Axel Kleinschmidt (Albert Einstein Institute, Potsdam)

Quarks 2020/Sakharov centennial, 3 June 2021

Joint work with Guillaume Bossard and Ergin Sezgin

Also in addition with Jakob Palmkvist and Chris Pope

1703.01305 JHEP 1705 (2017) 020

- Toroidal reduction of D=11 supergravity on T^n [Cremmer] \Rightarrow max. SUGRA in D=11-n dimensions with global E_n
- Symmetry acts on scalars non-linearly and p-forms linearly: E_n tensor hierarchy de Wit, Nicolai Samtleben

- Toroidal reduction of D=11 supergravity on T^n Cremmer T^n Dulia T^n T^n Toroidal reduction of T^n T^n T
- Symmetry acts on scalars non-linearly and p-forms linearly: E_n tensor hierarchy de Wit, Nicolai Samtleben
- Part of global E_n stems from local symmetries in D=11

$$M_{11} = M_{11-n} \times T^n$$
 coordinates (x^{μ}, y^m) $\delta_{\xi} g_{mn}(x, y) = L_{\xi} g_{mn} = \xi^p \partial_p g_{mn} + \partial_m \xi^p g_{pn} + \partial_n \xi^p g_{mp}$

for ξ^p along T^n .

- Toroidal reduction of D=11 supergravity on T^n \Rightarrow max. SUGRA in D=11-n dimensions with global E_n
- ullet Symmetry acts on scalars non-linearly and p-forms linearly: E_n tensor hierarchy $\begin{bmatrix} de & Wit, & Nicolai \\ Samtleben \end{bmatrix}$
- Part of global E_n stems from local symmetries in D=11

$$M_{11}=M_{11-n} imes T^n$$
 coordinates (x^μ,y^m) $\delta_\xi g_{mn}(x,x)=L_\xi g_{mn}=\xi^p\partial_p g_{mn}+\partial_m\xi^p g_{pn}+\partial_n\xi^p g_{mp}$ T^n red. $L_\xi G_{mn}=\xi^p\partial_p G_{mn}+\partial_m\xi^p G_{mn}+\partial_n\xi^p G_{mn}$ for ξ^p along T^n . Take $\xi^p=\Lambda^p=\Lambda^p$ with set $\Lambda^p=G_{mn}$

for ξ^p along T^n . Take $\xi^p = \Lambda^p_n y^n$ with cst. $\Lambda^p_n \in GL(n)$

- Toroidal reduction of D=11 supergravity on T^n Cremmer T^n Dulia T^n T^n Toroidal reduction of T^n T^n T
- Symmetry acts on scalars non-linearly and p-forms linearly: E_n tensor hierarchy $\begin{bmatrix} de \ Wit, \ Nicolai \end{bmatrix}$
- Part of global E_n stems from local symmetries in D=11

$$M_{11} = M_{11-n} \times T^n \quad \text{coordinates} \quad (x^\mu, y^m)$$

$$\delta_\xi g_{mn}(x, \mathbf{x}) = L_\xi g_{mn} = \xi^p \partial_{\mathbf{x}} g_{mn} + \partial_m \xi^p g_{pn} + \partial_n \xi^p g_{mp}$$

$$T^n \text{ red.} \quad \text{global } GL(n) \subset E_n \text{ action with } \partial_{\bullet} \xi^{\bullet} \text{ for } \xi^p \text{ along } T^n. \quad \text{Take } \xi^p = \Lambda^p{}_n y^n \text{ with } \underline{\text{cst.}} \ \Lambda^p{}_n \in GL(n)$$

- Toroidal reduction of D=11 supergravity on T^n [Cremmer] \Rightarrow max. SUGRA in D=11-n dimensions with global E_n
- Symmetry acts on scalars non-linearly and p-forms linearly: E_n tensor hierarchy de Wit, Nicolai Samtleben
- Part of global E_n stems from local symmetries in D=11

$$M_{11} = M_{11-n} \times T^n \quad \text{coordinates} \quad (x^\mu, y^m)$$

$$\delta_\xi g_{mn}(x, \chi) = L_\xi g_{mn} = \xi^p \partial_{x} g_{mn} + \partial_{m} \xi^p g_{pn} + \partial_{n} \xi^p g_{mp}$$

$$T^n \text{ red.} \quad \text{Scalar on } M_{11-n} \quad \text{global } GL(n) \subset E_n \text{ action with } \partial_{\bullet} \xi^{\bullet} \text{ for } \xi^p \text{ along } T^n. \quad \text{Take } \xi^p = \Lambda^p{}_n y^n \text{ with } \underline{\text{cst.}} \quad \Lambda^p{}_n \in GL(n)$$

More of E_n from local matter gauge trm. in D=11

■ But \exists also truly hidden E_n transformations. Require specific Chern—Simons term. Important for U-duality...

Is there a similar origin for all of E_n ? [Julia] [West] [Damour, Henneaux] Nicolai

Is there a similar origin for all of E_n ? [Julia] [West] [Damour, Henneaux] Nicolai

One affirmative answer to this is provided by exceptional geometry/exceptional field theory [Coimbra, Waldram Strickland-Constable] [Hohm Samtleben]

Is there a similar origin for all of E_n ? [Julia] [West] [Damour,Henneaux] Nicolai

One affirmative answer to this is provided by exceptional geometry/exceptional field theory [Coimbra, Waldram Strickland-Constable] [Hohm Strickland-Constable] [Samtleben]

Scalar fields $\mathcal{M}=\mathcal{V}^{\dagger}\mathcal{V}$ with $\mathcal{V}\in E_n/K(E_n)$. 'Ancestor symmetry'?

generalised Lie derivative $\delta_{\xi}\mathcal{M}(x,y)=\mathcal{L}_{\xi}\mathcal{M}=\xi^P\partial_P\mathcal{M}+E_n\text{-action with }\partial_{\bullet}\xi^{\bullet}$

Reduces ok on T^n . But...

