text{ext}} \left(S_{QFT}(\mathbf{R} \cup \text{islands}) + \frac{A(\partial(\text{islands}))}{4G_N} \right) \right\}$$

Early: island is the empty set; agrees with Hawking's calculation

<u>Late</u>: large entanglement between radiation and region behind horizon; **new saddle** with nontrivial island



Island Rule:

- black hole coupled to an auxiliary non-gravitational reservoir (the "bath"), which captures the Hawking radiation
- (correct) entropy of the Hawking radiation is given by

$$S_{EE}(\mathbf{R}) = \min \left\{ \underset{\text{islands}}{\text{ext}} \left(S_{QFT}(\mathbf{R} \cup \text{islands}) + \frac{A(\partial(\text{islands}))}{4G_N} \right) \right\}$$

Early: island is the empty set; agrees with Hawking's calculation

<u>Late</u>: large entanglement between radiation and region behind horizon; **new saddle** with nontrivial island

Key ingredients of early calculations:

- → AdS/CFT but absorbing or transparent b.c.
- two-dimensional JT gravity
- quantum extremal surfaces extremize geometric/grav. entropy plus quantum S_{EE} of matter fields (Faulkner, Lewkowycz & Maldacena; Engelhardt & Wall)

■ Island Rule:

- black hole coupled to an auxiliary non-gravitational reservoir (the "bath"), which captures the Hawking radiation
- (correct) entropy of the Hawking radiation is given by

$$S_{EE}(\mathbf{R}) = \min \left\{ \underset{\text{islands}}{\text{ext}} \left(S_{QFT}(\mathbf{R} \cup \text{islands}) + \frac{A(\partial(\text{islands}))}{4G_N} \right) \right\}$$

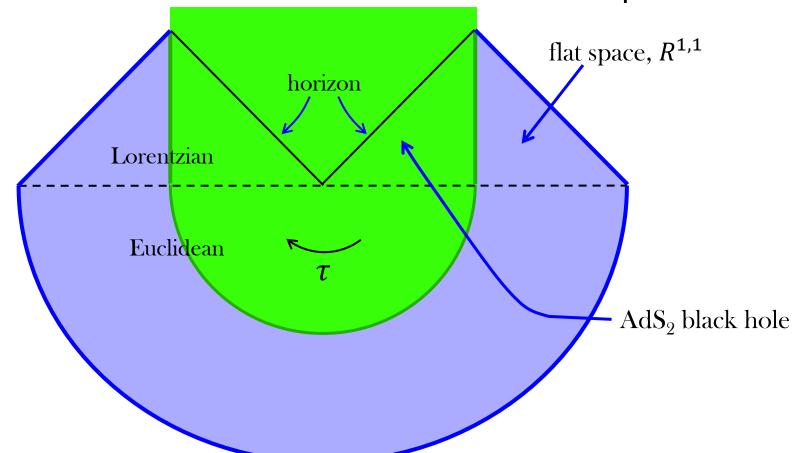
Early: island is the empty set; agrees with Hawking's calculation

<u>Late</u>: large entanglement between radiation and region behind horizon; **new saddle** with nontrivial island

Example: Not Evaporating Black Holes!

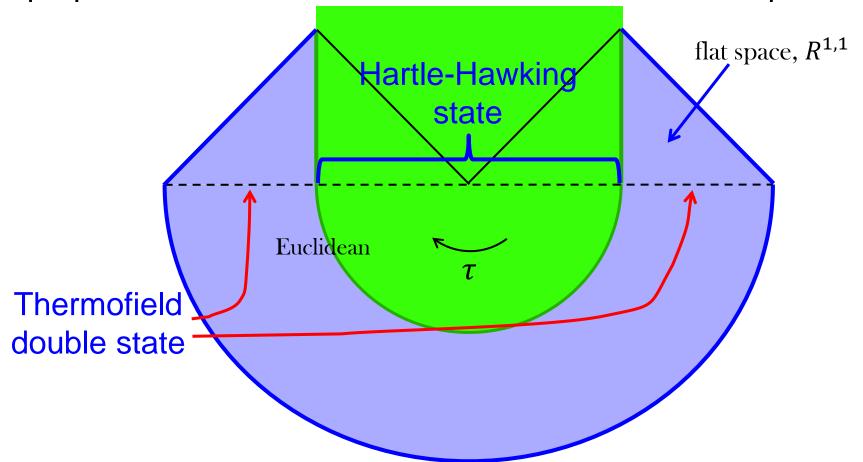
Almheiri, Mahajan & Maldacena (see also: Rozali, Van Raamsdonk, Waddell & Wakeham)

- simple holographic model: 2d JT gravity = 1d quantum mech's
- prepare state with 2d black hole & bath in thermal equilibrium



