Quantum Gravity and Cosmology

Primordial Black Holes

- a couple of recent topics -

Misao Sasaki

Kavli IPMU, University of Tokyo
YITP, Kyoto University
LeCosPA, National Taiwan University

Introduction

curvature perturbation, formation of PBHs,
 and gravitational waves

cosmic spacetime diagram

Curvature perturbation to PBH

conventional (PBH formation at rad-dominance) case
$>$ gradient expansion/separate universe approach

$$
6 H^{2}(t, x)+R^{(3)}(t, x)=16 \pi G \rho(t, x)+\cdots
$$

Hamiltonian constraint
(Friedmann eq.)
$\longmapsto R^{(3)} \approx-\frac{4}{a^{2}} \nabla^{2} \mathscr{R}_{c} \approx \frac{8 \pi G}{3} \delta \rho_{c} \Rightarrow \frac{\delta \rho_{c}}{\rho} \approx \mathscr{R}_{c}$ at $\frac{k^{2}}{a^{2}}=H^{2}$
formation of
$R^{(3)} \simeq 0 \quad \stackrel{R^{(3)} \sim H^{2}}{\longleftrightarrow} \quad$ a closed universe
\Rightarrow If $R^{(3)} \sim H^{2} \quad\left(\Leftrightarrow \delta \rho_{c} / \rho \sim 1\right)$, it collapses to form BH
Young, Byrnes \& MS '14
$>$ Spins of PBHs are expected to be very small

fraction β that turns into PBHs

for Gaussian probability distribution

- When $\sigma_{M} \ll \delta_{c}, \beta$ can be approximated by exponential:

$$
\beta \approx \sqrt{\frac{2}{\pi}} \frac{\sigma_{M}}{\delta_{c}} \exp \left(-\frac{\delta_{c}^{2}}{2 \sigma_{M}^{2}}\right) \quad \delta_{c} \equiv\left(\frac{\delta \rho_{c}}{\rho}\right)_{\mathrm{crit}} \sim 0.4
$$

Carr '75, ...

PBH constraints

GWs can capture PBHs!

PBHs = CDM with $\mathrm{MPBH}^{\sim} \mathrm{TO}^{21} \mathrm{~g}$ generates GWs with $\mathrm{f} \sim 10^{-3} \mathrm{~Hz}$

Background GWs at LISA band

LIGO-Virgo :10-1000 Hz

GWs can test PBH scenario!

So far, we have focused on PBH formation from primordially adiabatic perturbation How about primordially isocurvature perturbation?

PBHs from Isocurvature Perturbation

eg, E. Cotner, A. Kusenko, MS \& V. Takhistov,1907.10613
non-gravitational formation of compact objects/Q-balls/etc inside horizon.

- may give rise to isocurvature perturbation

matter-dom stage

linear theory

H. Kodama \& MS, IJMPA 1 (1986) 265, ibid 2 (1987) 491
matter isocurvature perturbation

$$
S \equiv \delta_{m}-\frac{3}{4} \delta_{r} \rightarrow \delta_{m} \text { at } a \rightarrow 0 \text { (on, say, uniform total density slices) }
$$

evolution for $\omega \ll 1 \quad \omega \equiv\left(\frac{k}{H a}\right)_{e q}, \quad R \equiv \frac{a}{a_{e q}} \quad \begin{gathered}\text { modes that are } \\ \text { superhorizon at equality }\end{gathered}$
$R \ll 1$ (rad dom)
$\left\{\begin{array}{l}\mathscr{R}_{c}=\frac{R}{4} S \quad\left(\Phi=\frac{R}{8} S\right) \\ \delta=\frac{1}{6} \omega^{2} R^{3} S\end{array}\right.$

$$
1 \ll R \text { (matter dom) }
$$

\mathscr{R}_{c} :curv pert on comoving slice
Φ : curv pert on Newton slice
BH formation criterion: $\delta(k=a H)=\frac{2}{15} S>\delta_{\text {cr }}(\sim 0.5) ?$

linear theory

evolution for $\omega \gg 1$ (modes that enters horizon before equality)

$$
\begin{aligned}
& \omega \equiv\left(\frac{k}{H a}\right)_{e q}, \quad R \equiv a / a_{e q} \\
& R \ll \omega^{-1}(\mathrm{rad} \text { dom }) \quad \omega^{-1} \ll R \ll 1 \text { (rad dom) } \quad 1 \ll R \text { (matter dom) } \\
& \left\{\begin{array}{l}
\mathscr{R}_{c}=\frac{R}{4} S \\
\delta=\frac{1}{6} \omega^{2} R^{3} S
\end{array}>\left\{\begin{array}{l}
\mathscr{R}_{c}=\frac{3}{4 \omega^{2} R} S \\
\delta=R S
\end{array}\right.\right. \\
& \text { horizon crossing: } \omega R=1 / 2 \\
& \delta(k=a H)=\frac{1}{2 \omega} S, \quad \mathscr{R}_{c}=\frac{3}{2 \omega} S \\
& \Phi=O(1) \text { implies } S=O\left(\omega^{2}\right) \gg 1!! \\
& \text { PBH formation } \\
& \text { criterion? }
\end{aligned}
$$

Isocurvature Perturbation

 due to inhomogeneous PBH distribution
What if formed objects are PBHs?