Is there a similar origin for all of E_n ? [Julia] [West] [Damour, Henneaux] Nicolai

One affirmative answer to this is provided by exceptional geometry/exceptional field theory [Coimbra, Waldram Strickland-Constable] [Hohm Samtleben]

Scalar fields $\mathcal{M} = \mathcal{V}^{\dagger}\mathcal{V}$ with $\mathcal{V} \in E_n/K(E_n)$. 'Ancestor symmetry'?

generalised Lie derivative $\delta_{\mathcal{E}}\mathcal{M}(x,y) = \mathcal{L}_{\mathcal{E}}\mathcal{M} = \xi^P \partial_P \mathcal{M} + E_n$ -action with $\partial_{\bullet} \xi^{\bullet}$

Reduces ok on T^n . But... For \mathfrak{e}_n -valued parameter $\partial_{\bullet} \xi^{\bullet}$ need to extend space since E_n cannot act on torus y^m ! Replace $y^m \to Y^M \in R_1$

Also: Duff West Hull

Is there a similar origin for all of E_n ? [Julia] [West] [Damour,Henneaux] Nicolai

One affirmative answer to this is provided by exceptional geometry/exceptional field theory [Coimbra, Waldram Strickland-Constable] [Hohm Strickland-Constable] [Samtleben]

Scalar fields $\mathcal{M} = \mathcal{V}^{\dagger}\mathcal{V}$ with $\mathcal{V} \in E_n/K(E_n)$. 'Ancestor symmetry'?

generalised Lie derivative

$$\delta_{\xi}\mathcal{M}(x,y) = \dot{\mathcal{L}}_{\xi}\mathcal{M} = \xi^{P}\partial_{P}\mathcal{M} + E_{n}$$
-action with $\partial_{\bullet}\xi^{\bullet}$

Reduces ok on T^n . But... For \mathfrak{e}_n -valued parameter $\partial_{\bullet} \xi^{\bullet}$ need to extend space since E_n cannot act on torus y^m ! Replace $y^m \to Y^M \in R_1$

Also: Duff West Hull

	R_1	R_2
E_6	27	$\overline{27}$
E_7	56	$\textbf{133} \oplus \textbf{1}$
E_8	248	$oxed{3875 \oplus 248 \oplus 1}$

Important point: Gauge transformations $\delta_{\xi} \mathcal{M} = \mathcal{L}_{\xi} \mathcal{M}$ only close when section constraint is imposed (NB $n \leq 7$)

$$\partial_P \otimes \partial_Q \big|_{R_2} = 0$$

Coimbra, Waldram | Berman | Strickland-Constable Perry

Berman, Cederwall AK, Thompson

Important point: Gauge transformations $\delta_{\xi} \mathcal{M} = \mathcal{L}_{\xi} \mathcal{M}$ only close when section constraint is imposed (NB $n \leq 7$)

 E_n invariant \checkmark Any solution (e.g. keeping only y^m) breaks E_n !

$$\partial_P \otimes \partial_Q \big|_{R_2} = 0$$

Coimbra, Waldram Berman Strickland-Constable Perry

Berman, Cederwall AK, Thompson

Important point: Gauge transformations $\delta_{\xi}\mathcal{M} = \mathcal{L}_{\xi}\mathcal{M}$ only close when section constraint is imposed (NB n < 7)

 E_n invariant \checkmark $\partial_P \otimes \partial_Q \big|_{B_2} = 0$ Any solution (e.g. keeping only y^m) breaks $E_n!$

Coimbra, Waldram Berman Strickland-Constable | Perry Berman, Cederwall AK, Thompson

Is there a theory built from the generalised Lie derivative and generalised metric \mathcal{M} , generalising gravity?

Important point: Gauge transformations $\delta_{\xi}\mathcal{M} = \mathcal{L}_{\xi}\mathcal{M}$ only close when section constraint is imposed (NB n < 7)

 E_n invariant \checkmark Any solution (e.g. keeping only y^m) breaks $E_n!$

$$\partial_P \otimes \partial_Q \big|_{R_2} = 0$$

Coimbra, Waldram | Berman

Berman, Cederwall AK, Thompson

Is there a theory built from the generalised Lie derivative and generalised metric \mathcal{M} , generalising gravity?

Include other fields $(g_{\mu\nu}, A_{\mu}^{M}, ...)$ from E_{n} tensor hierarchy and x^{μ} diffeos to obtain E_n ExFT

Hohm $(n \le 8)$

Important point: Gauge transformations $\delta_{\xi} \mathcal{M} = \mathcal{L}_{\xi} \mathcal{M}$ only close when section constraint is imposed (NB $n \leq 7$)

 E_n invariant \checkmark Any solution (e.g. keeping only y^m) breaks E_n !

$$\partial_P \otimes \partial_Q \big|_{R_2} = 0$$

Coimbra, Waldram Berman Strickland-Constable Perry

Berman, Cederwall AK, Thompson

Is there a theory built from the generalised Lie derivative and generalised metric \mathcal{M} , generalising gravity?