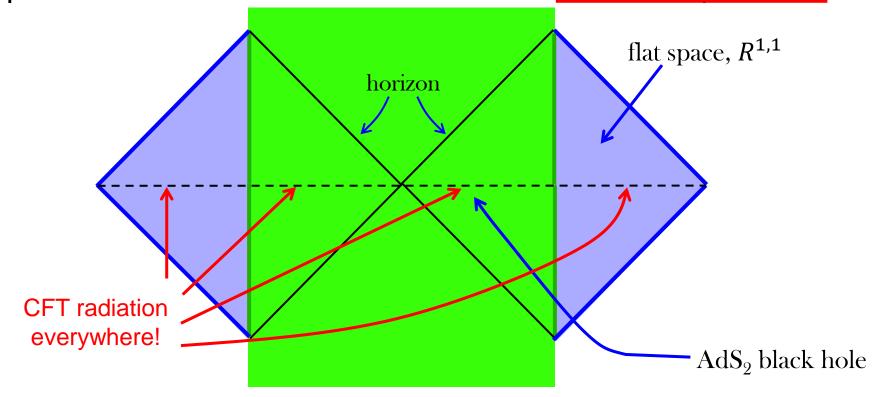
Almheiri, Mahajan & Maldacena (see also: Rozali, Van Raamsdonk, Waddell & Wakeham)

- simple holographic model: 2d JT gravity = 1d quantum mech's
- prepare state with 2d black hole & bath in thermal equilibrium



Almheiri, Mahajan & Maldacena (see also: Rozali, Van Raamsdonk, Waddell & Wakeham)

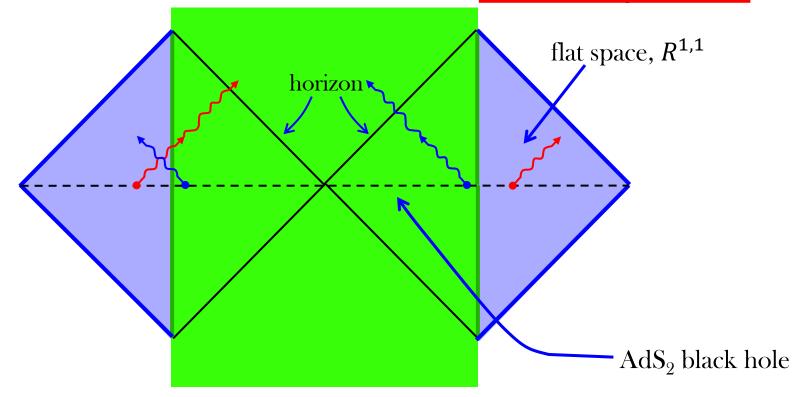
- simple holographic model: 2d JT gravity = 1d quantum mech's
- prepare state with 2d black hole & bath in thermal equilibrium



Thermal equilibrium? No information paradox?

Almheiri, Mahajan & Maldacena (see also: Rozali, Van Raamsdonk, Waddell & Wakeham)

- simple holographic model: 2d JT gravity 1= 1d quantum mech's
- prepare state with 2d black hole & bath in thermal equilibrium



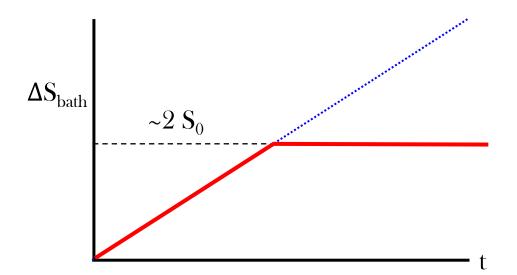
eternal BH and bath are continuously exchanging radiation

Almheiri, Mahajan & Maldacena (see also: Rozali, Van Raamsdonk, Waddell & Wakeham)

- simple holographic model: 2d JT gravity = 1d quantum mech's
- prepare state with 2d black hole & bath in thermal equilibrium

What does Page curve look like for eternal black hole?

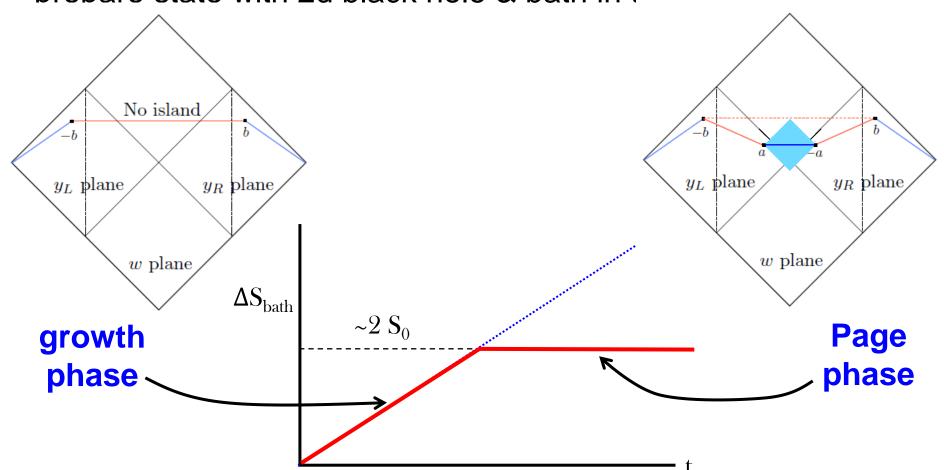
eternal BH and bath are continuously exchanging radiation



Almheiri, Mahajan & Maldacena (see also: Rozali, Van Raamsdonk, Waddell & Wakeham)

