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Thus, at the Planck time t = 1, the universe consisted of 
1090 causally disconnected parts of size ct =O(1). These 
parts did not know about each other. If someone wanted to 
create the universe at the Planck time, he/she could only 
make a Very Small Bang in his/her own tiny part of the 
universe of a Planck size ct = O(1).   Everything else was 
beyond causal control.

According to the standard hot Big Bang universe, the total 
number of particles during its expansion did not change 
much, so the universe at the Planck time was supposed to 
contain about 1090 particles. At the Planck time t =O(1), 
there was one particle per Planck length ct =O(1).



The original entropy S and mass M of the universe were 
greater than 1090. Why? These are different aspects of the 
flatness problem.

If the size of the causally connected part of the universe at 
the Planck time was 1, then how the universe “knew” that 
there is anything beyond this Planckian size domain? (E.g.
the universe may be a Planck size closed universe, or an 
open or flat topologically non-trivial Planck size universe.)

An assumption that the universe was born big leads to the
horizon problem.
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Planck Collaboration: Constraints on Inflation

Fig. 7. Marginalized joint two-dimensional 68 % and 95 % CL regions for combinations of (✏1 , ✏2 , ✏3) (upper panels) and (✏V , ⌘V , ⇠2V )
(lower panels) for Planck TT,TE,EE+lowE+lensing (red contours), compared with Planck TT,TE,EE+lowE+lensing+BK14 (blue
contours).
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Table 5. Bayesian comparison for a selection of slow-roll inflationary models with wint fixed (see text for more details). We quote
0.3 as the error on the Bayes factor. Models are strongly disfavoured when ln B < �5.
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Looking at the 1s area (dark pink or dark blue), we see that most of it 
is covered by two simplest models of a-attractors. The two circles 

correspond to the Starobinsky model and Higgs inflation

The green area in the Planck 
figure was supposed to 
describe hilltop inflation

but this model leads to collapse 
of the universe after inflation. 
Its improved versions are 
complicated and lead to 
different, model dependent 
results. Thus, the green area in 
this figure is misleading.
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Modify its kinetic term
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plateau potential
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In classification of Encyclopaedia Inflationaris, there are two main 
types of such models. The simplest ones are BI (brane inflation) 
models. They have potentials which look like inverted hilltop

1� mn

'n1� 'n

mn
Hilltop: BI:

They describe Dp-brane inflation, which (in the small r limit) predict

Just like the simplest hilltop inflation, the BI models are ruled out 
since they lead to immediate collapse of the universe after inflation.

The second class is called KKLTI models (from KKLT Inflation). 

(1� ns)|r!0 =
2

N

8� p

9� p

VKKLTI = V0
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'n +mn
Plateau potential



"-attractors and KKLTI models form a physically motivated (in 
SUGRA and string theory) subclass of models of pole inflation with 
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A. ↵-attractors and pole inflation: E-models

There are many di↵erent ways to introduce ↵-
attractors. In the context of this paper, it is useful to
start with the pole interpretation of these models [53]

L = Lkin � V = �1

2

aq

⇢q
(@⇢)2 � V (⇢) . (3)

Here the pole of order q is at ⇢ = 0 and the residue at
the pole is aq. If the potential is regular near the pole,

V = V0(1 � c⇢ + . . .), c > 0 , (4)

one finds that inflation occurs in a small vicinity of the
pole. Inflationary predictions ns and r depend on q, on
aq, on the number of e-foldings N , and, in general, on
the constant c in the potential.

As an example, let us first consider the simplest and
the most important case q = 2, with a2 ⌘ 3↵

2 . In that

case one can make a change of variables ⇢ = e
�
p

3↵
2 '.

