

Primordial Black Holes

- a couple of recent topics -

Misao Sasaki

Kavli IPMU, University of Tokyo YITP, Kyoto University LeCosPA, National Taiwan University

Introduction

curvature perturbation, formation of PBHs, and gravitational waves

cosmic spacetime diagram

Curvature perturbation to PBH

conventional (PBH formation at rad-dominance) case

gradient expansion/separate universe approach

$$6H^{2}(t,x) + R^{(3)}(t,x) = 16\pi G \rho(t,x) + \cdots$$

Hamiltonian constraint (Friedmann eq.)

$$R^{(3)} \approx -\frac{4}{a^2} \nabla^2 \mathcal{R}_c \approx \frac{8\pi G}{3} \delta \rho_c \implies \left(\frac{\delta \rho_c}{\rho} \approx \mathcal{R}_c \text{ at } \frac{k^2}{a^2} = H^2 \right)$$

formation of a closed universe
$$R^{(3)} \simeq 0$$

$$H^{-1} = a/k$$

>If $R^{(3)} \sim H^2 \iff \delta \rho_c / \rho \sim 1$, it collapses to form BH

Young, Byrnes & MS '14

Spins of PBHs are expected to be very small

fraction β that turns into PBHs

for Gaussian probability distribution

• When $\sigma_M << \delta_c$, β can be approximated by exponential:

$$\beta \approx \sqrt{\frac{2}{\pi}} \frac{\sigma_M}{\delta_c} \exp\left(-\frac{\delta_c^2}{2\sigma_M^2}\right) \qquad \qquad \delta_c \equiv \left(\frac{\delta \rho_c}{\rho}\right)_{\rm crit} \sim 0.4$$
 Carr '75, ...

PBH constraints

GWs can capture PBHs!

PBHs = CDM with MpbH ~10²¹g generates GWs with f~10⁻³ Hz

Background GWs at LISA band

LIGO-Virgo :10 - 1000 Hz

GWs can test PBH scenario!

So far, we have focused on PBH formation from primordially adiabatic perturbation

How about primordially isocurvature perturbation?

PBHs from Isocurvature Perturbation

eg, E. Cotner, A. Kusenko, MS & V. Takhistov, 1907. 10613

non-gravitational formation of compact objects/Q-balls/etc inside horizon.

linear theory

H. Kodama & MS, IJMPA 1 (1986) 265, ibid 2 (1987) 491

matter isocurvature perturbation

$$S \equiv \delta_m - \frac{3}{4} \delta_r \rightarrow \delta_m$$
 at $a \rightarrow 0$ (on, say, uniform total density slices)

evolution for
$$\omega \ll 1$$
 $\omega \equiv \left(\frac{k}{Ha}\right)_{eq}$, $R \equiv \frac{a}{a_{eq}}$ modes that are superhorizon at equality

 $R \ll 1$ (rad dom)

$$\begin{cases}
\mathscr{R}_c = \frac{R}{4}S & \left(\Phi = \frac{R}{8}S\right) \\
\delta = \frac{1}{6}\omega^2 R^3 S
\end{cases}$$

$$\begin{cases}
\mathscr{R}_c = \frac{1}{3}S & \left(\Phi = \frac{1}{5}S\right) \\
\delta = \frac{4}{15}\omega^2 R S
\end{cases}$$

 $1 \ll R$ (matter dom)

$$\begin{cases}
\mathscr{R}_c = \frac{1}{3}S & \left(\Phi = \frac{1}{5}S\right) \\
\delta = \frac{4}{15}\omega^2 RS
\end{cases}$$

 \mathcal{R}_c :curv pert on comoving slice

Φ : curv pert on Newton slice

horizon crossing:
$$\omega^2 R = \frac{1}{2}$$

BH formation criterion:
$$\delta(k=aH) = \frac{2}{15}S > \delta_{\rm cr}~(\sim 0.5)$$
 ?

linear theory

evolution for $\omega \gg 1$ (modes that enters horizon before equality)

$$\omega \equiv \left(\frac{k}{Ha}\right)_{eq}, \quad R \equiv a/a_{eq}$$

$$R \ll \omega^{-1}$$
 (rad dom)

$$R \ll \omega^{-1}$$
 (rad dom) $\omega^{-1} \ll R \ll 1$ (rad dom) $1 \ll R$ (matter dom)

$$\begin{cases} \mathcal{R}_c = \frac{R}{4}S \\ \delta = \frac{1}{6}\omega^2 R^3 S \end{cases} \qquad \begin{cases} \mathcal{R}_c = \frac{3}{4\omega^2 R}S \\ \delta = RS \end{cases} \qquad \begin{cases} \mathcal{R}_c = \frac{5}{4\omega^2}S \\ \delta = \frac{3R}{2}S \end{cases}$$

$$\begin{cases}
\mathscr{R}_c = \frac{5}{4\omega^2} S \\
\delta = \frac{3R}{2} S
\end{cases}$$

$$\left(\Phi = \frac{3}{4\omega^2}S\right)$$

horizon crossing: $\omega R = 1/2$

$$\delta(k = aH) = \frac{1}{2\omega}S, \quad \mathcal{R}_c = \frac{3}{2\omega}S$$

conventional growth rate at matter-dom stage

 $\Phi = O(1)$ implies $S = O(\omega^2) \gg 1$!!

highly nonlinear initial condition

PBH formation criterion?

need more studies!