• simple holographic model: 2d JT gravity = 1d quantum mech's

• prepare state with 2d black hole & bath in the state wi



Almheiri, Mahajan & Maldacena (see also: Rozali, Van Raamsdonk, Waddell & Wakeham)

• simple holographic model: 2d JT gravity = 1d quantum mech's

 prepare state with 2d black ho Quantum Extremal Island: in Page phase, information about BH interior is encoded in new QESs appear No island bath radiation y_R plane y_L plane w plane y_L plane y_R plane $\sim 2 S_0$ growth phase w plane

Island Rule:

- black hole coupled to an auxiliary non-gravitational reservoir (the "bath"), which captures the Hawking radiation
- (correct) entropy of the Hawking radiation is given by

$$S_{EE}(\mathbf{R}) = \min \left\{ \underset{\text{islands}}{\text{ext}} \left(S_{QFT}(\mathbf{R} \cup \text{islands}) + \frac{A(\partial(\text{islands}))}{4G_N} \right) \right\}$$

Early: island is the empty set; agrees with Hawking's calculation

<u>Late</u>: large entanglement between radiation and region behind horizon; **new saddle** with nontrivial island

Questions, Questions:

- how important is two dimensions?
- are dof on Planck brane part of boundary or bulk?
- was JT gravity important?
- was ensemble average of SYK model important?
- how was information encoded in Hawking radiation?

➡ Island Rule:

- black hole coupled to an auxiliary non-gravitational reservoir (the "bath"), which captures the Hawking radiation
- (correct) entropy of the Hawking radiation is given by

$$S_{EE}(\mathbf{R}) = \min \left\{ \underset{\text{islands}}{\text{ext}} \left(S_{QFT}(\mathbf{R} \cup \text{islands}) + \frac{A(\partial(\text{islands}))}{4G_N} \right) \right\}$$

Early: island is the empty set; agrees with Hawking's calculation

<u>Late</u>: large entanglement between radiation and region behind horizon; **new saddle** with nontrivial island

Questions, Questions:

how important is two dimensions?

Many of new insights can be understood as familiar properties of holographic entanglement entropy

now was information encoded in nawking radiation?

(see also: Geng & Karch)

Randall-Sundrum gravity (quick review):

• introduce d-dim. brane in (d+1)-dim. AdS geometry, backreaction creates extra d-dim. graviton mode localized on brane:

$$I_{\text{bulk}} = \frac{1}{16\pi G_{\text{bulk}}} \int d^{d+1}x \sqrt{-g} \left[\frac{d(d-1)}{L^2} + R(g) \right]$$
$$I_{\text{brane}} = -T_0 \int d^d x \sqrt{-\tilde{g}}$$

• introduce d-dim. brane in (d+1)-dim. AdS geometry, backreaction creates extra d-dim. graviton mode localized on brane: L^2/ℓ_{off}^4

creates extra d-dim. graviton mode localized on brane:
$$I_{\text{induce}} = \frac{1}{16\pi G_{\text{eff}}} \int d^d x \sqrt{-\tilde{g}} \left[\frac{(d-1)(d-2)}{\ell_{\text{eff}}^2} + \tilde{R}(\tilde{g}) + L^2(\text{``}\tilde{R}^2\text{''}) + \cdots \right]$$

$$\text{with} \quad \frac{1}{G_{\text{eff}}} = \frac{2\,L}{(d-2)\,G_{\text{bulk}}} \; ; \quad \frac{1}{\ell_{\text{eff}}^2} \simeq \frac{2}{L^2} \left(1 - \frac{4\pi\,G_{\text{bulk}}\,L\,T_0}{d-1} \right) \; \ll \frac{1}{L^2} \; .$$

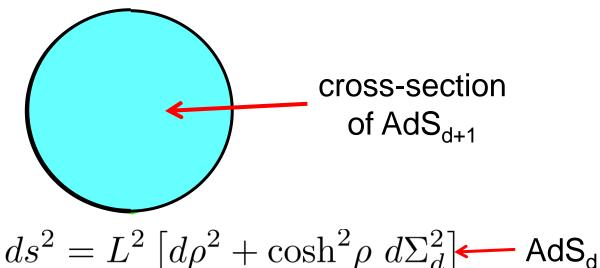
• introduce d-dim. brane in (d+1)-dim. AdS geometry, backreaction creates extra d-dim. graviton mode localized on brane: L^2/ℓ_{ag}^4

creates extra d-dim. graviton mode localized on brane:
$$I_{\text{induce}} = \frac{1}{16\pi G_{\text{eff}}} \int d^d x \sqrt{-\tilde{g}} \left[\frac{(d-1)(d-2)}{\ell_{\text{eff}}^2} + \tilde{R}(\tilde{g}) + L^2(\text{``}\tilde{R}^2\text{''}) + \cdots \right]$$

with
$$\frac{1}{G_{
m eff}} = \frac{2\,L}{(d-2)\,G_{
m bulk}} \; ; \quad \frac{1}{\ell_{
m eff}^2} \simeq \frac{2}{L^2} \left(1 - \frac{4\pi\,G_{
m bulk}\,L\,T_0}{d-1} \right)$$