The theory (3) after the transformation represents a
canonical field ' with action

L = Lkin � V = �1

2
(@')2 � V (e�

p
3↵
2 '). (5)

We called these models E-models, because of the expo-

nential change of variables ⇢ = e
�
p

3↵
2 '. Inflation occurs

at large positive values of the canonically normalized field
', where the potential is given by

V = V0

�
1 � c e

�
p

3↵
2 ' + . . .

�
. (6)

It approaches the plateau from below. The canonical ki-
netic term � 1

2 (@')2 is invariant under the constant shift
of the inflaton, and the constant c can be absorbed into a
redefinition of the exponential term. Therefore the the-

ory at
q

3↵
2 ' � 1 is equivalent to the one with a potential

V = V0

�
1 � e

�
p

3↵
2 ' + . . .

�
. (7)

But this is not a good potential because it is unbounded
from below at ' ! �1. The simplest example of a con-
sistent inflationary potential in this context is provided
by V = V0(1 � ⇢)2. In the canonical variables it is given
by

V = V0

⇣
1 � e

�
p

3↵
2 '

⌘2
. (8)

For ↵ = 1 this potential coincides with the potential of
the Starobinsky model. The main di↵erence is that the
action of the original Starobinsky model by design rep-
resents the Einstein action with an additional term R

2,
with a very large coe�cient in front of it. But if one is al-
lowed to add the large term ⇠ R

2, one may also consider
general terms F (R), which may change the structure of

the potential. The situation is similar to what happens
in the theory of a scalar field m

2
�

2
/2 if one replaces it

by an arbitrary potential V (�): Inflation remains pos-
sible for an appropriate choice of V (�), but inflationary
predictions depend on the choice of the potential. This
is related to the so-called ⌘ problem.

Meanwhile in the context of ↵-attractors, the asymp-
totic expression for any potential V (⇢) growing but re-
maining non-singular at ⇢ ! 0 continues to be given by
equation (7). This explain stability of the predictions of
↵-attractors with respect to considerable modifications
of V (⇢), including possible quantum corrections [58].

Some part of this stability is a general property of the
theories (3), but the possibility to absorb the constant c

in (4) into a shift of the field ' is a unique property of
the models with q = 2. In this case the residue of the
pole, introduced in [53], a2 = 3↵

2 = 1
|RK | has a geomet-

ric origin. It was explained in [59, 60] that the Kähler
curvature of the underlying moduli space is RK = � 2

3↵ .

One can also absorb the constant c in the potential
into ⇢ for an arbitrary q

⇢̃ ⌘ c⇢ . (9)

In such case
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2
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aq
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⇢̃q
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For q 6= 2 removing c from the potential results in the
rescaling of the residue of the pole

ãq = c
q�2

aq . (11)

Thus, we could have started with a potential with c = 1
and a redefined residue of the pole, as shown in eq. (11)

L = �1

2
ãq

(@⇢̃)2

⇢̃q
� V0(1 � ⇢̃ + . . .) . (12)

Note that only in q = 2 case where we have the hyperbolic
geometry, the residue of the pole a2 = 3↵

2 = 1
|RK | = ã2

has a geometric meaning, and we see that removing the
constant c from the potential does not change the residue.
In all other cases the original value aq or the rescaled
one ãq are not associated with any geometry and can be
used for the purpose of a convenient description of the
inflationary predictions of these models.

Explicit expressions for the spectral index ns, the
tensor-to-scalar ratio r, and the amplitude of perturba-
tions As in leading order in 1/N at small ↵ were derived
in [53] for q 6= 1. We use the following notation here for
the order of the pole q in eq. (3)

q =
�

� � 1
, � =

q

q � 1
, (13)
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D-brane inflation forms a subclass of physically motivated models of pole 
inflation with

These models at small r describe a set of ! ! stripes with
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FIG. 5. A combined plot of the predictions of the simplest ↵-
attractor models and Dp-brane inflation for N = 50 and 60. From
left to right, we show predictions of T-models, E-models, Dp�Dp
brane inflation with p = 3, 4, 5, 6. They are shown by yellow, red,
purple, green, orange and blue lines correspondingly. Red area
shown in the upper figure represents the Planck 2018 results taking
into account all available CMB-related data. Blue area shown in
the lower figure additionally takes into account the data related to
BAO.

