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= max. SUGRA in D = 11—n dimensions with global £,

# Symmetry acts on scalars non-linearly and p-forms
linearly: £, tensor hierarchy Wi Neola
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Context

Toroidal reduction of D = 11 supergravity on 77 [cremmer

= max. SUGRA in D = 11—n dimensions with global £,

Symmetry acts on scalars non-linearly and p-forms
linearly: £, tensor hierarchy Wi Neola

Samtleben

Part of global £, stems from local symmetriesin D = 11
My, = Mqy1—, x T coordinates (Zlf’u,ym)

5§gmn (337 y) — L.ngn — gpﬁpgmn + 8m£pgpn + 8n£pgmp

for £ along 1.
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Context

Toroidal reduction of D = 11 supergravity on 77 [cremmer

Julia

= max. SUGRA in D = 11—n dimensions with global £,

Symmetry acts on scalars non-linearly and p-forms
linearly: £, tensor hierarchy Wi Neola

Samtleben

Part of global £, stems from local symmetriesin D = 11
My, = Mqy1—, x T coordinates (Zlf’u,ym)

5§gmn (337X) — L.ngn — gpapgmn + amfpgpn + a77,80977740

T red. L scalar on My1_,,

for ¢&¥ along 7. Take & = AP, y" with cst. AP, € GL(n)
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Context

Toroidal reduction of D = 11 supergravity on 77 [cremmer

Julia

= max. SUGRA in D = 11—n dimensions with global £,

Symmetry acts on scalars non-linearly and p-forms
linearly: £, tensor hierarchy Wi Neola

Samtleben

Part of global £, stems from local symmetriesin D = 11
My, = Mqy1—, T coordinates (Zlf’u,ym)
O¢ Ymn (37723() = LeGmn = gp%mn =+ ?mfpgpn T anfpgmg

T" red. b scalar on My, global GL(n) C E, action with 0,&°

for ¢&¥ along 7. Take & = AP, y" with cst. AP, € GL(n)
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Context

» Toroidal reduction of D = 11 supergravity on 7" |cremmer

Julia

= max. SUGRA in D = 11—n dimensions with global £,

# Symmetry acts on scalars non-linearly and p-forms
linearly: E,, tensor hierarchy [*ei Neolal

Samtleben

# Part of global £, stems from local symmetriesin D = 11

My, = Mqy1—, x T coordinates (Zlfu,ym)
O¢ Gmn (377:3() = Legmn = gp%mn + ?mfpgpn + anfpgmg
T" red. t scalar on My, global GL(n) C ;3; action with 9,£°

for ¢7 along 7. Take &P = AP, y" with cst. AP, € GL(n)
More of E, from local matter gauge trm. in D =11

o But d also truly hidden E,, transformations. Require
specific Chern—Simons term. Important for U-duality...
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Context

Is there a similar origin for all of £,,? | [wes{ [P2meprHenneau

Nicolai

One affirmative answer to this is provided by exceptional
geometry/exceptional field theory [ °°imbra,Wa'drame} [S Hohm n}

Strickland-Constabl amtlebe
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Context

amour,Henneaux}

Is there a similar origin for all of E,,? | [wes{ [P2moprHen

One affirmative answer to this is provided by exceptional

1 - Coimbra,Wald Hoh
geometry/exceptional field theory [Str;';',‘a;g_cgn;gg,J [Sam‘;,e’gen}

Scalar fields M = VIV with V € E,, /K (E,,). ‘Ancestor
symmetry"? ﬁgeneralised Lie derivative
e M(z,y) = LeM = " 0p M + E,-action with 9,¢°

Reduces ok on 7. But...
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Context

amour,Henneaux}

Is there a similar origin for all of E,,? | [wes{ [P2moprHen

One affirmative answer to this is provided by exceptional

Coimbra,Waldram Hohm

geometry/exceptional field theory | SeimeraWaldram || Honm |

Scalar fields M = VIV with V € E,, /K (E,,). ‘Ancestor
symmetry"? ﬁgeneralised Lie derivative
SeM(x,y) = LeM = €70p M + E,-action with 9,¢°

Reduces ok on 7". But...
For ¢,,-valued parameter 0,¢°
need to extend space since
FE,, cannot act on torus ™!