Include other fields $(g_{\mu\nu}, A^M_{\mu}, ...)$ from E_n tensor hierarchy and x^{μ} diffeos to obtain E_n ExFT $\begin{bmatrix} \text{Hohm} \\ \text{Samtleben} \end{bmatrix}$ $(n \le 8)$

- Uniquely fixed by symmetries. Contains D = 11 and IIB
- For n = 8 need ancillary gauge parameter for closure of gen. diffeo. Related to extra constrained fields
- For n = 9 these constrained fields are intertwined indecomposably with tensor hierarchy fields $\begin{bmatrix} Bossard, Ciceri \\ Inverso, AK, Samtleben \end{bmatrix}$

Our work: Construct ExFT for E_{11}

pro: no separation external/internal space

contra: hard due to Kac-Moody and constrained fields

Our work: Construct ExFT for E_{11}

pro: no separation external/internal space contra: hard due to Kac-Moody and constrained fields

Draws from ideas from west that predate all ExFT

- Properties of the tensor hierarchy algebra Palmkvist
- Ideas for constrained fields in E_9 ExFT $\begin{bmatrix} Bossard, Ciceri \\ Inverso, AK, Samtleben \end{bmatrix}$

Our work: Construct ExFT for E_{11}

pro: no separation external/internal space contra: hard due to Kac-Moody and constrained fields

- Draws from ideas from west that predate all ExFT
- Properties of the tensor hierarchy algebra Palmkvist
- ullet Ideas for constrained fields in E_9 ExFT ${\color{red} [Bossard, Ciceri Inverso, AK, Samtleben]}$

Results

- ullet Pseudo-Lagrangian and (twisted) duality equation, invariant under E_{11} generalised diffeomorphisms
- Reduces to non-linear D = 11 SUGRA and ExFT

[Need many new E_{11} identities. Most proved, some only partially]

Complete list of generators/ structure constants unknown

Write abstractly:
$$[t^{\alpha}, t^{\beta}] = f^{\alpha\beta}{}_{\gamma}t^{\gamma}$$
 Killing form:

Complete list of generators/ structure constants unknown

Write abstractly:
$$[t^{\alpha}, t^{\beta}] = f^{\alpha\beta}{}_{\gamma}t^{\gamma}$$
 Killing form:

Possible to define highest weight representations $R(\Lambda)$ | Kac Conjugate lowest weight $\overline{R(\Lambda)}$ hst. weight, comb. of fund. weights Λ_i

Complete list of generators/ structure constants unknown

Write abstractly:
$$[t^{\alpha}, t^{\beta}] = f^{\alpha\beta}{}_{\gamma}t^{\gamma}$$
 Killing form: $\kappa^{\alpha\beta}$

Possible to define highest weight representations $R(\Lambda)$ [Kac]

Conjugate lowest weight $\overline{R(\Lambda)}$ hst. weight, comb. of fund. weights Λ_i

Useful to consider graded decompositions west Fischbacher Nicolai

adjoint \mathfrak{e}_{11} : ..., $F_{n_1 n_2 n_3}$, $K^m{}_n$, $E^{n_1 n_2 n_3}$, $E^{n_1 \dots n_6}$, $E^{n_1 \dots n_8, n_9}$, ...

$$R(\Lambda_1): \ldots, P_{n_1...n_5}, P_{n_1n_2}, P^m$$

Write abstractly: $[t^{\alpha}, t^{\beta}] = f^{\alpha\beta}{}_{\gamma}t^{\gamma}$ Killing form:

Possible to define highest weight representations $R(\Lambda)$ [kac] Conjugate lowest weight $\overline{R(\Lambda)}$ hst. weight, comb. of fund. weights Λ_i

Useful to consider graded decompositions [west] [Fischbacher] Nicolai

$$m,n=0,1,\dots,10 \qquad \qquad \text{gravity} \\ \ell=-1 \quad \ell=0 \qquad \ell=1 \qquad \ell=2 \qquad \begin{array}{c} \text{dual} \\ \text{graviton} \\ \ell=3 \end{array}$$

adjoint \mathfrak{e}_{11} : ..., $F_{n_1 n_2 n_3}$, $K^m{}_n$, $E^{n_1 n_2 n_3}$, $E^{n_1 ... n_6}$, $E^{n_1 ... n_8, n_9}$, ...

$$R(\Lambda_1): \ldots, P_{n_1...n_5}, P_{n_1n_2}, P^m$$

Complete list of generators/ structure constants unknown

Write abstractly:
$$[t^{\alpha}, t^{\beta}] = f^{\alpha\beta}{}_{\gamma}t^{\gamma}$$
 Killing form:

Possible to define highest weight representations $R(\Lambda)$ [Kac]

Conjugate lowest weight $\overline{R(\Lambda)}$ hst. weight, comb. of fund. weights Λ_i

Useful to consider graded decompositions west Fischbacher Nicolai

$$m,n=0,1,\dots,10 \qquad \qquad \underset{\ell=-1}{\text{gravity}} \qquad \text{3-form 6-form } \qquad \underset{\ell=3}{\text{dual graviton}}$$

adjoint
$$\mathfrak{e}_{11}$$
: ..., $F_{n_1 n_2 n_3}$, $K^m{}_n$, $E^{n_1 n_2 n_3}$, $E^{n_1 \dots n_6}$, $E^{n_1 \dots n_8, n_9}$, ...