Attractor �-stripes (2) shown in Fig. 5 appear not only
for ↵-attractors and D-brane models, but also in a gen-
eral pole inflation context introduced in [53], see also [54]
and sections II, V of this paper. Pole inflation describes
the cosmological attractors with the pole order q in the
kinetic term of the inflaton field, see (3). In particular,
↵-attractors are the pole inflaton models with q = 2,
whereas D-brane inflation potentials (both KKLTI and
BI) with k = 4, 3, 2, 1 belong to the class of the pole
inflation potentials with q = 5

3 ,
8
5 ,

4
3 ,

3
2 respectively.

These models describe cosmological attractors which in
the small r limit predict 1 � ns = �

N , where � = q
q�1 .

These results can be compared with the phenomeno-
logical parametrization of inflationary models based on
an assumption that in “natural” models of inflation one
may expect 1�ns = p+1

N , where p is some phenomenolog-

ical parameter [3, 55, 56]. In our paper, we use � instead
of p+1 to avoid confusion with p = 3, 4, 5, 6 in Dp-brane
inflation, where the use of the letter p in Dp is a long
accepted standard.

As we will see, pole inflation provides a conve-
nient theoretical framework for the phenomenological
parametrization used in [3, 55, 56]. In particular, we will
show that the characteristic scale of inflation introduced
in [3] is directly related to the residue aq at the pole of the
inflaton kinetic term, see section VI. On the other hand,
our results obtained in section V show that we may not
need to have a large continuous range of parameters �:
the predictions of the cosmological attractors described
by the two stripes � = 2 and � = 5/3 completely cover
the 1� region in the (ns, r) space favored by Planck 2018,
see Fig. 10.

While we are unaware of any specific targets for r in D-
brane inflation models and general pole inflation models
with q 6= 2, the search of the B-modes, in combination
with the improvement of the precision in the measure-
ments on ns, may be very important to distinguish dif-
ferent versions of these models from ↵-attractors and to
get a better understanding of the post-inflationary evo-
lution of the universe, including reheating, a↵ecting the
required value of the e-foldings N in all of these models.2

II. INFLATIONARY ↵-ATTRACTOR MODELS

We would like to explain here that in general class of
↵-attractor models the information about observables ns

and r is codified in their kinetic terms, under specific
conditions. For example, the models have to be in their
attractor regime, etc. The reason why ↵-attractors have
specific benchmarks, to be discussed later, is this fact
that the observational data are defined by kinetic terms
of the theory. Kinetic terms for scalars are often defined
by the symmetries of the theory, which may be broken by
the potential. For example, the kinetic terms of scalars
in maximal N = 8 supergravity is defined by U-duality
symmetry, E7(7).

It is convenient to explain this feature using the ‘pole
inflation’ version of ↵-attractors [53].

2 The standard assumption is thatN can be in the range from 50 to
60 (or from 47 to 57), but this range can be more broad, depend-
ing on the mechanism of reheating. For example, for quintessen-
tial ↵-attractors with gravitational reheating, the required value
of the e-foldings N can be greater than in more conventional
models by �N ⇠ 10, which increases the predicted value of ns

by about 0.006 [57]. This additional increase can be greater than
the Planck 1� error bar for ns.

3

marks associated with M-theory, string theory, maximal
N = 8 supergravity. They correspond to 7 di↵erent val-
ues of r in the range 10�3 . r . 10�2, which can be
viewed as B-mode targets for the next round of CMB
experiments.

