Symmetries of energy flow operators

Gregory Korchemsky

IPhT, Saclay

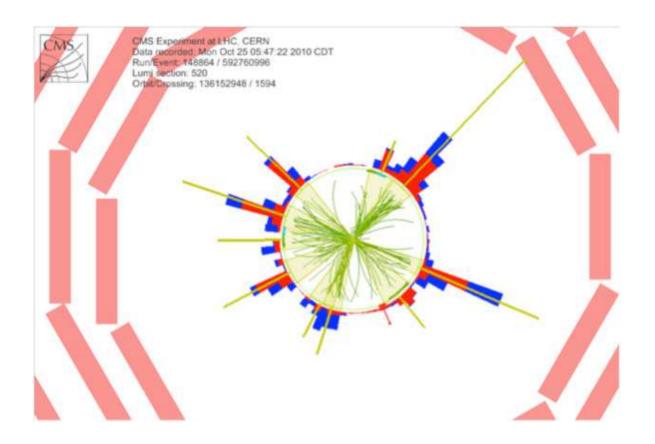
Work in collaboration with Emeri Sokatchev and Alexander Zhiboedov

Quarks 2021

June 4, 2021

Final states at LHC

Final states at LHC:



- ✓ A lot of particles produced
- Energy of particles is deposit at the calorimeters
- ✓ Admit description in terms of the energy distribution on the celestial sphere

Energy flow operators

Angular distribution of the energy

$$f(\vec{n}_1, \dots, \vec{n}_L) = \sum_{X} |\langle in|X\rangle|^2 E_1 \delta^{(2)}(\Omega_{\vec{p}_1} - \Omega_{\vec{n}_1}) \dots E_L \delta^{(2)}(\Omega_{\vec{p}_L} - \Omega_{\vec{n}_L})$$

Particles with momenta $p_i = (E_i, \vec{p}_i)$ enter calorimeters located in the direction \vec{n}_i

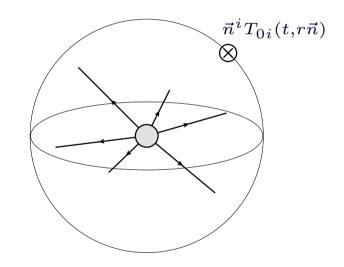
Energy flow operator

[Sveshnikov, Tkachov]

$$\mathcal{E}(\vec{n})|X\rangle = \sum_{a} E_a \,\delta^{(2)}(\Omega_{\vec{p}_a} - \Omega_{\vec{n}})|X\rangle$$

Expression in terms of the stress energy tensor

$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} \int_0^\infty dt \, r^2 \, \vec{n}^i T_{0i}(t, r\vec{n})$$



Correlation functions of the flow operators

[GK,Sterman],[Belitsky,GK,Sterman],[Hofman,Maldacena]

$$f(\vec{n}_1, \dots, \vec{n}_L) = \langle in | \mathcal{E}(\vec{n}_1) \dots \mathcal{E}(\vec{n}_L) | in \rangle$$

A powerful approach to computing QCD observables

[Chen,Moult,Zhu]

What are symmetries of the energy flow operators?

Covariant definition and generalization

Energy flow operator in d-dimensions

$$\mathcal{E}(n) = \lim_{r \to \infty} r^{d-2} \int_{-\infty}^{\infty} dt \, T_{\mu_1 \mu_2}(rn + t\bar{n}) \bar{n}^{\mu_1} \bar{n}^{\mu_2}$$

 $n=(1,\vec{n})$ points towards the calorimeter, \bar{n} auxiliary null vector, $(n\bar{n})=1$.

Introduce energy resolution ω

$$\mathcal{E}_{\omega}(n) = \lim_{r \to \infty} r^{d-2} \int_{-\infty}^{\infty} dt \, e^{-it\omega} \, T_{\mu_1 \mu_2}(rn + t\bar{n}) \bar{n}^{\mu_1} \dots \bar{n}^{\mu_S}$$

Generalization to higher spin conserved currents $J_{\mu_1...\mu_S}(x)$

$$\mathcal{J}_{\omega,S}(n) = \lim_{r \to \infty} r^{d-2} \int_{-\infty}^{\infty} dt \, e^{-it\omega} \, J_{\mu_1 \dots \mu_S}(rn + t\bar{n}) \bar{n}^{\mu_1} \dots \bar{n}^{\mu_S}$$

Global charges

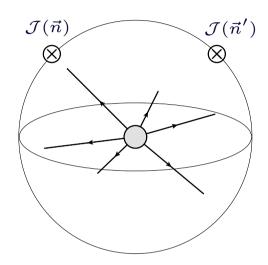
$$\int d^{d-2}n \,\mathcal{E}_{\omega}(n) = \mathbb{P}_{-} - i\omega \,\mathbb{M}_{+-} + O(\omega^{2})$$

 \mathbb{P}_{-} total momentum, \mathbb{M}_{+-} Lorentz boost; satisfy Poincaré algebra

The goal is to establish the algebra of the flow operators $\mathcal{J}_{\omega,S}(n)$

What we expect

The detectors are located on the celestial sphere $n=(1,\vec{n})$



The flow operators are space-like separated for $n \neq n'$

Their commutator should be localized at n = n'

$$[\mathcal{J}_{\omega,S}(n),\mathcal{J}_{\omega',S'}(n')] \sim \delta^{(d-2)}(n,n')$$

Which operators appear on the right-hand side?