Replace vy — Y ¢ R,
Also: [DLUJ]] [West} [Hulﬂ
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Context

amour,Henneaux}

Is there a similar origin for all of E,,? | [wes{ [P2moprHen

One affirmative answer to this is provided by exceptional

Coimbra,Waldram

geometry/exceptional field theory | SeimeraWaldram || Honm |

Scalar fields M = VIV with V € E,, /K (E,,). ‘Ancestor
symmetry"? ﬁgeneralised Lie derivative
SeM(x,y) = LeM = €70p M + E,-action with 9,¢°

Reduces ok on 7". But... P R
For ¢,,-valued parameter 0,&° ! -

need to extend space since Lg | 27 27

F,, cannot act on torus ¢! E7 | 56 13341
Replace vy — Y ¢ R, Fy | 248 | 387530248 ¢ 1

 Also: 1] fwest]
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Exceptional field theory (ExKFT)

Important point: Gauge transformations 6. M = LM only
close when section constraint is imposed (NB n < 7)

[ Coimbra, Waldram } [Berma
Strickland-Constable| | Perry

Op ® 0 =0
P Q | Ro [Berman, Cederwalﬂ
AK, Thompson
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Exceptional field theory (ExFT)

Important point: Gauge transformations j: M = LM only

close when section constraint is imposed (NB n < 7)

E,, invariant v/ [Ct_)imbra,_WaIdram} [Berman}
Any solution (e.g. keeping ~ Op @ g r, =0 Strickland-Constable] L Perry

[Berman, Cederwalﬂ
only ™) breaks E,,!

AK, Thompson
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Exceptional field theory (ExKFT)

Important point: Gauge transformations 6. M = LM only
close when section constraint is imposed (NB n < 7)

E,, invariant v/ [Coimbra, Waldram} [Berman}
Anv solution (e keepin ap R ) | — 0 Strickland-Constable| | Perry
y 9. ping @ R [Berman, Cederwalﬂ

OnIy ym) breaks E,,! AK, Thompson

Is there a theory built from the generalised Lie derivative
and generalised metric M, generalising gravity?
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Exceptional field theory (ExKFT)

Important point: Gauge transformations 6. M = LM only
close when section constraint is imposed (NB n < 7)

E,, invariant v/ [Coimbra, Waldram} [Berman}
. . Strickland-Constable| | Perry
Any solution (e.g. keepin dp ® 0 =0
y ( 9 PINg Q|R2 [Berman, Cederwalﬂ
AK, Thompson

only y™) breaks E,,!
Is there a theory built from the generalised Lie derivative
and generalised metric M, generalising gravity?
Include other fields (g,., A}',...) from £, tensor hierarchy
and 2 diffeos to obtain £, EXFT shonm | (n < 8)
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Exceptional field theory (ExKFT)

Important point: Gauge transformations 6. M = LM only
close when section constraint is imposed (NB n < 7)

E,, invariant v/ [Coimbra, Waldram} [Berman}
. . Strickland-Constable| | Perry
Any solution (e.g. keepin dp ® 0 =0
y (e g. Keeping Q |R2 [Berman, Cederwalﬂ
AK, Thompson

only y™) breaks E,,!

Is there a theory built from the generalised Lie derivative
and generalised metric M, generalising gravity?

Include other fields (g,., A}',...) from £, tensor hierarchy
and «/ diffeos to obtain F,, ExFT shonm | (n < 8)
# Uniquely fixed by symmetries. Contains D = 11 and |IB

# For n = 8 need ancillary gauge parameter for closure of
gen. diffeo. Related to extra constrained fields

® Forn = 9 these constrained fields are intertwined
indecomposably with tensor hierarchy fields | Bossard Siceri |
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F1 exceptional field theory

Our work: Construct ExFT for £y

pro: no separation external/internal space
contra: hard due to Kac—Moody and constrained fields
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F1 exceptional field theory

Our work: Construct ExFT for £y

pro: no separation external/internal space
contra: hard due to Kac—Moody and constrained fields