"position" of brane can be determined by:

using Israel junction conditions



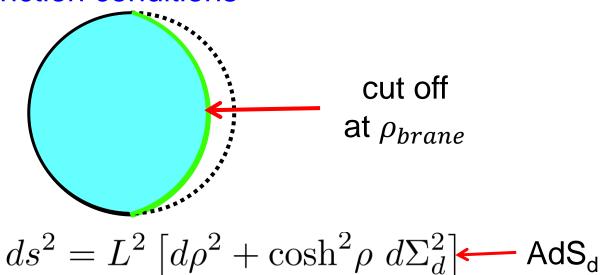
• introduce d-dim. brane in (d+1)-dim. AdS geometry, backreaction creates extra d-dim. graviton mode localized on brane: L^2/ℓ_{cc}^4

creates extra d-dim. graviton mode localized on brane:
$$I_{\text{induce}} = \frac{1}{16\pi G_{\text{eff}}} \int d^d x \sqrt{-\tilde{g}} \left[\frac{(d-1)(d-2)}{\ell_{\text{eff}}^2} + \tilde{R}(\tilde{g}) + L^2(\text{``}\tilde{R}^2\text{''}) + \cdots \right]$$

with
$$\frac{1}{G_{
m eff}} = \frac{2\,L}{(d-2)\,G_{
m bulk}} \; ; \quad \frac{1}{\ell_{
m eff}^2} \simeq \frac{2}{L^2} \left(1 - \frac{4\pi\,G_{
m bulk}\,L\,T_0}{d-1} \right)$$

• "position" of brane can be determined by:

using Israel junction conditions

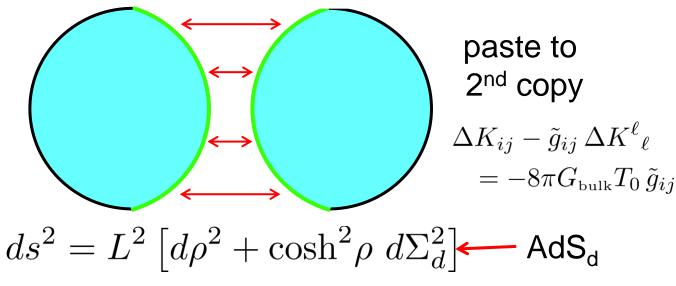


creates extra d-dim. graviton mode localized on brane:
$$I_{\text{induce}} = \frac{1}{16\pi G_{\text{eff}}} \int d^d x \sqrt{-\tilde{g}} \left[\frac{(d-1)(d-2)}{\ell_{\text{eff}}^2} + \tilde{R}(\tilde{g}) + L^2(\text{``}\tilde{R}^2\text{''}) + \cdots \right]$$

with
$$rac{1}{G_{
m eff}} = rac{2\,L}{(d-2)\,G_{
m bulk}} \; ; \quad rac{1}{\ell_{
m eff}^2} \simeq rac{2}{L^2} \left(1 - rac{4\pi\,G_{
m bulk}\,L\,T_0}{d-1}
ight)$$

"position" of brane can be determined by:

using Israel junction conditions



creates extra d-dim. graviton mode localized on brane:
$$I_{\text{induce}} = \frac{1}{16\pi G_{\text{eff}}} \int d^d x \sqrt{-\tilde{g}} \left[\frac{(d-1)(d-2)}{\ell_{\text{eff}}^2} + \tilde{R}(\tilde{g}) + L^2(\text{``}\tilde{R}^2\text{''}) + \cdots \right]$$

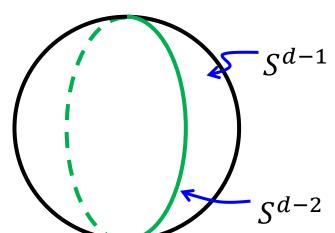
with
$$\frac{1}{G_{
m eff}} = \frac{2\,L}{(d-2)\,G_{
m bulk}} \; ; \quad \frac{1}{\ell_{
m eff}^2} \simeq \frac{2}{L^2} \left(1 - \frac{4\pi\,G_{
m bulk}\,L\,T_0}{d-1} \right)$$

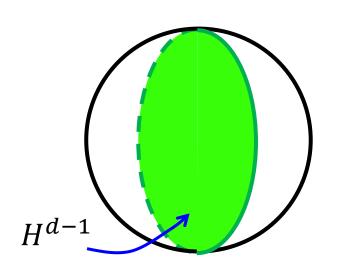
 "position" of brane can be determined by: using Israel junction conditions or solving brane gravity eom

$$\frac{1}{\ell_{\mathrm{eff}}^2} = \frac{1}{\ell_{\mathrm{B}}^2} \Big[1 + \frac{1}{4} \frac{L^2}{\ell_{\mathrm{B}}^2} + \cdots \Big]$$
 paste to 2nd copy
$$\Delta K_{ij} - \tilde{g}_{ij} \, \Delta K^\ell_\ell \\ = -8\pi G_{\mathrm{bulk}} T_0 \, \tilde{g}_{ij}$$

$$ds^2 = L^2 \, \Big[d\rho^2 + \cosh^2 \rho \, \, d\Sigma_d^2 \Big] \longleftarrow \mathrm{AdS_d}$$