$$R(\Lambda_1):$$
 ..., $P_{n_1...n_5}, P_{n_1n_2}, P^m \longrightarrow D = 11$ coords $\ell = -\frac{7}{2}, \ell = -\frac{5}{2}, \ell = -\frac{3}{2}$ (other: 'brane coords')

Ingredients of E_{11} ExFT temp. involution $\exists \ln R(\Lambda_1)$

Following [west] take the coordinates z^M of the extended space in E_{11} rep. $R_1 = R(\Lambda_1)$. Generalised metric $\mathcal{M} = \mathcal{V}^{\dagger} \eta \mathcal{V}$

$$\mathcal{M}(z) \to g^{\dagger} \mathcal{M}(g^{-1}z)g$$

'non-linear realisation of $E_{11} \ltimes \ell_1$ '

under rigid E_{11} .

Ingredients of E_{11} ExFT temp. involution $\exists \ln R(\Lambda_1)$

Following [west] take the coordinates z^M of the extended space in E_{11} rep. $R_1 = R(\Lambda_1)$. Generalised metric $\mathcal{M} = \mathcal{V}^{\dagger} \eta \mathcal{V}$

$$\mathcal{M}(z) \to g^{\dagger} \mathcal{M}(g^{-1}z)g$$

'non-linear realisation of $E_{11} \ltimes \ell_1$ '

under rigid E_{11} . From this construct the current/CM form

$$J_{M\alpha}t^{\alpha} = \mathcal{M}^{-1}\partial_{M}\mathcal{M}$$

$$\in \overline{R(\Lambda_1)} \otimes \mathfrak{e}_{11}$$

Ingredients of E_{11} ExFT temp. involution $\exists \ln R(\Lambda_1)$

Following [west] take the coordinates z^M of the extended space in E_{11} rep. $R_1 = R(\Lambda_1)$. Generalised metric $\mathcal{M} = \mathcal{V}^{\dagger} \eta \mathcal{V}$

$$\mathcal{M}(z) \to g^{\dagger} \mathcal{M}(g^{-1}z)g$$

'non-linear realisation of $E_{11} \ltimes \ell_1$ '

under rigid E_{11} . From this construct the current/CM form

$$J_{M\alpha}t^{\alpha} = \mathcal{M}^{-1}\partial_{M}\mathcal{M}$$

$$\in \overline{R(\Lambda_1)} \otimes \mathfrak{e}_{11}$$

Useful to write \mathfrak{e}_{11} in $R(\Lambda_1)$ representation:

$$t^{\alpha} \mapsto T^{\alpha M}{}_{N}, \quad \mathcal{M} \mapsto \mathcal{M}_{MN}, \quad \mathcal{M}^{PS} \partial_{M} \mathcal{M}_{SQ} = J_{M\alpha} T^{\alpha P}{}_{Q}$$

Section constraint

$$T^{\alpha P}{}_{M}T_{\alpha}{}^{Q}{}_{N}\partial_{P}\otimes\partial_{Q}=-\frac{1}{2}\partial_{M}\otimes\partial_{N}+\partial_{N}\otimes\partial_{M}$$

Generalised Lie derivative has parameter $\xi^M \in R(\Lambda_1)$, e.g.

$$\delta_{\xi}\mathcal{M} = \mathcal{L}_{\xi}\mathcal{M} = \xi^{M}\partial_{M}\mathcal{M} + \kappa_{\alpha\beta}T^{\alpha M}{}_{N}\partial_{M}\xi^{N}\left(\mathcal{M}t^{\beta} + t^{\beta\dagger}\mathcal{M}\right)$$

Generalised Lie derivative has parameter $\xi^M \in R(\Lambda_1)$, e.g.

$$\delta_{\xi}\mathcal{M} = \mathcal{L}_{\xi}\mathcal{M} = \xi^{M}\partial_{M}\mathcal{M} + \kappa_{\alpha\beta}T^{\alpha M}{}_{N}\partial_{M}\xi^{N}\left(\mathcal{M}t^{\beta} + t^{\beta\dagger}\mathcal{M}\right)$$

Current J_M is non-covariant ('connection' $\mathcal{M}^{-1}\partial_M \mathcal{M}$)

$$\delta_{\xi} J_{M} = \mathcal{L}_{\xi} J_{M} + T^{\alpha N}{}_{P} (\partial_{M} \partial_{N} \xi^{P} + \mathcal{M}_{NQ} \mathcal{M}^{PR} \partial_{R} \partial_{M} \xi^{Q}) t_{\alpha}$$

Generalised Lie derivative has parameter $\xi^M \in R(\Lambda_1)$, e.g.

$$\delta_{\xi}\mathcal{M} = \mathcal{L}_{\xi}\mathcal{M} = \xi^{M}\partial_{M}\mathcal{M} + \kappa_{\alpha\beta}T^{\alpha M}{}_{N}\partial_{M}\xi^{N}\left(\mathcal{M}t^{\beta} + t^{\beta\dagger}\mathcal{M}\right)$$

Current J_M is non-covariant ('connection' $\mathcal{M}^{-1}\partial_M \mathcal{M}$)

$$\delta_{\xi} J_{M} = \mathcal{L}_{\xi} J_{M} + T^{\alpha N}{}_{P} (\partial_{M} \partial_{N} \xi^{P} + \mathcal{M}_{NQ} \mathcal{M}^{PR} \partial_{R} \partial_{M} \xi^{Q}) t_{\alpha}$$

Question: How to construct gauge-invariant dynamics?