» Draws from ideas from (wesi{ that predate all ExFT

# Properties of the tensor hierarchy algebra :Palmkvist}

» |deas for constrained fields in Fy EXFT | Bossard Ciceri |

Inverso, AK, Samtlebe
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F1 exceptional field theory

Our work: Construct ExFT for £y

pro: no separation external/internal space
contra: hard due to Kac—Moody and constrained fields

» Draws from ideas from (wesi{ that predate all ExFT

# Properties of the tensor hierarchy algebra :Palmkvist}

» |deas for constrained fields in Fy EXFT | Bossard Ciceri |

Inverso, AK, Samtlebe

Results

# Pseudo-Lagrangian and (twisted) duality equation,
invariant under £, generalised diffeomorphisms

® Reduces to non-linear D = 11 SUGRA and ExFT

[Need many new £, identities. Most proved, some only partially]
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Some facts about £

co-dim’l Kac—Moody algebra I“
Complete list of generators/ e—e—e—e—9 oo ¢ oo
structure constants unknown

Write abstractly:  [t¢,¢7] = f*7.#7  Killing form:  x/
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Some facts about £

oo-dim’l Kac—Moody algebra I“
Complete list of generators/ e—e—e—e¢ o o o ¢ oo
structure constants unknown

Write abstractly:  [t¢,¢7] = f*7.#7  Killing form:  x/

Possible to define highest weight representations R(A) |kaq

. e ¥
Conjugate lowest weight 22(A) st weight, comb. of fund. weights A;
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Some facts about £

co-dim’l Kac—Moody algebra I“
Complete list of generators/ e—e—e—e—9 oo ¢ oo
structure constants unknown

Write abstractly:  [t¢,¢7] = f*7.#7  Killing form:  x/

Possible to define highest weight representations R(/+\) Ka]
Conjugate lowest weight 22(A) st weight, comb. of fund. weights A;

Useful to consider graded decompositions |wesi| [Fischbacher

Nicolai

ad10|nt 811: Ceey Fn1n2n37 Kmn7 En1n2n37 E1?7/1...”I”L67 Enl...ng,ng
R(Al) : "'7Pn1---n57 Pn1n27 Pm

7 e o o
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Some facts about £

co-dim’l Kac—Moody algebra I“
Complete list of generators/ e—e¢—e¢—eo 9o oo oo
structure constants unknown

Write abstractly:  [t¢,¢7] = f*7.#7  Killing form:  x/

Possible to define highest weight representations R(/+\) Ka]
Conjugate lowest weight 22(A) st weight, comb. of fund. weights A;

Useful to consider graded decompositions |wesi| [Fischbacher

Nicolai

~0.1,....10 gravity dual
T gl(11) 3-form 6-form  grayiton
/=—1 (=0 /=1 /=2 /=3
adjoint ¢11: ..., Fyingny, K™, B2 e pransno
R(Al) . ---;Pn1...n57 Pn1n27 Pm
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Some facts about £

GL(11) C E
~o-dim’l Kac—Moody algebra (1) € B In
Complete list of generators/ oo e o o o o oo

1 2 3 4 5 6 7 8 9 10

structure constants unknown
Write abstractly:  [t¢,¢7] = f*7.#7  Killing form:  x/

Possible to define highest weight representations R(/+\) Ka]
Conjugate lowest weight 22(A) st weight, comb. of fund. weights A;

Useful to consider graded decompositions |wesi| [Fischbacher

Nicolai

~0.1,....10 gravity dual
. P gl(11) 3-form 6-form graviton
/=—1 /=0 /=1 /=2 /=3
adjoint e;: ... B nong, Ky, BRI TG D T ST
R(Al) . e 7Pn1...n57 Pn1n27 Pm <+ D — 11 COOFdS

=—L (=-35 (=—2  (other: ‘brane coords’)
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Ingredlents of Ell ExFT tergl?n I??l\/?\l?;uon

Following |wes| take the coordinates -/ of the extended l
space in £y, rep. Ri=R(A1). Generalised metric M = VinV

t —1 ‘non-linear realisation
—
M(z) = g'M(g~ " 2)g of By b 0y

under rigid F11.
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Ingredlents of Ell ExFT tergl?n l?zl\/?\lllJ;uon