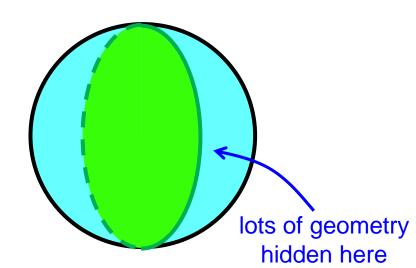
(a) boundary CFT_d coupled to conformal defect (ie, boundary CFT_{d-1})





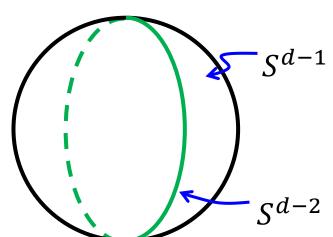
(b) boundary CFT_d coupled to CFT_d with gravity on AdS_d

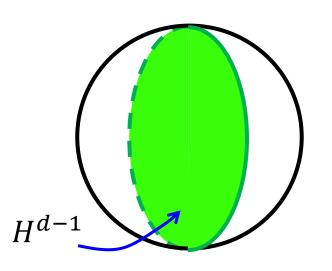
(c) AdS_{d+1} gravity coupled to brane with AdS_d geometry



Boundary perspective

(a) boundary CFT_d coupled to conformal defect (ie, boundary CFT_{d-1})



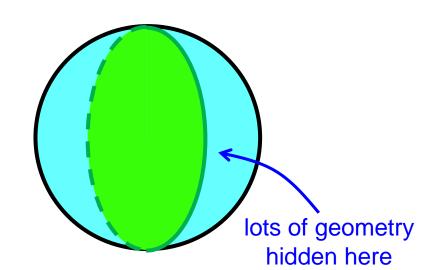


AdS/CFT correspondence

(b) boundary CFT_d coupled to CFT_d with gravity on AdS_d

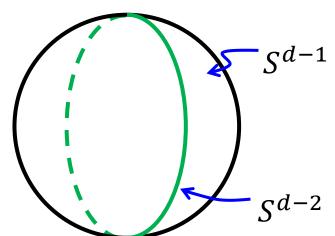
Bulk perspective

(c) AdS_{d+1} gravity coupled to brane with AdS_d geometry



Boundary perspective

(a) boundary CFT_d coupled to conformal defect (ie, boundary CFT_{d-1})



Brane perspective

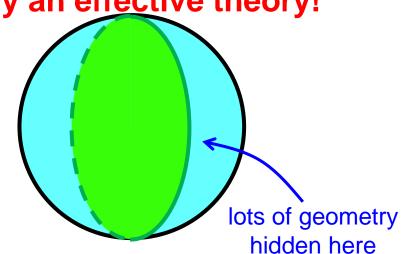
(b) boundary CFT_d coupled to CFT_d with gravity on AdS_d

AdS/CFT correspondence

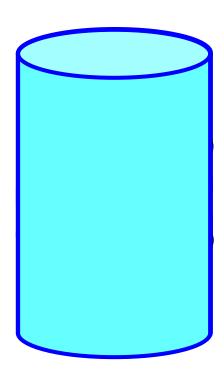
only an effective theory!

Bulk perspective

(c) AdS_{d+1} gravity coupled to brane with AdS_d geometry

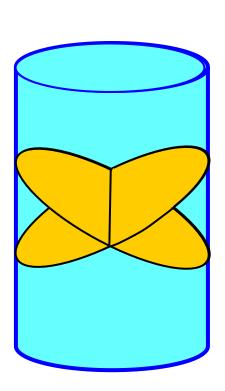


AdS_{d+1} gravity ecupled to brane with AdS_d geometry



- AdS_{d+1} gravity ecupled to brane with AdS_d geometry
- empty AdS_{d+1} space can be described as "hyperbolic" black hole

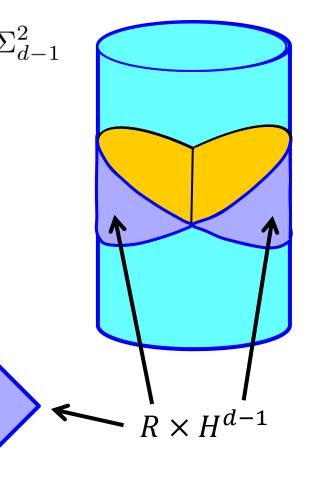
$$ds^{2} = \frac{L^{2} d\rho^{2}}{(\rho^{2} - L^{2})} - \frac{\rho^{2} - L^{2}}{R^{2}} dt^{2} + \rho^{2} d\Sigma_{d-1}^{2}$$



- AdS_{d+1} gravity ecupled to brane with AdS_d geometry
- empty AdS_{d+1} space can be described as "hyperbolic" black hole

$$ds^{2} = \frac{L^{2} d\rho^{2}}{(\rho^{2} - L^{2})} - \frac{\rho^{2} - L^{2}}{R^{2}} dt^{2} + \rho^{2} d\Sigma_{d-1}^{2}$$

• describes TFD state of boundary CFT on $R \times H^{d-1}$ at temperature $T = \frac{1}{2\pi R}$