FIG. 4. U-duality benchmarks in ↵-attractor inflationary models
originating from theories with maximal supersymmetry: M-theory,
string theory, maximal supergravity. Simplest T-model on the left,
simplest E-models on the right. The 7-disk model [43, 44] allows
7 discrete values: 3↵ = 7 shown by a red line, 3↵ = 6 (orange),
3↵ = 5 (yellow), 3↵ = 4 (green), 3↵ = 3 (blue), 3↵ = 2 (purple)
and 3↵ = 1 (black). All other values of ↵ originate from minimal
supergravity models. As we mentioned earlier, red ellipses show
the Planck 2018 results taking into account the CMB-related data.
This subset of the data was used in Planck 2018 for evaluation of
inflationary models.

Some of these targets have other reasons to be exam-
ined. At 3↵ = 6 we would probe string theory fibre infla-
tion [45, 46], at 3↵ = 3 we would probe the Starobinsky
model [35], the Higgs inflationary model [36, 37], as well
as the conformal inflation model [47]. Finally, at 3↵ = 1
we would probe the case of the maximal superconformal
symmetry, as explained in Appendix A. There is yet an-
other target, at ↵ = 1/9, r ⇠ 5⇥10�4, which corresponds
to the GL model [38, 39] shown by a purple dot in in fig-
ure 2.2 from PICO [8]. This is a supergravity inflationary
model involving just a single superfield, which provided

the first example of chaotic inflation with a plateau po-
tential.

The second class of models favored by Planck 2018 in-
cludes the hilltop inflation models with potentials V ⇠
1 � 'k

mk + ... [48, 49]. However, the simplest models

V ⇠ 1 � 'k

mk have the potential unbounded from below,
and describe the universe collapsing immediately after
inflation [9]. For m . 1, one can improve these mod-
els without modifying their inflationary predictions, but
such models predict too low ns for k = 2 and 4, so they
are already ruled out. Meanwhile in the large m limit all

models V ⇠ 1� 'k

mk , for any k, have universal predictions
for ns and r coinciding with the predictions of the sim-
ple model with a linear potential V ⇠ �, as shown by the
dark blue line at the right upper part of the green area in
Fig. 1. According to [9], this universality, which could be
an attractive feature of hilltop inflation, is directly linked
to the fundamental inconsistency of these models.

This does not mean that the full class of hilltop mod-
els is ruled out. However, consistent generalizations of

the models V ⇠ 1 � 'k

mk for m & 10 typically have very
di↵erent predictions. One such model discussed in [9] is
relatively well motivated (the Coleman-Weinberg model),
but it does not seem to match the Planck data too well.
Another model, with V ⇠

�
1 � '4

m4

�2
, provides a better

fit to the data, but it is not well motivated. Both of these
models in the large m limit predict much greater values

of r than the model V ⇠ 1 � '4

m4 . Neither of them makes
predictions reproducing the green area, which was sup-
posed to describe hilltop inflation in the Planck, CMB-S4
and PICO figures. We will not discuss these models here,
and refer the readers to [9] for a detailed investigation of
hilltop inflation after Planck 2018.

The third class of models favored by Planck 2018 in-

cludes Dp-brane inflation models with V ⇠ 1 � mk

'k + . . .

[16, 50, 51], where k = 7�p, see section IV. Their simplest

versions with V ⇠ 1� mk

'k , which were called BI (brane in-

flation) in [16], are inconsistent for the same reason as the
simplest hilltop models [9]. Consistent generalizations of

these models with potentials V ⇠ (1 + mk

'k )�1 = 'k

'k+mk

were proposed in [52] in the context of D3 brane infla-
tion. These models were generalized and called KKLTI
(KKLT inflation) in [16], and further developed in [51].