Following |wes| take the coordinates -/ of the extended l
space in £y, rep. Ri=R(A1). Generalised metric M = VinV

t —1 ‘non-linear realisation
—
M(z) = g'M(g~ " 2)g of By b 0y

under rigid £1,. From this construct the current/CM form

Jvrat® = Moy M € R(A1) ® e
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Ingredlents of Ell ExFT tergl?n l?zl\/?\lllJ;uon

Following |wes| take the coordinates -/ of the extended l
space in £y, rep. Ri=R(A1). Generalised metric M = VinV

t —1 ‘non-linear realisation
—
M(z) = g'M(g~ " 2)g of By b 0y

under rigid £1,. From this construct the current/CM form

Jvrat® = Moy M € R(A1) ® e

Useful to write ¢;; In R(A;) representation:
t* s Ty M My, MPPouMsg = JuaT o

Section constraint

1
T TP NOp @ g = —55’M ® 0N + On ® Oy
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Ingredients of //;; ExXFT

Generalised Lie derivative has parameter ¢ ¢ R(A;), e.g.

Se M = LeM = EM Oy M + kg TM Oy EN (MEP + 9T M)
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Ingredients of //;; ExXFT

Generalised Lie derivative has parameter ¢ ¢ R(A;), e.g.
Se M = LeM = EM Oy M + kg TM Oy EN (MEP + 9T M)
Current J,; is non-covariant (‘connection’ M ~19,, M)

5§JM — L,gJM + TaNp (8M8N£P -+ MNQMPRé’Ré?MfQ)ta
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Ingredients of //;; ExXFT

Generalised Lie derivative has parameter ¢ ¢ R(A;), e.g.
SeM = LeM = EM Oy M + kg TM N0y EN (Mt + 7T M)
Current J,; is non-covariant (‘connection’ M ~19,, M)
S¢ s = L + T p(0pOnE” + MyogME0R0NEC ) ta

Question: How to construct gauge-invariant dynamics?
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Generalised Lie derivative has parameter ¢ ¢ R(A;), e.g.
SeM = LeM = EM Oy M + kg TM N0y EN (Mt + 7T M)
Current J,; is non-covariant (‘connection’ M ~19,, M)
S¢ s = L + T p(0pOnE” + MyogME0R0NEC ) ta

Question: How to construct gauge-invariant dynamics?
Curvature? Possibly not of finite order in derivatives...
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Ingredients of //;; ExXFT

Generalised Lie derivative has parameter ¢ ¢ R(A), e.g.
SeM = LeM = EM Oy M + kg TM N0y EN (Mt + 7T M)
Current J,; is non-covariant (‘connection’ M ~19,, M)
S¢ s = L + T p(0pOnE” + MyogME0R0NEC ) ta

Question: How to construct gauge-invariant dynamics?
Curvature? Possibly not of finite order in derivatives...

west|: first-order gauge-variant equations (‘modulo
equations’). Derivatives can remove gauge-dependence
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Ingredients of £ EXFT

Generalised Lie derivative has parameter ¢ ¢ R(A), e.g.
SeM = LeM = EM Oy M + kg TM N0y EN (Mt + 7T M)
Current J,; is non-covariant (‘connection’ M ~19,, M)
S¢ s = L + T p(0pOnE” + MyogME0R0NEC ) ta

Question: How to construct gauge-invariant dynamics?
Curvature? Possibly not of finite order in derivatives...

west|: first-order gauge-variant equations (‘modulo
equations’). Derivatives can remove gauge-dependence

Instead: Use EXFT methods and extra fields for

gauge-invariance today

E11 EXFT-p.8



Tensor hierarchy extension

For any ¢, tensor hierarchy algebra 7 (¢,,) encodes ExFT
fields. Graded Lie superalgebra |paimkisi

T(en) = D Tp(en) T = To )

pEL

T,(e,,) contains the p-forms; Z,-even/odd depending on p
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Tensor hierarchy extension

For any ¢, tensor hierarchy algebra 7 (¢,,) encodes ExFT
fields. Graded Lie superalgebra |paimkisi