Generalised Lie derivative has parameter $\xi^M \in R(\Lambda_1)$, e.g.

$$\delta_{\xi}\mathcal{M} = \mathcal{L}_{\xi}\mathcal{M} = \xi^{M}\partial_{M}\mathcal{M} + \kappa_{\alpha\beta}T^{\alpha M}{}_{N}\partial_{M}\xi^{N}\left(\mathcal{M}t^{\beta} + t^{\beta\dagger}\mathcal{M}\right)$$

Current J_M is non-covariant ('connection' $\mathcal{M}^{-1}\partial_M \mathcal{M}$)

$$\delta_{\xi} J_{M} = \mathcal{L}_{\xi} J_{M} + T^{\alpha N}{}_{P} (\partial_{M} \partial_{N} \xi^{P} + \mathcal{M}_{NQ} \mathcal{M}^{PR} \partial_{R} \partial_{M} \xi^{Q}) t_{\alpha}$$

Question: How to construct gauge-invariant dynamics?

Curvature? Possibly not of finite order in derivatives...

Generalised Lie derivative has parameter $\xi^M \in R(\Lambda_1)$, e.g.

$$\delta_{\xi}\mathcal{M} = \mathcal{L}_{\xi}\mathcal{M} = \xi^{M}\partial_{M}\mathcal{M} + \kappa_{\alpha\beta}T^{\alpha M}{}_{N}\partial_{M}\xi^{N}\left(\mathcal{M}t^{\beta} + t^{\beta\dagger}\mathcal{M}\right)$$

Current J_M is non-covariant ('connection' $\mathcal{M}^{-1}\partial_M \mathcal{M}$)

$$\delta_{\xi} J_{M} = \mathcal{L}_{\xi} J_{M} + T^{\alpha N}{}_{P} (\partial_{M} \partial_{N} \xi^{P} + \mathcal{M}_{NQ} \mathcal{M}^{PR} \partial_{R} \partial_{M} \xi^{Q}) t_{\alpha}$$

Question: How to construct gauge-invariant dynamics?

Curvature? Possibly not of finite order in derivatives...

[west]: first-order gauge-<u>variant</u> equations ('modulo equations'). Derivatives can remove gauge-dependence

Generalised Lie derivative has parameter $\xi^M \in R(\Lambda_1)$, e.g.

$$\delta_{\xi}\mathcal{M} = \mathcal{L}_{\xi}\mathcal{M} = \xi^{M}\partial_{M}\mathcal{M} + \kappa_{\alpha\beta}T^{\alpha M}{}_{N}\partial_{M}\xi^{N}\left(\mathcal{M}t^{\beta} + t^{\beta\dagger}\mathcal{M}\right)$$

Current J_M is non-covariant ('connection' $\mathcal{M}^{-1}\partial_M \mathcal{M}$)

$$\delta_{\xi} J_{M} = \mathcal{L}_{\xi} J_{M} + T^{\alpha N}{}_{P} (\partial_{M} \partial_{N} \xi^{P} + \mathcal{M}_{NQ} \mathcal{M}^{PR} \partial_{R} \partial_{M} \xi^{Q}) t_{\alpha}$$

Question: How to construct gauge-invariant dynamics?

Curvature? Possibly not of finite order in derivatives...

[west]: first-order gauge-<u>variant</u> equations ('modulo equations'). Derivatives can remove gauge-dependence

Instead: Use ExFT methods and extra fields for gauge-invariance

today

Tensor hierarchy extension

For any e_n tensor hierarchy algebra $\mathcal{T}(e_n)$ encodes ExFT fields. Graded Lie superalgebra Palmkvist

$$\mathcal{T}(\mathfrak{e}_n) = \bigoplus_{p \in \mathbb{Z}} \mathcal{T}_p(\mathfrak{e}_n) \qquad \qquad \left[\mathcal{T}_p \cong \mathcal{T}_{9-n-p}^*\right]$$

 $\mathcal{T}_p(\mathfrak{e}_n)$ contains the p-forms; \mathbb{Z}_2 -even/odd depending on p

Tensor hierarchy extension

For any e_n tensor hierarchy algebra $\mathcal{T}(e_n)$ encodes ExFT fields. Graded Lie superalgebra Palmkvist

$$\mathcal{T}(\mathfrak{e}_n) = \bigoplus_{p \in \mathbb{Z}} \mathcal{T}_p(\mathfrak{e}_n) \qquad \qquad \left[\mathcal{T}_p \cong \mathcal{T}_{9-n-p}^*\right]$$

 $\mathcal{T}_p(\mathfrak{e}_n)$ contains the p-forms; \mathbb{Z}_2 -even/odd depending on p

For \mathfrak{e}_{11} : existence of $\mathcal{T}\equiv\mathcal{T}(\mathfrak{e}_{11})$ proved in [1703.01305], structure

$$\mathcal{T}_0 = \underbrace{\begin{bmatrix} \mathfrak{e}_{11} \oplus (R(\Lambda_2) \oplus \ldots) \end{bmatrix}}_{\widehat{\mathrm{adj}}} \oplus \underbrace{\begin{bmatrix} R(\Lambda_{10}) \oplus \ldots \end{bmatrix}}_{D_0}$$