Papanikolaou et al., arXiv:2010.11573
Domenech, Lin \& MS, arXiv:2012.08151

Even if PBHs are unclustered, randomly distributed, the inhomogeneities may induce GWs when the universe is reheated by PBH evaporation

Induced GWs from PBH evaporation

Domenech, Lin \& MS, arXiv:2012.0851

- If the transition from EMD to RD is slow ($\Delta t \sim \mathrm{H}^{-1}$) as in the case of decaying particles, there will be no significant production of induced GWs.

Inomata et al., arXiv:1904.12878

$$
Q=Q_{0} e^{-\Gamma t} \quad \rightarrow \quad \frac{1}{\Delta t}=\frac{1}{Q} \frac{d Q}{d t}=-\Gamma=\text { const }
$$

may lead to strong constraints on early PBH dominance model

Constraints on early PBH dominated universe

- Assumptions
- Monochromatic mass function for PBHs.
- Poisson distribution for $\delta n_{\mathrm{PBH}} / n_{\mathrm{PBH}}: \mathscr{P}_{S}(k)=\frac{2}{3 \pi}\left(k / k_{\mathrm{UV}}\right)^{3} ; \quad k<k_{\mathrm{UV}}=n_{\mathrm{PBH}}^{-1 / 3}$
- Resulting spectrum
- sharp rise $\sim k^{5}$ near the peak.
- Peak value:
$\left(\frac{\Omega_{G W, \max }}{\Omega_{r, 0}}\right) \approx 5 \times 10^{34} \beta^{16 / 3}\left(\frac{M}{10^{4} \mathrm{~g}}\right)^{14 / 3}$
$\beta: \mathrm{PBH}$ fraction at formation

$$
k_{\mathrm{br}} \approx 0.04 k_{\mathrm{UV}}\left(M_{\mathrm{PBH}} / 10^{4} \mathrm{~g}\right)^{-1 / 6}
$$

Constraints on β and frequencies

frequency range vs MpBh

GW detectors sensitivity curves

Caviat...

For the primordial isocurvature perturbation,

$$
\mathscr{P}_{S}(k)=\frac{2}{3 \pi}\left(k / k_{\mathrm{UV}}\right)^{3} ; \quad k<k_{\mathrm{UV}}=n_{\mathrm{PBH}}^{-1 / 3}
$$

the resulting curvature perturbation at PBH dominated Universe is

$$
\Phi=\frac{3}{4}\left(\frac{k_{\mathrm{eq}}}{k}\right)^{2} S \sim 0.3\left(\frac{k_{\mathrm{eq}}}{k_{\mathrm{UV}}}\right)^{2}\left(\frac{k}{k_{\mathrm{UV}}}\right)^{-1 / 2} \quad \text { for } \quad k_{\mathrm{eq}}<k<k_{\mathrm{UV}}
$$

The density perturbation becomes nonlinear for $\boldsymbol{k}>\boldsymbol{k}_{\mathrm{NL}}$:

$$
\begin{aligned}
& \frac{\delta \rho}{\rho}=\frac{2}{3}\left(\frac{k}{a H}\right)^{2} \Phi \sim 0.1\left(\frac{a_{\text {evap }}}{a_{\mathrm{eq}}}\right)\left(\frac{k}{k_{\mathrm{UV}}}\right)^{3 / 2} \gtrsim 1 \\
& \quad \text { for } k>k_{\mathrm{NL}} \sim 5\left(\frac{a_{\text {evap }}}{a_{\mathrm{eq}}}\right)^{-2 / 3} k_{\mathrm{UV}} \\
& \log \left(\frac{a_{\text {evap }}}{a_{\mathrm{eq}}}\right)^{2 / 3} \approx 2+\frac{8}{9}\left(\log \frac{\beta}{10^{-7}}+\log \frac{M}{10^{4} \mathrm{~g}}\right)
\end{aligned}
$$

take-home messages:

- PBHs may play central roles in GW cosmology

PBH-GW Cosmology!

- (nonlinear) isocurvature perturbations may play important roles in PBH-GW cosmology