T(en) = D Tolen) T3 =T
PEL
T,(e,,) contains the p-forms; Z,-even/odd depending on p

For ¢1,: existence of 7 = 7 (e11) proved in |i7oso1s05 , Structure

To=[enn @ (R(A)®...)] @ [R(A1g) @ ... ]

G 7 |\ 4
Vs Ve

—

adJ DO
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Tensor hierarchy extension

For any ¢, tensor hierarchy algebra 7 (¢,,) encodes ExFT
fields. Graded Lie superalgebra |paimkisi

T(en) = D Tolen) T3 =T
PEL
T,(e,,) contains the p-forms; Z,-even/odd depending on p

For ¢1,: existence of 7 = 7 (e11) proved in |i7oso1s05 , Structure

To=[enn @ (R(A)®...)] @ [R(A1g) @ ... ]

; ad]j Dy
Indecomposable sum
of ¢11 representations

o)
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Tensor hierarchy extension

For any ¢, tensor hierarchy algebra 7 (¢,,) encodes ExFT
fields. Graded Lie superalgebra |paimkisi

T(en) = D Tolen) T3 =T
PEL
T,(e,,) contains the p-forms; Z,-even/odd depending on p

For ¢1,: existence of 7 = 7 (e11) proved in |i7oso1s05 , Structure

To=[enn @ (R(A)®...)] @ [R(A1g) @ ... ]

; ad] Dy

Indecomposable sum , - o ~ o ~
of ¢1; representations WIt€ @s 1% = (¢4, 1%) [, 4%) = —72% 517 — KK 5t

o)
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Tensor hierarchy extension

For any ¢, tensor hierarchy algebra 7 (¢,,) encodes ExFT
fields. Graded Lie superalgebra |paimkisi

T(en) = D Tolen) T3 =T
PEL
T,(e,,) contains the p-forms; Z,-even/odd depending on p

For ¢1,: existence of 7 = 7 (e11) proved in |i7oso1s05 , Structure

To=[enn @ (R(A)®...)] @ [R(A1g) @ ... ]

; ad] Dg

Indecomposable sum , - o ~ o ~
of ¢1; representations WIt€ @s 1% = (¢4, 1%) [, 4%) = —72% 517 — KK 5t

(* *) something entangled with E;!

0 =
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Tensor hierarchy extension

Positive levels 7, are sums of highest weights, e.g.
PM
T = R(Al) D ...




Tensor hierarchy extension

Positive levels 7, are sums of highest weights, e.g.
PM
T = R(Al) D ...

Level 7_ is neither highest nor lowest for ¢ .
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Tensor hierarchy extension

Positive levels 7, are sums of highest weights, e.g.
PM
T = R(Al) D ...
Level 7_ is neither highest nor lowest for ¢ .

For any ¢, It is the flux/embedding tensor representation.
Write its generators ¢;. Has non-deg. symplectic form ;.
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Tensor hierarchy extension

Positive levels 7, are sums of highest weights, e.g.
PM
T = R(Al) D ...

Level 7_ is neither highest nor lowest for ¢ .

For any ¢, it is the flux/embedding tensor representation.
Write its generators ¢;. Has non-deg. symplectic form ;.
We also assume non-deg. K (E;1)-inv. bilinear form 7;; (v

at low levels). Relation Q7% Q1 = 11
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Tensor hierarchy extension

Positive levels 7, are sums of highest weights, e.g.
PM
T = R(Al) D ...

Level 7_ is neither highest nor lowest for ¢ .

For any ¢, It is the flux/embedding tensor representation.
Write its generators ¢;. Has non-deg. symplectic form ;.
We also assume non-deg. K (E;1)-inv. bilinear form 7;; (v

at low Ievels). Relation Q[J??JKQKL = NI
In GL(11) decomposition

. nin9 ninamnsng ni...ny n1...MmoMM
treT : ... KM K K K
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Tensor hierarchy extension

Positive levels 7, are sums of highest weights, e.g.
PM
T = R(Al) D ...

Level 7_ is neither highest nor lowest for ¢ .