For n = n' the effective dynamics takes place on the light-cone

Relation to low dimensional symmetries?

Warm up example

In d=2 dimensions

$$\mathcal{E}_{\omega} = \lim_{r \to \infty} \int_{-\infty}^{\infty} dt \, e^{-it\omega} \, T_{--}(rn + t\bar{n})$$

Commutation relations of $T_{--}=T_{\mu_1\mu_2}\bar{n}^{\mu_1}\bar{n}^{\mu_2}$

$$[T_{--}(x_1^-), T_{--}(x_2^-)] = i(\partial_{1-} - \partial_{2-}) \Big(T_{--}(x_1^-) \delta(x_1^- - x_2^-) \Big) - \frac{ic}{24\pi} \delta'''(x_1^- - x_2^-) \Big)$$

The algebra of the flow operators in d=2 dimension

$$[\mathcal{E}_{\omega}, \mathcal{E}_{\omega'}] = (\omega' - \omega)\mathcal{E}_{\omega + \omega'} - \frac{c}{12}\omega^3\delta(\omega + \omega')$$

Formal expansion

$$\mathcal{E}_{\omega} = \sum_{k} rac{(i\omega)^k}{k!} L_k \,,$$
 Generalized ANEC operators

Virasoro algebra

$$[L_m, L_k] = (m - k)L_{m+k} + \frac{c}{12}m(m^2 - 1)\delta_{m+k,0}$$

The energy flow operator is a generating function of the Virasoro modes

Warm up example II

Extention to higher spin currents

$$\mathcal{J}_{\omega,S} = \lim_{r \to \infty} \int_{-\infty}^{\infty} dt \, e^{-it\omega} \, J_{\mu_1 \dots \mu_S}(rn + t\bar{n}) \bar{n}^{\mu_1} \dots \bar{n}^{\mu_S}$$

Generalized Zamolodchikov algebra

$$[J_{S_1}(x_1^-),J_{S_2}(x_2^-)] = -\sum_{S_3 = S_{\min}}^{S_1 + S_2 - 2} f_{S_1 S_2}^{S_3}(i\partial_1,i\partial_2) \Big(J_{S_3}(x_1^-)\delta(x_1^- - x_2^-)\Big) - i\delta_{S_1 S_2} \frac{\tilde{c}_{S_1}}{24\pi} \delta^{(2S_1 + 1)}(x_1^- - x_2^-)$$

Algebra of higher spin flow operators

$$[\mathcal{J}_{\omega,S}, \mathcal{J}_{\omega',S'}] = \sum_{S''=S_{\min}}^{S+S'-2} f_{SS'}^{S''}(\omega,\omega') \mathcal{J}_{\omega+\omega',S''} - \delta_{SS'} \delta(\omega+\omega') \omega^{2S+1} \frac{\tilde{c}_S}{12}$$

Formal expansion

$$\mathcal{J}_{\omega,S} = \sum_{k} \frac{(i\omega)^k}{k!} V_k^{i=S-2}$$

 W_{∞} algebra

[Pope,Romans,Shen]

$$[V_m^i, V_n^j] = \sum_{\ell \ge 0} g_{2\ell}^{ij}(m, n) V_{m+n}^{i+j-2\ell} + c_i(m) \delta^{ij} \delta_{m+n,0}$$

Leading twist operators in *d* **dimensions**

Conserved currents in a free U(1) gauge theory (fermions + photons)

$$J_S^{(\psi)} \sim \bar{\psi} \gamma_- (i\partial_-)^{S-1} \psi + \dots$$

$$J_S^{(g)} \sim F_{-\mu}(i\partial_-)^{S-2} F_-^{\mu} + \dots$$

All Lorentz index are contracted with \bar{n}^{μ}

Conformal symmetry fixes form of the operators built out of $\Phi = \{\psi, F_{-\alpha}\}$

$$J_S(x) = \bar{\Phi}(x) P_S(i\overset{\rightarrow}{\partial}_-, i\overset{\leftarrow}{\partial}_-) \Phi(x)$$

$$P_S(p_1, p_2) = (p_1 + p_2)^S C_S^{2j - \frac{1}{2}} \left(\frac{p_1 - p_2}{p_1 + p_2}\right)$$