Tensor hierarchy extension

For any e_n tensor hierarchy algebra $\mathcal{T}(e_n)$ encodes ExFT fields. Graded Lie superalgebra Palmkvist

$$\mathcal{T}(\mathfrak{e}_n) = \bigoplus_{p \in \mathbb{Z}} \mathcal{T}_p(\mathfrak{e}_n) \qquad \qquad \left[\mathcal{T}_p \cong \mathcal{T}_{9-n-p}^*\right]$$

 $\mathcal{T}_p(\mathfrak{e}_n)$ contains the p-forms; \mathbb{Z}_2 -even/odd depending on p

For \mathfrak{e}_{11} : existence of $\mathcal{T}\equiv\mathcal{T}(\mathfrak{e}_{11})$ proved in [1703.01305], structure

$$\mathcal{T}_0 = \underbrace{\begin{bmatrix} \mathfrak{e}_{11} \oplus (R(\Lambda_2) \oplus \ldots) \end{bmatrix}}_{\widehat{\mathrm{adj}}} \oplus \underbrace{\begin{bmatrix} R(\Lambda_{10}) \oplus \ldots \end{bmatrix}}_{D_0}$$

indecomposable sum of e_{11} representations

$$\begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$$

For any e_n tensor hierarchy algebra $\mathcal{T}(e_n)$ encodes ExFT fields. Graded Lie superalgebra Palmkvist

$$\mathcal{T}(\mathfrak{e}_n) = \bigoplus_{p \in \mathbb{Z}} \mathcal{T}_p(\mathfrak{e}_n) \qquad \left[\mathcal{T}_p \cong \mathcal{T}_{9-n-p}^*\right]$$

 $\mathcal{T}_p(\mathfrak{e}_n)$ contains the p-forms; \mathbb{Z}_2 -even/odd depending on p

For \mathfrak{e}_{11} : existence of $\mathcal{T}\equiv\mathcal{T}(\mathfrak{e}_{11})$ proved in [1703.01305], structure

$$\mathcal{T}_0 = \underbrace{ \left[\mathfrak{e}_{11} \oplus \left(R(\Lambda_2) \oplus \ldots \right) \right]}_{\widehat{\operatorname{adj}}} \oplus \underbrace{ \left[R(\Lambda_{10}) \oplus \ldots \right]}_{D_0}$$
 indecomposable sum of \mathfrak{e}_{11} representations write as $t^{\widehat{\alpha}} = (t^{\alpha}, t^{\widetilde{\alpha}})$ $[t^{\alpha}, t^{\widetilde{\alpha}}] = -T^{\alpha \widetilde{\alpha}}{}_{\widetilde{\beta}} t^{\widetilde{\beta}} - K^{\alpha \widetilde{\alpha}}{}_{\beta} t^{\beta}$

For any e_n tensor hierarchy algebra $\mathcal{T}(e_n)$ encodes ExFT fields. Graded Lie superalgebra Palmkvist

$$\mathcal{T}(\mathfrak{e}_n) = \bigoplus_{p \in \mathbb{Z}} \mathcal{T}_p(\mathfrak{e}_n) \qquad \left[\mathcal{T}_p \cong \mathcal{T}_{9-n-p}^* \right]$$

 $\mathcal{T}_p(\mathfrak{e}_n)$ contains the p-forms; \mathbb{Z}_2 -even/odd depending on p

For \mathfrak{e}_{11} : existence of $\mathcal{T}\equiv\mathcal{T}(\mathfrak{e}_{11})$ proved in [1703.01305], structure

$$\mathcal{T}_0 = \underbrace{\begin{bmatrix} \mathfrak{e}_{11} \oplus (R(\Lambda_2) \oplus \ldots) \end{bmatrix}}_{\widehat{\mathrm{adj}}} \oplus \underbrace{\begin{bmatrix} R(\Lambda_{10}) \oplus \ldots \end{bmatrix}}_{D_0}$$

indecomposable sum of e_{11} representations

$$\begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$$

write as $t^{\widehat{\alpha}}=\left(t^{\alpha},t^{\widetilde{\alpha}}\right)$ $\left[t^{\alpha},t^{\widetilde{\alpha}}\right]=-T^{\alpha\widetilde{\alpha}}{}_{\widetilde{\beta}}t^{\widetilde{\beta}}-K^{\alpha\widetilde{\alpha}}{}_{\beta}t^{\beta}$

something entangled with $E_{11}!$

Positive levels $\mathcal{T}_{p>0}$ are sums of highest weights, e.g.

$$\mathcal{T}_1 = R(\Lambda_1) \oplus \dots$$

Positive levels $\mathcal{T}_{p>0}$ are sums of highest weights, e.g.

$$\mathcal{T}_1 = R(\Lambda_1) \oplus \dots$$

Level \mathcal{T}_{-1} is neither highest nor lowest for \mathfrak{e}_{11} .

Positive levels $\mathcal{T}_{p>0}$ are sums of highest weights, e.g.

$$\mathcal{T}_1 = R(\Lambda_1) \oplus \dots$$

Level \mathcal{T}_{-1} is neither highest nor lowest for \mathfrak{e}_{11} .

For any \mathfrak{e}_n it is the flux/embedding tensor representation. Write its generators t_I . Has non-deg. symplectic form Ω_{IJ} .

Positive levels $\mathcal{T}_{p>0}$ are sums of highest weights, e.g.

$$\mathcal{T}_1 = R(\Lambda_1) \oplus \dots$$

Level \mathcal{T}_{-1} is neither highest nor lowest for \mathfrak{e}_{11} .