Predictions of ↵-attractors and four D-brane models
with p = 3, 4, 5, 6 (i.e. with k = 4, 3, 2, 1) can be
represented by five vertical attractor stripes with r ⌧ 1
and

1 � ns =
�

N
, � = 2,

5

3
,

8

5
,

4

3
,

3

2
. (2)

As one can see from Fig. 5, they cover most of the 2�

area in the (ns, r) space favored by Planck 2018. More-
over, to cover most of the 1� area favored by Planck 2018
it is su�cient to consider ↵-attractors and two D-brane
models with p = 3 and 5 [9, 51].
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FIG. 5. A combined plot of the predictions of the simplest ↵-
attractor models and Dp-brane inflation for N = 50 and 60. From
left to right, we show predictions of T-models, E-models, Dp�Dp
brane inflation with p = 3, 4, 5, 6. They are shown by yellow, red,
purple, green, orange and blue lines correspondingly. Red area
shown in the upper figure represents the Planck 2018 results taking
into account all available CMB-related data. Blue area shown in
the lower figure additionally takes into account the data related to
BAO.

Attractor �-stripes (2) shown in Fig. 5 appear not only
for ↵-attractors and D-brane models, but also in a gen-
eral pole inflation context introduced in [53], see also [54]
and sections II, V of this paper. Pole inflation describes
the cosmological attractors with the pole order q in the
kinetic term of the inflaton field, see (3). In particular,
↵-attractors are the pole inflaton models with q = 2,
whereas D-brane inflation potentials (both KKLTI and
BI) with k = 4, 3, 2, 1 belong to the class of the pole
inflation potentials with q = 5

3 ,
8
5 ,

4
3 ,

3
2 respectively.

These models describe cosmological attractors which in
the small r limit predict 1 � ns = �

N , where � = q
q�1 .

These results can be compared with the phenomeno-
logical parametrization of inflationary models based on
an assumption that in “natural” models of inflation one
may expect 1�ns = p+1

N , where p is some phenomenolog-

ical parameter [3, 55, 56]. In our paper, we use � instead
of p+1 to avoid confusion with p = 3, 4, 5, 6 in Dp-brane
inflation, where the use of the letter p in Dp is a long
accepted standard.

As we will see, pole inflation provides a conve-
nient theoretical framework for the phenomenological
parametrization used in [3, 55, 56]. In particular, we will
show that the characteristic scale of inflation introduced
in [3] is directly related to the residue aq at the pole of the
inflaton kinetic term, see section VI. On the other hand,
our results obtained in section V show that we may not
need to have a large continuous range of parameters �:
the predictions of the cosmological attractors described
by the two stripes � = 2 and � = 5/3 completely cover
the 1� region in the (ns, r) space favored by Planck 2018,
see Fig. 10.

While we are unaware of any specific targets for r in D-
brane inflation models and general pole inflation models
with q 6= 2, the search of the B-modes, in combination
with the improvement of the precision in the measure-
ments on ns, may be very important to distinguish dif-
ferent versions of these models from ↵-attractors and to
get a better understanding of the post-inflationary evo-
lution of the universe, including reheating, a↵ecting the
required value of the e-foldings N in all of these models.2

II. INFLATIONARY ↵-ATTRACTOR MODELS

We would like to explain here that in general class of
↵-attractor models the information about observables ns

and r is codified in their kinetic terms, under specific
conditions. For example, the models have to be in their
attractor regime, etc. The reason why ↵-attractors have
specific benchmarks, to be discussed later, is this fact
that the observational data are defined by kinetic terms
of the theory. Kinetic terms for scalars are often defined
by the symmetries of the theory, which may be broken by
the potential. For example, the kinetic terms of scalars
in maximal N = 8 supergravity is defined by U-duality
symmetry, E7(7).

It is convenient to explain this feature using the ‘pole
inflation’ version of ↵-attractors [53].

2 The standard assumption is thatN can be in the range from 50 to
60 (or from 47 to 57), but this range can be more broad, depend-
ing on the mechanism of reheating. For example, for quintessen-
tial ↵-attractors with gravitational reheating, the required value
of the e-foldings N can be greater than in more conventional
models by �N ⇠ 10, which increases the predicted value of ns

by about 0.006 [57]. This additional increase can be greater than
the Planck 1� error bar for ns.