For any ¢, It is the flux/embedding tensor representation.
Write its generators ¢;. Has non-deg. symplectic form ;.
We also assume non-deg. K (E;1)-inv. bilinear form 7;; (v

at low levels). Relation Q7% Q1 = 11
In GL(11) decomposition Qs
Y { ¥ Y
t[ c 7'_1 : o ’KTLﬂlQm’ Kn1n2n3n47 [(?”Ll...?”w7 [(?7,1...719;?717 o
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Tensor hierarchy extension

Positive levels 7, are sums of highest weights, e.g.
PM
T = R(Al) D ...

Level 7_ is neither highest nor lowest for ¢ .

For any ¢, It is the flux/embedding tensor representation.
Write its generators ¢;. Has non-deg. symplectic form ;.
We also assume non-deg. K (E;1)-inv. bilinear form 7;; (v

at low levels). Relation Q7% Q1 = 11

In GL(11) decomposition QrJ
\ { ¥ \
t[ c 7'_1 : o ’KTLﬂlQm’ Kn1n2n3n47 [(?”Ll...?”w7 [(?7,1...719;?717 o

= candidate Fy;-covariant duality equation ¢, — Vi) 1,

M F? =QpF/ but what is F1??
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F/q field strengths

Would like F' to contain the ¢;; current components
Iy =r*Jys  — need some tensor with indices 7, M, a
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F/q field strengths

Would like F' to contain the ¢;; current components
Iy =r*Jys  — need some tensor with indices 7, M, a

Level 75 = aﬁ]* © Dj Is the dual of 7y and so includes
generators ¢

E11 ExFT -p.11



F/q field strengths

Would like F' to contain the ¢;; current components
Iy =r*Jys  — need some tensor with indices 7, M, a

Level 75 = zﬁj* © Dj Is the dual of 7y and so includes

generators ¢ not F,; tensor!

Get some F;-invariant tensors from 7, e.g/ Indecomposable

[PVt = ¢! Mgt Mg = (™, ™8
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F/q field strengths

Would like F' to contain the ¢;; current components
Iy =r*Jys  — need some tensor with indices 7, M, a

Level 75 = zﬁj* © Dj Is the dual of 7y and so includes

generators t; not F;; tensor!

Get some F;-invariant tensors from 7, e.g/ Indecomposable

[PVt = ¢! Mgt Mg = (™, ™8

Define new constrained fields

~

Y
F] _ CIM@JMQ 4+ CIM&XMa
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F/q field strengths

Would like F' to contain the ¢;; current components
Iy =r*Jys  — need some tensor with indices 7, M, a

Level 75 = zﬁj* © Dj Is the dual of 7y and so includes

generators 75 not £, tensor!

Get some F;-invariant tensors from 7, e.g/ Indecomposable
[PY i) = ™Mt oMM = (0, ™M 5)

Define new constrained fields

Y & -0 &
F] _ CIM@JMQ ‘|‘CIM&XMa 4+ C]MKCMA

For gauge-invariance of duality equation need more fields
index M ! A
R(Al) X R(Al) — R(2A1) © R(A2) D Rgection
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F/q field strengths

Would like F' to contain the ¢;; current components
Iy =r*Jys  — need some tensor with indices 7, M, a

Level 75 = zﬁj* © Dj Is the dual of 7y and so includes

generators 75 not £, tensor!

Get some F;-invariant tensors from 7, e.g/ Indecomposable

[PVt = ¢! Mgt Mg = (™, ™8

Define new constrained fields

Y & -0 &
F] _ CIM@JMQ ‘|‘CIM&XMa 4+ C]MKCMA

For gauge-invariance of duality equation need more fields
index M ! A
R(Al) X R(Al) — R(2A1) D R(A2) D R§ection

5 A
N %N
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F/1 gauge transformations

ST = Ledur® + T p(0u0nE" + MM 0R0ME?)
Sexm® = Lexp® + T&Np(aM@pr + MNQMPRaRaMfQ)
— HdeMNQaManP

deCr™ = LeCy™ + T opMIYCOy 00"

Eqq1 ExFT-p.12



F/1 gauge transformations

ST = Ledur® + T p(0u0nE" + MM 0R0ME?)
Sexm® = Lexp® + T&NP(aMaN‘fP + MNQMPRaRaMfQ)
— H&QPMNQaManP

deCr™ = LeCy™ + T opMIYCOy 00"

give gauge-invariant duality equation

M F) =Q;,F/

[1907.02080}
if ‘master identity’ satisfied

iIndices moved with n
Only partial proof of this identity available!
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Constrained fields

Why is duality equation not sufficient?