Isocurvature Perturbation due to inhomogeneous PBH distribution

What if formed objects are PBHs?

Papanikolaou et al., arXiv:2010.11573 Domenech, Lin & MS, arXiv:2012.08151

Even if PBHs are unclustered, randomly distributed, the inhomogeneities may induce GWs when the universe is reheated by PBH evaporation

Induced GWs from PBH evaporation

Domenech, Lin & MS, arXiv:2012.0851

If the transition from EMD to RD is slow (Δt~ H-1) as in the case of decaying particles, there will be no significant production of induced GWs.

Inomata et al., arXiv:1904.12878

$$Q = Q_0 e^{-\Gamma t} \quad \to \quad \frac{1}{\Delta t} = \frac{1}{Q} \frac{dQ}{dt} = -\Gamma = const.$$

• A fast transition leads to strong enhancement of induced GWs on sub-horizon scales, which is the case for PBH evaporation.

Inomata et al., arXiv: 2003.10455

$$\frac{1}{\Delta t} = \left| \frac{1}{M} \frac{dM}{dt} \right| = \frac{1}{3(t_{\text{ev}} - t)} \gg H \text{ as } t \to t_{\text{ev}}$$

may lead to strong constraints on early PBH dominance model

Constraints on early PBH dominated universe

Domenech, Lin & MS, arXiv:2012.08151 Domenech, Takhistov & MS, arXiv:2105.06816

Assumptions

- Monochromatic mass function for PBHs.
- Poisson distribution for $\delta n_{\rm PBH}/n_{\rm PBH}$: $\mathcal{P}_S(k) = \frac{2}{3\pi} \left(k/k_{\rm UV} \right)^3$; $k < k_{\rm UV} = n_{\rm PBH}^{-1/3}$

Resulting spectrum

- sharp rise $\sim k^5$ near the peak.
- Peak value:

$$\left(\frac{\Omega_{GW,max}}{\Omega_{r,0}}\right) \approx 5 \times 10^{34} \,\beta^{16/3} \,\left(\frac{M}{10^4 \,\mathrm{g}}\right)^{14/3}$$

 β : PBH fraction at formation

$$k_{\rm br} \approx 0.04 k_{\rm UV} \left(M_{\rm PBH} / 10^4 \, \rm g \right)^{-1/6}$$

Constraints on β and frequencies

$$\beta_{\text{max}} \approx 3 \times 10^{-8} \left(\frac{M_{\text{PBH}}}{10^5 \,\text{g}} \right)^{-7/8}$$

$$\beta_{\min} \approx 6 \times 10^{-10} \left(\frac{M_{\text{PBH}}}{10^5 \,\text{g}} \right)^{-1}$$

GW detectors sensitivity curves

Caviat . . .

For the primordial isocurvature perturbation,

$$\mathcal{P}_{S}(k) = \frac{2}{3\pi} (k/k_{\text{UV}})^{3}; \quad k < k_{\text{UV}} = n_{\text{PBH}}^{-1/3}$$

the resulting curvature perturbation at PBH dominated Universe is

$$\Phi = \frac{3}{4} \left(\frac{k_{\text{eq}}}{k}\right)^2 S \sim 0.3 \left(\frac{k_{\text{eq}}}{k_{\text{UV}}}\right)^2 \left(\frac{k}{k_{\text{UV}}}\right)^{-1/2} \qquad \text{for} \quad k_{\text{eq}} < k < k_{\text{UV}}$$

The density perturbation becomes nonlinear for $k > k_{NL}$:

$$\frac{\delta\rho}{\rho} = \frac{2}{3} \left(\frac{k}{aH}\right)^2 \Phi \sim 0.1 \left(\frac{a_{\text{evap}}}{a_{\text{eq}}}\right) \left(\frac{k}{k_{\text{UV}}}\right)^{3/2} \gtrsim 1$$

$$\text{for } k > k_{\text{NL}} \sim 5 \left(\frac{a_{\text{evap}}}{a_{\text{eq}}}\right)^{-2/3} k_{\text{UV}}$$

$$\log\left(\frac{a_{\text{evap}}}{a_{\text{eq}}}\right)^{2/3} \approx 2 + \frac{8}{9} \left(\log\frac{\beta}{10^{-7}} + \log\frac{M}{10^4 \,\text{g}}\right) \quad \text{ }$$

take-home messages:

PBHs may play central roles in GW cosmology

PBH-GW Cosmology!

 (nonlinear) isocurvature perturbations may play important roles in PBH-GW cosmology