!"#$%&'(2)0"#$%&'()./%)334!5)#$%&'()$/)4$6)1)(7.'&8

A combination of !-attractors and KKLTI 
models covers most of the area favored by 

Planck 2018, all the way down to r = 0.

"-attractors and KKLTI models of Dp-brane inflation with p = 3, 4, 5, 6 
form a set of stripes, which become vertical at small r:

3

marks associated with M-theory, string theory, maximal
N = 8 supergravity. They correspond to 7 di↵erent val-
ues of r in the range 10�3 . r . 10�2, which can be
viewed as B-mode targets for the next round of CMB
experiments.

FIG. 4. U-duality benchmarks in ↵-attractor inflationary models
originating from theories with maximal supersymmetry: M-theory,
string theory, maximal supergravity. Simplest T-model on the left,
simplest E-models on the right. The 7-disk model [43, 44] allows
7 discrete values: 3↵ = 7 shown by a red line, 3↵ = 6 (orange),
3↵ = 5 (yellow), 3↵ = 4 (green), 3↵ = 3 (blue), 3↵ = 2 (purple)
and 3↵ = 1 (black). All other values of ↵ originate from minimal
supergravity models. As we mentioned earlier, red ellipses show
the Planck 2018 results taking into account the CMB-related data.
This subset of the data was used in Planck 2018 for evaluation of
inflationary models.

Some of these targets have other reasons to be exam-
ined. At 3↵ = 6 we would probe string theory fibre infla-
tion [45, 46], at 3↵ = 3 we would probe the Starobinsky
model [35], the Higgs inflationary model [36, 37], as well
as the conformal inflation model [47]. Finally, at 3↵ = 1
we would probe the case of the maximal superconformal
symmetry, as explained in Appendix A. There is yet an-
other target, at ↵ = 1/9, r ⇠ 5⇥10�4, which corresponds
to the GL model [38, 39] shown by a purple dot in in fig-
ure 2.2 from PICO [8]. This is a supergravity inflationary
model involving just a single superfield, which provided

the first example of chaotic inflation with a plateau po-
tential.

The second class of models favored by Planck 2018 in-
cludes the hilltop inflation models with potentials V ⇠
1 � 'k

mk + ... [48, 49]. However, the simplest models

V ⇠ 1 � 'k

mk have the potential unbounded from below,
and describe the universe collapsing immediately after
inflation [9]. For m . 1, one can improve these mod-
els without modifying their inflationary predictions, but
such models predict too low ns for k = 2 and 4, so they
are already ruled out. Meanwhile in the large m limit all

models V ⇠ 1� 'k

mk , for any k, have universal predictions
for ns and r coinciding with the predictions of the sim-
ple model with a linear potential V ⇠ �, as shown by the
dark blue line at the right upper part of the green area in
Fig. 1. According to [9], this universality, which could be
an attractive feature of hilltop inflation, is directly linked
to the fundamental inconsistency of these models.

This does not mean that the full class of hilltop mod-
els is ruled out. However, consistent generalizations of

the models V ⇠ 1 � 'k

mk for m & 10 typically have very
di↵erent predictions. One such model discussed in [9] is
relatively well motivated (the Coleman-Weinberg model),
but it does not seem to match the Planck data too well.
Another model, with V ⇠

�
1 � '4

m4

�2
, provides a better

fit to the data, but it is not well motivated. Both of these
models in the large m limit predict much greater values

of r than the model V ⇠ 1 � '4

m4 . Neither of them makes
predictions reproducing the green area, which was sup-
posed to describe hilltop inflation in the Planck, CMB-S4
and PICO figures. We will not discuss these models here,
and refer the readers to [9] for a detailed investigation of
hilltop inflation after Planck 2018.

The third class of models favored by Planck 2018 in-

cludes Dp-brane inflation models with V ⇠ 1 � mk

'k + . . .