Constrained fields

Why is duality equation not sufficient?

Constrained fields ;% and ¢ MK appear algebraically in
most ! = all equations but £, = «F% ‘empty’
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Constrained fields

Why is duality equation not sufficient?

Constrained fields ;% and ¢ MK appear algebraically in
most ! = all equations but £, = «F% ‘empty’

= need independent equations for constrained fields
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Constrained fields

Why is duality equation not sufficient?

Constrained fields y;,/* and ¢ MK appear algebraically in
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Constrained fields

Why is duality equation not sufficient?

Constrained fields y;,/* and ¢ MK appear algebraically in
most '/ = all equations but £, = «F; ‘empty’

= need independent equations for constrained fields

Expect (pseudo-)Lagrangian of ExFT type [ e |

Samtlebe

Technical point: Recall that for £,, EXFT with n > 8 new
structures appear due to non-closure of generalised
diffeomorphisms [Coimbra, Waldrame} [Berman, Cederwalﬂ [SHohm n} [Cederwalﬂ

Strickland—Constabl AK, Thompson amtlebe Palmkvist| *

Requires ‘ancillary’ gauge parameter .,/ where T labels
FE11 representation R(A3) & ..., index M section constrained.

Have invariant tensor ¢/ p
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1 EXFT pseudo-Lagrangian

Write in terms of four pieces
£E11 — Lpotl —+ LpotQ - Lkin - £top
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Samtlebe Palmkvist

1 1
Lpotl — —Z/iagMMNJMaJNB + §JMQTBMPMPQT&NQJN5

E11 ExFT-p.14



1 EXFT pseudo-Lagrangian

Write in terms of four pieces
£E11 — Lpotl —+ LpotQ - Lkin - £top

‘Universal potential term’ | form | [Cederwall only E4; current

Samtlebe Palmkvist

1 1
Lpotl — —ZliagMMNJMaJNB + §JMQTBMPMPQTQNQJN5

FE11 current
and constrained y ;¢

1 ~ ~ - ~

‘AnCi”ary pOtential term’ [ Hohm n} [Cederwalﬂ

Samtlebe Palmkyvist

Uses the representation with index I furnished by ancillary
gauge transformation. Generalises extra Eg term
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1 EXFT pseudo-Lagrangian

all fields
Lk.n:—/\/ll c!M_cIN 3u NG ——/\/ll CTMGC NS Ty &

[

- ZM]JCJMKCJN@CM (N~ = ZMIJFIFJ + O(¢)
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1 EXFT pseudo-Lagrangian

all fields
Liin = —/\/lf C]MACJN T Jn” ——/\/lf CTMGC NS Ty &

(1D

— ZM]JCIMKCJNQCM (N~ = ZMIJFIFJ + O(¢)

For topological term (no explicit M dependence) take
inspiration from Eg EXFT | Bossard Ciceri |

Inverso, AK, Samtlebe

1 } i - i
Ltop = §H&MN (Qa[MXN]a + J[MaTaQBXN]B + I K, g JNﬁ)

1 ~ 2 .
_ §Q]JCJM&CJNKJM&CNA all fields

First line is rigid F;-invariant dy total derivative
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E11 ExFT

Pseudo-Lagrangian Lz,
® is gauge-invariant: 0:Lp,, = Oy (fMEEu)

# combination of terms fixed by this requirement. Split
somewhat artificial

# when varied w.r.t. constrained fields produces subset of
duality equation M;;F’/ = Q;;F/ = consistent v/

# when varied w.r.t. £, fields gives needed equations for
constrained fields
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E11 ExFT

Pseudo-Lagrangian Lz,
® is gauge-invariant: 0:Lp,, = Oy (fMEEu)

# combination of terms fixed by this requirement. Split
somewhat artificial

# when varied w.r.t. constrained fields produces subset of
duality equation M;;F’/ = Q;;F/ = consistent v/

# when varied w.r.t. £, fields gives needed equations for
constrained fields

Question: How does this describe D = 11 supergravity?
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E11 ExFT and D = 11 SUGRA

Write pseudo-Lagrangian on GGL.(11) solution to
section constraint

1
24!