Gegenbauer polynomial

Conformal spins $j_{\psi} = d/4$, $j_g = (d+2)/4$

Stress-energy tensor
$$T_{--}=\frac{1}{2(d-1)}J_{S=2}^{(\psi)}+J_{S=2}^{(g)}$$

Generalized energy flow operator

$$\mathcal{J}_{\omega,S}(n) = \lim_{r \to \infty} r^{d-2} \int_{-\infty}^{\infty} dt \, e^{-it\omega} \, J_S(rn + t\bar{n})$$

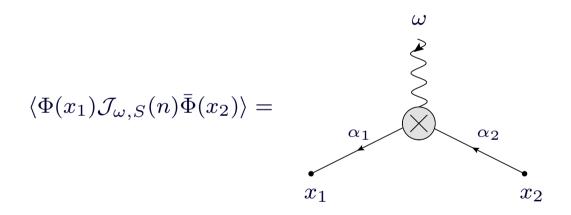
Commutation relations

$$[\mathcal{J}_{\omega,S}(n),\mathcal{J}_{\omega',S'}(n')] \stackrel{?}{\sim} \mathcal{J}_{\omega'',S''}(n'')$$

Insert inside the correlation function

$$\langle \Phi(x_1) \mathcal{J}_{\omega,S}(n) \mathcal{J}_{\omega',S'}(n') \bar{\Phi}(x_2) \rangle - \langle \Phi(x_1) \mathcal{J}_{\omega',S'}(n') \mathcal{J}_{\omega,S}(n) \bar{\Phi}(x_2) \rangle \sim \langle \Phi(x_1) \mathcal{J}_{\omega'',S''}(n) \bar{\Phi}(x_2) \rangle$$

Three-point function



Transition amplitude: $x_2 \rightarrow \textit{Detector} \rightarrow x_1$

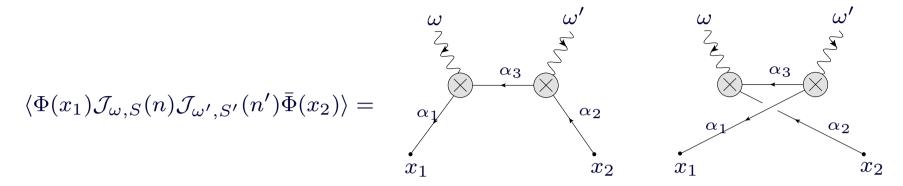
The particle enters the detector with the energy α_2 and leaves it with the energy $\alpha_1 = \alpha_2 + \omega$

$$\langle \Phi(x_1) \mathcal{J}_{\omega,S}(n) \bar{\Phi}(x_2) \rangle \sim \int_0^\infty d\alpha_1 \left(\alpha_1 (\alpha_1 - \omega) \right)^{2j-1} \theta(\alpha_1 - \omega) e^{-i\omega(nx_2) - i\alpha_1(nx_{12})} P_S(\alpha_1, -\alpha_1 + \omega)$$

 P_S is the energy dependent weight

Commutation relations II

Four-point function (connected part)



Particle goes subsequently through the two detectors

$$\langle \Phi(x_1) [\mathcal{J}_{\omega,S}(n), \mathcal{J}_{\omega',S'}(n')] \bar{\Phi}(x_2) \rangle_c \sim \delta^{(d-2)}(n,n') e^{-i\omega''(nx_2)}$$

$$\times \int_0^\infty d\alpha_1 (\alpha_1(\alpha_1 - \omega''))^{2j-1} \theta(\alpha_1 - \omega'') e^{-i\alpha_1(nx_{12})} Q(\alpha_1)$$

Total energy $\omega'' = \omega + \omega'$, polynomial $Q(\alpha_1)$ is bilinear in P's

$$Q(\alpha_1) = (\alpha_1 - \omega)^{2s-1} P_S(\alpha_1, -\alpha_1 + \omega) P_{S'}(\alpha_1 - \omega, -\alpha_1 + \omega'')$$
$$-(\alpha_1 - \omega')^{2s-1} P_{S'}(\alpha_1, -\alpha_1 + \omega') P_S(\alpha_1 - \omega', -\alpha_1 + \omega'')$$

j / s are conformal / Lorentz spin of the field

Algebra of the energy flow operators

Expansion over orthogonal (Gegenbauer) polynomials

$$Q(\alpha_1) = \sum_{S''=2s}^{S+S'-2} C_{SS'}^{S''}(\omega, \omega') P_{S''}(\alpha_1, -\alpha_1 + \omega'')$$