- AdS_{d+1} gravity coupled to brane with AdS_d geometry
- empty AdS_{d+1} space can be described as "hyperbolic" black hole

$$ds^{2} = \frac{L^{2} d\rho^{2}}{(\rho^{2} - L^{2})} - \frac{\rho^{2} - L^{2}}{R^{2}} dt^{2} + \rho^{2} d\Sigma_{d-1}^{2}$$

- describes TFD state of boundary CFT on $R \times H^{d-1}$ at temperature $T = \frac{1}{2\pi R}$
- insert brane, describes TFD state of boundary CFT coupled to conformal defect on $R \times H^{d-1}$ at temperature $T = \frac{1}{2\pi R}$

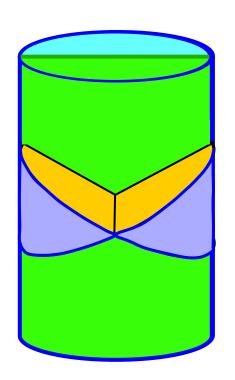
Testure
$$T = \frac{1}{2\pi R}$$

Des TFD state of boundary ormal defect on $R \times H^{d-1}$
 $\frac{1}{2\pi R}$
 $R \times H^{d-2}$
 $R \times H^{d-2}$

- AdS_{d+1} gravity coupled to brane with AdS_d geometry
- empty AdS_{d+1} space can be described as "hyperbolic" black hole

$$ds^{2} = \frac{L^{2} d\rho^{2}}{(\rho^{2} - L^{2})} - \frac{\rho^{2} - L^{2}}{R^{2}} dt^{2} + \rho^{2} d\Sigma_{d-1}^{2}$$

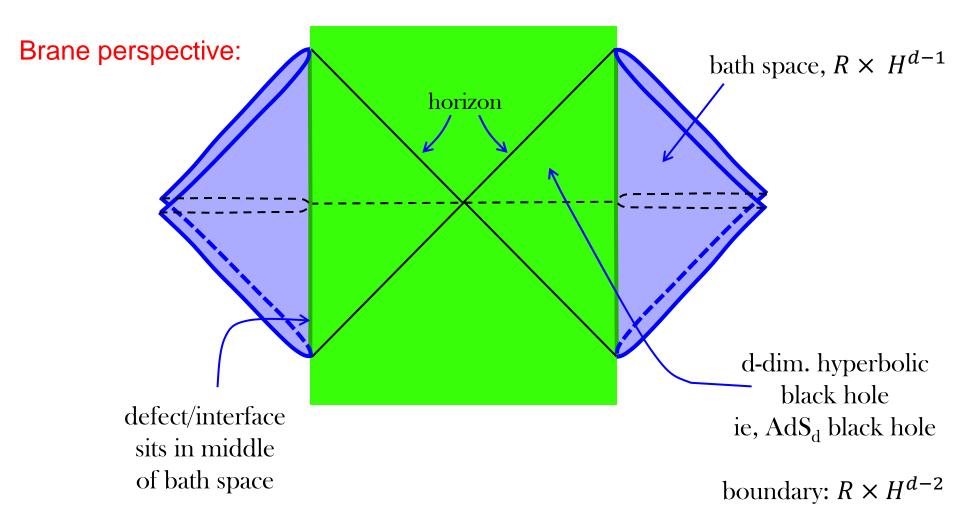
- describes TFD state of boundary CFT on $R \times H^{d-1}$ at temperature $T = \frac{1}{2\pi R}$
- insert brane, describes TFD state of boundary CFT coupled to conformal defect on $R \times H^{d-1}$ at temperature $T = {}^1/_{2\pi R}$



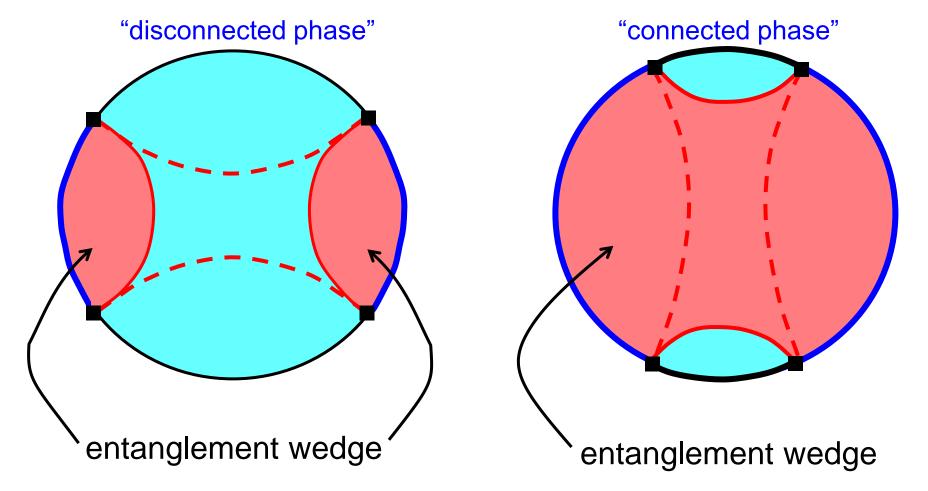
induced brane metric "inherits" hyperbolic black hole geometry

$$ds^{2} = \frac{\ell_{B}^{2} d\tilde{\rho}^{2}}{\tilde{\rho}^{2} - \ell_{B}^{2}} - \frac{\tilde{\rho}^{2} - \ell_{B}^{2}}{R^{2}} dt^{2} + \tilde{\rho}^{2} d\Sigma_{d-2}^{2}$$