1
1442

Lo = V(R L R e

el 11Anlngngfn4...n7fn8...n11

- 2
+0(-+-)+ Y _|€1,|” == can be ignored with duality equation
k=2
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E11 ExFT and D = 11 SUGRA

Write pseudo-Lagrangian on GGL.(11) solution to
section constraint

1
24!

1
1442

£E11 — V —g (R o Fnl...n4f’n1...n4) T 6nlmnll"4?7/17’L27713~F.n4...717'F.77/8...77/11

- 2
+0(-+-)+ Y _|€1,|” == can be ignored with duality equation
k=2

Produces exactly D = 11 SUGRA equations of motion
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E11 ExFT and D = 11 SUGRA

Write pseudo-Lagrangian on GGL.(11) solution to
section constraint

1
24!

1
1442

Lo = V(R L R e

gl 11Anlngngfn4...n7fn8...n11

- 2
+0(-+-)+ Y _|€1,|” == can be ignored with duality equation
k=2

Produces exactly D = 11 SUGRA equations of motion
Similar analysis for Fs EXFT

Expect same for GL(D) x Fy1_p (D > 2)
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E11 ExFT and D = 11 SUGRA

Write pseudo-Lagrangian on GGL.(11) solution to
section constraint

1 1

LEll — V _Q(R o ﬁfny..nglfnlmnél) T @gnlmnllAn1n2n3Fn4...n7Fn8...n11

- 2
+0(---)+ > _|€1,]” = can be ignored with duality equation
k=2

Produces exactly D = 11 SUGRA equations of motion
Similar analysis for Fs EXFT
Expect same for GL(D) x Fy1_p (D > 2)

Note: This does not show Fy; invariance of D = 11
SUGRA. Broken by solution to section constraint
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Conclusions

© o o o

Constructed pseudo-Lagrangian and duality equations
invariant under £; generalised diffeomorphisms

ngredients: section constraint, extra constrained fields

Reduces to all known SUGRAS/ExFTs

Dual gravity realised sim. to |wesi| [2outanger

Some remaining assumptions about £~
representations (177, ‘master’ identity)
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representations (177, ‘master’ identity)

What next?

o Clarify relation to cosmological £y model

# Add fermions and supersymmetry? Exotic branes?
o Could do the same for other algebras, D = 4 GR
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Conclusions

o Constructed pseudo-Lagrangian and duality equations
invariant under £; generalised diffeomorphisms

# Ingredients: section constraint, extra constrained fields
# Reduces to all known SUGRAS/ExFTs

» Dual gravity realised sim. to |wes{ [2uanser
o

Hohm

Some remaining assumptions about £~
representations (177, ‘master’ identity)

What next?
o Clarify relation to cosmological £y model
# Add fermions and supersymmetry? Exotic branes?

o Could do the same for other algebras, D = 4 GR
Thank you for your attention

E11 ExXFT-p.18



	
	Context
	Context
	Exceptional field theory (ExFT)
	$E_{11}$ exceptional field theory
	Some facts about $E_{11}$
	Ingredients of $E_{11}$ ExFT
	Ingredients of $E_{11}$ ExFT
	Tensor hierarchy extension
	Tensor hierarchy extension
	$E_{11}$ field strengths
	$E_{11}$ gauge transformations
	Constrained fields
	$E_{11}$ ExFT pseudo-Lagrangian
	$E_{11}$ ExFT pseudo-Lagrangian
	$E_{11}$ ExFT
	$E_{11}$ ExFT and $D=11$ SUGRA
	Conclusions
	
	Non-closure of gen. diffeomorphisms
	$E_{11}$ ExFT and $D=11$ SUGRA
	Dual gravity
	Indecomposable sum
	What about $E_{10}$?