Algebra of the flow operators

$$[\mathcal{J}_{\omega,S}(n), \mathcal{J}_{\omega',S'}(n')] = \delta^{(d-2)}(n,n') \sum_{S''=2s}^{S+S'-2} C_{SS'}^{S''}(\omega,\omega') \mathcal{J}_{\omega+\omega',S''}(n) - \delta_{SS'}\delta(\omega+\omega')\omega^{2S-1}\Omega_S(n,n')$$

The central charge comes from a disconnected part of 4pt function

$$\Omega_S(n, n') \sim \langle \mathcal{J}_{\omega, S}(n) \mathcal{J}_{\omega', S'}(n') \rangle \sim [\delta^{(d-2)}(n, n')]^2$$

It is finite for d=2 and diverges at d>2 (= Vol_{d-2})

Structure constants

$$C_{SS'}^{S''}(\omega,\omega') = \frac{1 + (-1)^{S+S'-S''}}{2} \sum_{k=0}^{S+S'-S''-1} f_k \,\omega^k(\omega')^{S+S'-S''-1-k}$$

Satisfy Jacobi identity, vanish for odd S + S' - S''

Virasoro and W algebra

Spin-2 flow operators $\mathcal{E}_{\omega}(n) = \mathcal{J}_{\omega,S=2}(n)$

$$[\mathcal{E}_{\omega}(n), \mathcal{E}_{\omega'}(n')] = \delta^{(d-2)}(n, n')(\omega' - \omega)\mathcal{E}_{\omega + \omega'}(n) - \omega^3 \delta(\omega + \omega')c_d(n, n')$$

Take a universal form for any d

Virasoro algebra in *d* dimensions

[Casini,Teste,Torrona]

$$[L_m, L_k] = \delta^{(d-2)}(n, n')(m-k)L_{m+k} + \frac{c_d(n, n')}{12}m(m^2 - 1)\delta_{m+k, 0}$$

Higher spin flow operators

$$[\mathcal{E}_{\omega}(n), \mathcal{J}_{\omega', S'}(n')] = -\delta^{(d-2)}(n, n')((S'-1)\omega - \omega')\mathcal{J}_{\omega + \omega', S'}(n') + [\text{lower spins}]$$

$$[\mathcal{J}_{\omega,S}(n), \mathcal{J}_{\omega',S'}(n')] = \delta^{(d-2)}(n,n') \sum_{S''=2s}^{S+S'-2} C_{SS'}^{S''}(\omega,\omega') \mathcal{J}_{\omega+\omega',S''}(n) - \delta_{SS'}\delta(\omega+\omega')\omega^{2S-1}\Omega_S(n,n')$$

W algebra in d dimensions

$$[V_m^i, V_n^j] = \delta^{(d-2)}(n, n') \sum_{\ell > 0} f_{2\ell}^{ij}(m, n) V_{m+n}^{i+j-2\ell} + c_m(n, n') \delta^{ij} \delta_{m+n, 0}$$

The structure constants depend on *d*

From d=2 to d=4

The structure constants of the algebra

$$C_{SS'}^{(\Phi),S''}(\omega,\omega') \sim \int_0^1 dt \, (t(1-t))^{2j-1} (t-\varepsilon)^{2s-1} P_S(t,\varepsilon-t) P_{S'}(t-\varepsilon,1-t) P_{S''}(t,1-t) \Big|_{\epsilon = \frac{\omega}{\omega+\omega'}}$$

Depend on d through conformal spin of fields $j_{\Phi}=(\Delta_{\Phi}+s_{\Phi})/2$ and their Lorentz spin s_{Φ}

Scalars in d=4 versus fermions in d=2

$$j_{\phi}(d=4) = j_{\psi}(d=2) = \frac{1}{2}$$

The structure constants in d=2

$$C_{SS'}^{(\psi),S''}\Big|_{d=2}=W_{1+\infty}$$
 algebra

Intriging relation between the structure constants in d=2 and d=4

$$C_{SS'}^{(\psi),S''}\Big|_{d=2} = \left[a_{+} e^{\partial_{S}} + a_{-} e^{-\partial_{S}} + b_{+} e^{\partial_{S''}} + b_{-} e^{-\partial_{S''}}\right] C_{SS'}^{(\phi),S''}\Big|_{d=4}$$

Involves a finite-difference operator

Conclusions and open questions

- ✓ The flow operators are interesting objects in a gauge theory
- ✓ They form a closed algebra in a free gauge theory
- ✓ For d=2 this algebra coincides with the W-algebra in CFT₂
- ightharpoonup In d=4 dimensions the structure constants are related to those of the W-algebra by a linear finite-difference operator
- What happens with the algebra in an interacting theory?
 - The U(1) current and the stress-energy tensor are protected, high spin currents become anomalous