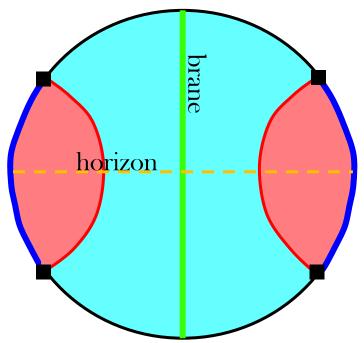
 previous discussion lifts to higher dim'l holographic model with d=2 JT gravity -> induced d-dim. Einstein gravity (& CFT)

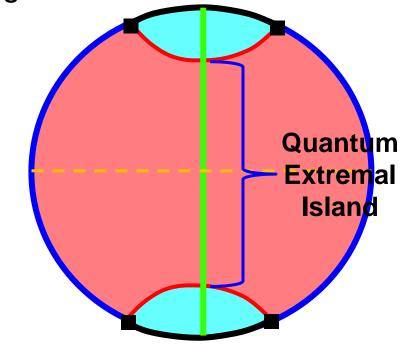


recall familiar holographic EE scenario: two saddles compete to give minimal RT surface



 entanglement wedge reconstruction: can recover bulk operators (within code subspace) inside entanglement wedge with boundary CFT operators in corresponding boundary subregion recall familiar holographic EE scenario: two saddles compete to give minimal RT surface





Early times:

- RT surfaces join opposite sides of BH → EE grows with time
- entanglement wedge close to boundary

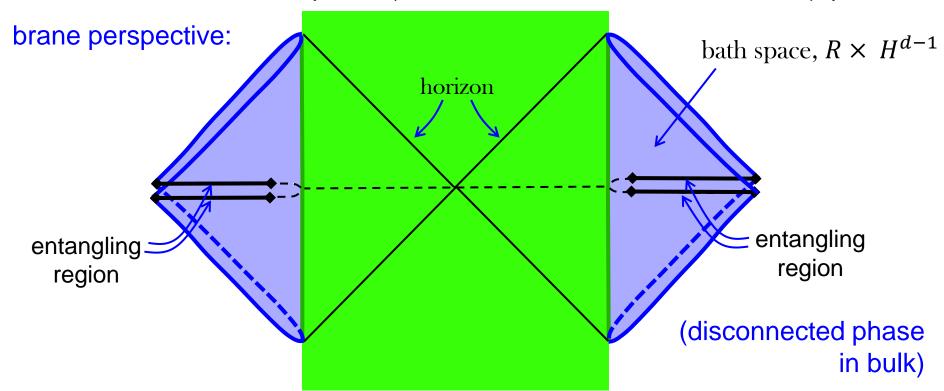
growth phase

Late times:

- RT surfaces on single side of BH → EE fixed in time
- entanglement wedge extends through brane → QE island

- previous discussion lifts to higher dim'l holographic model with d=2 JT gravity -> induced d-dim. Einstein gravity (& CFT)
- new model reproduces the island formula:

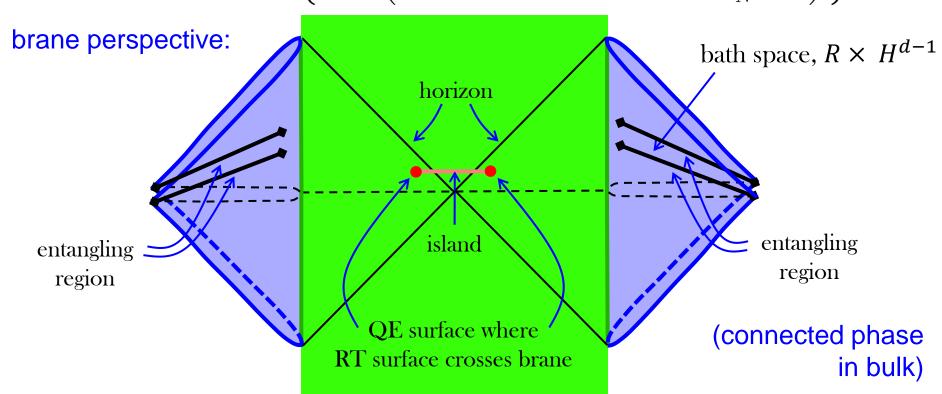
$$S_{EE}(\mathbf{R}) = \min \left\{ \underset{\text{islands}}{\text{ext}} \left(S_{QFT}(\mathbf{R} \cup \text{islands}) + \frac{A(\partial(\text{islands}))}{4G_N} \right) \right\}$$



Early times: standard QFT rules apply (no island); EE grows

- previous discussion lifts to higher dim'l holographic model with d=2 JT gravity -> induced d-dim. Einstein gravity (& CFT)
- new model reproduces the island formula:

$$S_{EE}(\mathbf{R}) = \min \left\{ \underset{\text{islands}}{\text{ext}} \left(S_{QFT}(\mathbf{R} \cup \text{islands}) + \frac{A(\partial(\text{islands}))}{4G_N} \right) \right\}$$