For any \mathfrak{e}_n it is the flux/embedding tensor representation. Write its generators t_I . Has non-deg. symplectic form Ω_{IJ} . We also <u>assume</u> non-deg. $K(E_{11})$ -inv. bilinear form η_{IJ} (\checkmark at low levels). Relation $\Omega_{IJ}\eta^{JK}\Omega_{KL}=\eta_{IL}$

Positive levels $\mathcal{T}_{p>0}$ are sums of highest weights, e.g.

$$\mathcal{T}_1 = R(\Lambda_1) \oplus \dots$$

Level \mathcal{T}_{-1} is neither highest nor lowest for \mathfrak{e}_{11} .

For any \mathfrak{e}_n it is the flux/embedding tensor representation. Write its generators t_I . Has non-deg. symplectic form Ω_{IJ} . We also <u>assume</u> non-deg. $K(E_{11})$ -inv. bilinear form η_{IJ} (\checkmark at low levels). Relation $\Omega_{IJ}\eta^{JK}\Omega_{KL}=\eta_{IL}$ In GL(11) decomposition

$$t_I \in \mathcal{T}_{-1}: \ldots, K^{n_1 n_2}_m, K^{n_1 n_2 n_3 n_4}, K^{n_1 \ldots n_7}, K^{n_1 \ldots n_9; m}, \ldots$$

Positive levels $\mathcal{T}_{p>0}$ are sums of highest weights, e.g.

$$\mathcal{T}_1 = R(\Lambda_1) \oplus \dots$$

Level \mathcal{T}_{-1} is neither highest nor lowest for \mathfrak{e}_{11} .

For any \mathfrak{e}_n it is the flux/embedding tensor representation. Write its generators t_I . Has non-deg. symplectic form Ω_{IJ} . We also <u>assume</u> non-deg. $K(E_{11})$ -inv. bilinear form η_{IJ} (\checkmark

at low levels). Relation $\Omega_{IJ}\eta^{JK}\Omega_{KL}=\eta_{IL}$

In GL(11) decomposition

$$t_I \in \mathcal{T}_{-1}: \dots, K^{n_1 n_2}_m, K^{n_1 n_2 n_3 n_4}, K^{n_1 \dots n_7}, K^{n_1 \dots n_9; m}, \dots$$

Positive levels $\mathcal{T}_{p>0}$ are sums of highest weights, e.g.

$$\mathcal{T}_1 = R(\Lambda_1) \oplus \dots$$

Level \mathcal{T}_{-1} is neither highest nor lowest for \mathfrak{e}_{11} .

For any \mathfrak{e}_n it is the flux/embedding tensor representation. Write its generators t_I . Has non-deg. symplectic form Ω_{IJ} . We also <u>assume</u> non-deg. $K(E_{11})$ -inv. bilinear form η_{IJ} (\checkmark

at low levels). Relation $\Omega_{IJ}\eta^{JK}\Omega_{KL}=\eta_{IL}$

In GL(11) decomposition

$$t_I \in \mathcal{T}_{-1}: \dots, K^{n_1 n_2}_m, K^{n_1 n_2 n_3 n_4}, K^{n_1 \dots n_7}, K^{n_1 \dots n_9; m}, \dots$$

 \Rightarrow candidate E_{11} -covariant duality equation

$$\mathcal{M}_{IJ}F^J = \Omega_{IJ}F^J$$

$$\mathcal{M}_{IJ} = (\mathcal{V}^{\dagger} \eta \mathcal{V})_{IJ}$$

but what is F^I ??

Would like F^I to contain the \mathfrak{e}_{11} current components $J_M{}^\alpha = \kappa^{\alpha\beta} J_{M\beta} \longrightarrow$ need some tensor with indices I, M, α

Would like F^I to contain the \mathfrak{e}_{11} current components $J_M{}^\alpha = \kappa^{\alpha\beta} J_{M\beta} \longrightarrow$ need some tensor with indices I, M, α

Level $\mathcal{T}_{-2}=\widehat{\operatorname{adj}}^*\oplus D_0^*$ is the dual of \mathcal{T}_0 and so includes generators $\bar{t}_{\widehat{\alpha}}$

Would like F^I to contain the \mathfrak{e}_{11} current components $J_M{}^\alpha = \kappa^{\alpha\beta} J_{M\beta} \longrightarrow$ need some tensor with indices I, M, α

Level $\mathcal{T}_{-2} = \widehat{\operatorname{adj}}^* \oplus D_0^*$ is the dual of \mathcal{T}_0 and so includes generators $\overline{t}_{\widehat{\alpha}}$ not E_{11} tensor!

Get some E_{11} -invariant tensors from \mathcal{T} , e.g./ Indecomposable

$$[P^M, \bar{t}_{\widehat{\alpha}}] = C^{IM}{}_{\widehat{\alpha}} t_I, \qquad C^{IM}{}_{\widehat{\alpha}} = (C^{IM}{}_{\alpha}, C^{IM}{}_{\widehat{\alpha}})$$

Would like F^I to contain the \mathfrak{e}_{11} current components $J_M{}^\alpha = \kappa^{\alpha\beta} J_{M\beta} \longrightarrow$ need some tensor with indices I, M, α

Level $\mathcal{T}_{-2} = \widehat{\operatorname{adj}}^* \oplus D_0^*$ is the dual of \mathcal{T}_0 and so includes generators $\overline{t}_{\widehat{\alpha}}$ not E_{11} tensor!