[16, 50, 51], where k = 7�p, see section IV. Their simplest

versions with V ⇠ 1� mk

'k , which were called BI (brane in-

flation) in [16], are inconsistent for the same reason as the
simplest hilltop models [9]. Consistent generalizations of

these models with potentials V ⇠ (1 + mk

'k )�1 = 'k

'k+mk

were proposed in [52] in the context of D3 brane infla-
tion. These models were generalized and called KKLTI
(KKLT inflation) in [16], and further developed in [51].

Predictions of ↵-attractors and four D-brane models
with p = 3, 4, 5, 6 (i.e. with k = 4, 3, 2, 1) can be
represented by five vertical attractor stripes with r ⌧ 1
and

1 � ns =
�

N
, � = 2,

5

3
,

8

5
,

4

3
,

3

2
. (2)

As one can see from Fig. 5, they cover most of the 2�

area in the (ns, r) space favored by Planck 2018. More-
over, to cover most of the 1� area favored by Planck 2018
it is su�cient to consider ↵-attractors and two D-brane
models with p = 3 and 5 [9, 51].
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There is another, simple and general way to 
solve the problem of initial conditions for low 
energy scale inflation, without using 
additional fields

East, Kleban, AL, Senatore 1511.05143
Kleban, Senatore 1602.53520
Clough, Lim, DiNunno, Fischler, Flauger, Paban 1608.04408



Consider a smallest possible universe starting in the Planck 
size domain with Planck density and with a sufficiently flat 
potential (either plateau or power law). Suppose that the 
universe is flat or open, but compact (e.g. a torus). It can be 
grossly inhomogeneous, with inhomogeneities much greater 
than the value of an inflationary potential. If the universe 
begins with the field far away from the minimum of the 
potential, and if it does not immediately collapse as a whole 
within the Planck time, i.e. if the universe is not just a 
quantum fluctuation, then it continues expanding until 
inflation begins and makes the universe flat and 
homogeneous.

East, Kleban, AL, Senatore 1511.05143
AL  1710.04278



ConsiderConsider !!-!!!!-attractors or Dattractors or D-attractors or D-brane inflation
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This potential coincides with the cosmological constant 
almost everywhere.
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For the cosmological constant, the 
question is opposite:  

Start at the Planck density, in the universe dominated by inhomogeneities. 
Energy density of matter is diluted by the cosmological expansion as 1/t2. 
What could prevent exponential expansion of the universe, which becomes 
dominated by the cosmological constant L after the time t = L-1/2 ?

Inflation does NOT happen in the expanding universe with L =10-10 only if 
if the whole universe collapses within 10-28 seconds after its birth.

In other words, only instant global collapse could 
prevent an expanding universe to avoid exponential 
expansion dominated by the cosmological constant. 
If the universe does not instantly collapse, it inflates.



This optimistic conclusion related to the cosmological 
constant applies to "-attractors and D-brane inflation 
as well, because their potential coincides with the 
cosmological constant almost everywhere.
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Yet another helpful consideration:

Consider a flat toroidal universe of Planck size O(1). The longest 
wavelength of the perturbation one can put there is O(1), so its 
momentum is O(1). After time t, the size of the universe grows 
slower than t, but the horizon size grows at t. This means that the 
original scalar fields have momenta k > H, they become ultra-
relativistic and do not want to collapse. The best time for some 
parts of the universe to collapse is at the very beginning, i.e. at 
the Planck time. 

Let us compare these arguments with the results of numerical 
analysis in a grossly inhomogeneous universe.

East, Kleban, AL, Senatore 1511.05143





These conclusions should be valid for general large 
field inflation models

East, Kleban, AL, Senatore 1511.05143
AL  1710.04278
Clough, Lim, DiNunno, Fischler, 
Flauger, Paban 1608.04408
Joana, Clesse 2011.12190