Late times: quantum extremal island forms; EE saturated

- previous discussion lifts to higher dim'l holographic model with d=2 JT gravity -> induced d-dim. Einstein gravity (& CFT)
- new model reproduces the island formula:

$$S_{EE}(\mathbf{R}) = \min \left\{ \underset{\text{islands}}{\text{ext}} \left(S_{QFT}(\mathbf{R} \cup \text{islands}) + \frac{A(\partial(\text{islands}))}{4G_N} \right) \right\}$$
 brane perspective: bath space, $R \times H^{d-1}$

Late times: quantum extremal island forms; EE saturated

Questions, Questions:

- how important is two dimensions?
 - not at all, our construction extends discussion to gravity and black holes in d dimensions

(see also: Almheiri, Mahajan & Santos)

- was JT gravity important?
 - no, our construction extends discussion to Einstein gravity and black holes in d dimensions
- was ensemble average of SYK model important?
- no, our construction relies on standard rules of AdS/CFT correspondence, ie, do not average over couplings in boundary CFT

(Note top-down construction with D3 \(\perp D5\) by Karch & Randall)

Questions, Questions:

• Almheiri, Mahajan & Maldacena distinguish "full quantum description" of radiation and "semiclassical description" which includes outgoing radiation and purifying partners on QE island (ie, boldface notation)

Island Rule:

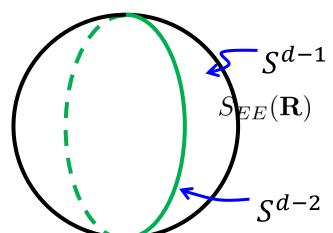
$$S_{EE}(\mathbf{R}) = \min \left\{ \text{ext} \left(S_{QFT}(\mathbf{R} \cup \text{islands}) + \frac{A(\partial(\text{islands}))}{4G_N} \right) \right\}$$

"full quantum description" "semiclassical description"

what's up with that?

Boundary perspective

(a) boundary CFT_d coupled to conformal defect (ie, boundary CFT_{d-1})



Brane perspective

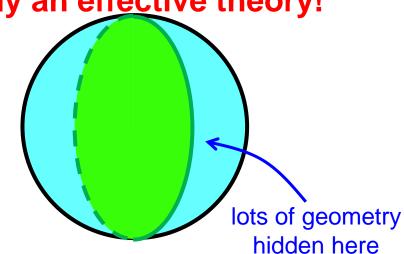
(b) boundary CFT_d coupled to CFT_d with gravity on AdS_d

AdS/CFT correspondence

only an effective theory!

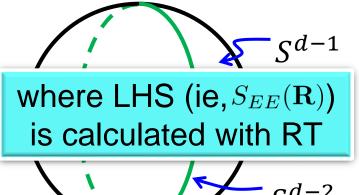
Bulk perspective

(c) AdS_{d+1} gravity coupled to brane with AdS_d geometry



Boundary perspective

(a) boundary CFT_d coupled to conformal defect (ie, boundar_! CFT_{d-1})



Brane perspective

(b) boundary CFT_d coupled to CFT_d with gravity on AdS_d

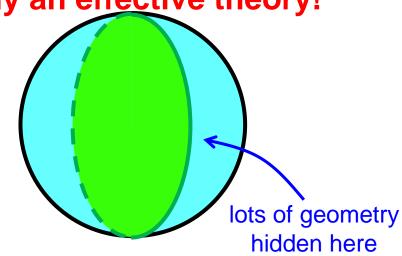
where RHS appears by reinterpreting result

AdS/CFT correspondence

only an effective theory!

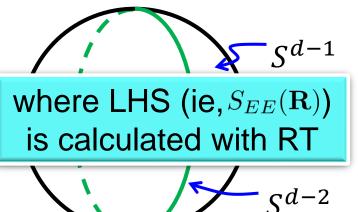
Bulk perspective

(c) AdS_{d+1} gravity coupled to brane with AdS_d geometry



Boundary perspective

(a) boundary CFT_d coupled to conformal defect (ie, boundar_! CFT_{d-1})



Brane perspective

where RHS appears by reinterpreting result

 $\mu d-1$

correspondence

(b) boundary CFT_d coupled to CFT_d with gravity on AdS_d

only an effective theory!

Island rule:
$$S_{EE}(\mathbf{R}) = \min \left\{ \underset{\text{islands}}{\text{ext}} \left(S_{QFT}(\mathbf{R} \cup \text{islands}) + \frac{A(\partial(\text{islands}))}{4G_N} \right) \right\}$$

- provides mnemonic for "effective" gravitational theory
- within this framework, can not reveal "hidden" correlations compare: Akers, Engelhardt & Harlow

Conclusions:

- simple holographic model illustrates the appearance of quantum extremal islands
- new insights viewed as familiar properties of holographic EE
- has information paradox been solved?
- Page phase can be described by saddle point without revealing microscopic details with large-N!!
 - what/how learn about microstates and information?

Still lots to explore!

NO, not yet!