Get some E_{11} -invariant tensors from \mathcal{T} , e.g./ Indecomposable

$$[P^M, \bar{t}_{\widehat{\alpha}}] = C^{IM}{}_{\widehat{\alpha}} t_I, \qquad C^{IM}{}_{\widehat{\alpha}} = (C^{IM}{}_{\alpha}, C^{IM}{}_{\widehat{\alpha}})$$

Define

new constrained fields

$$F^{I} = C^{IM}{}_{\alpha}J_{M}{}^{\alpha} + C^{IM}{}_{\tilde{\alpha}}\chi_{M}{}^{\tilde{\alpha}}$$

Would like F^I to contain the \mathfrak{e}_{11} current components $J_M{}^\alpha = \kappa^{\alpha\beta} J_{M\beta} \longrightarrow$ need some tensor with indices I, M, α

Level $\mathcal{T}_{-2} = \widehat{\operatorname{adj}}^* \oplus D_0^*$ is the dual of \mathcal{T}_0 and so includes generators $\overline{t}_{\widehat{\alpha}}$ not E_{11} tensor!

Get some E_{11} -invariant tensors from \mathcal{T} , e.g./ Indecomposable

$$[P^M, \bar{t}_{\widehat{\alpha}}] = C^{IM}{}_{\widehat{\alpha}} t_I, \qquad C^{IM}{}_{\widehat{\alpha}} = (C^{IM}{}_{\alpha}, C^{IM}{}_{\widehat{\alpha}})$$

Define

new constrained fields

$$F^{I} = C^{IM}{}_{\alpha}J_{M}{}^{\alpha} + C^{IM}{}_{\tilde{\alpha}}\chi_{M}{}^{\tilde{\alpha}} + C^{IM}{}_{\hat{\Lambda}}\zeta_{M}{}^{\hat{\Lambda}}$$

For gauge-invariance of duality equation need more fields index M

index
$$M \atop R(\Lambda_1) \otimes R(\Lambda_1) = R(2\Lambda_1) \oplus R(\Lambda_2) \oplus R_{\text{section}}$$

Would like F^I to contain the \mathfrak{e}_{11} current components $J_M{}^\alpha = \kappa^{\alpha\beta} J_{M\beta} \longrightarrow$ need some tensor with indices I, M, α

Level $\mathcal{T}_{-2} = \widehat{\operatorname{adj}}^* \oplus D_0^*$ is the dual of \mathcal{T}_0 and so includes generators $\overline{t}_{\widehat{\alpha}}$ not E_{11} tensor!

Get some E_{11} -invariant tensors from \mathcal{T} , e.g./ Indecomposable

$$[P^M, \bar{t}_{\widehat{\alpha}}] = C^{IM}{}_{\widehat{\alpha}} t_I, \qquad C^{IM}{}_{\widehat{\alpha}} = (C^{IM}{}_{\alpha}, C^{IM}{}_{\widehat{\alpha}})$$

Define

new constrained fields

$$F^{I} = C^{IM}{}_{\alpha}J_{M}{}^{\alpha} + C^{IM}{}_{\tilde{\alpha}}\chi_{M}{}^{\tilde{\alpha}} + C^{IM}{}_{\hat{\Lambda}}\zeta_{M}{}^{\hat{\Lambda}}$$

For gauge-invariance of duality equation need more fields

E_{11} gauge transformations

$$\delta_{\xi} J_{M}{}^{\alpha} = \mathcal{L}_{\xi} J_{M}{}^{\alpha} + T^{\alpha N}{}_{P} (\partial_{M} \partial_{N} \xi^{P} + \mathcal{M}_{NQ} \mathcal{M}^{PR} \partial_{R} \partial_{M} \xi^{Q})$$

$$\delta_{\xi} \chi_{M}{}^{\tilde{\alpha}} = \mathcal{L}_{\xi} \chi_{M}{}^{\tilde{\alpha}} + T^{\tilde{\alpha}N}{}_{P} (\partial_{M} \partial_{N} \xi^{P} + \mathcal{M}_{NQ} \mathcal{M}^{PR} \partial_{R} \partial_{M} \xi^{Q})$$

$$+ \Pi^{\tilde{\alpha}}{}_{QP} \mathcal{M}^{NQ} \partial_{M} \partial_{Q} \xi^{P}$$

$$\delta_{\xi} \zeta_{M}{}^{\hat{\Lambda}} = \mathcal{L}_{\xi} \zeta_{M}{}^{\hat{\Lambda}} + \Pi^{\hat{\Lambda}}{}_{QP} \mathcal{M}^{NQ} \partial_{M} \partial_{Q} \xi^{P}$$

E_{11} gauge transformations

$$\delta_{\xi} J_{M}{}^{\alpha} = \mathcal{L}_{\xi} J_{M}{}^{\alpha} + T^{\alpha N}{}_{P} (\partial_{M} \partial_{N} \xi^{P} + \mathcal{M}_{NQ} \mathcal{M}^{PR} \partial_{R} \partial_{M} \xi^{Q})$$

$$\delta_{\xi} \chi_{M}{}^{\tilde{\alpha}} = \mathcal{L}_{\xi} \chi_{M}{}^{\tilde{\alpha}} + T^{\tilde{\alpha}N}{}_{P} (\partial_{M} \partial_{N} \xi^{P} + \mathcal{M}_{NQ} \mathcal{M}^{PR} \partial_{R} \partial_{M} \xi^{Q})$$

$$+ \Pi^{\tilde{\alpha}}{}_{QP} \mathcal{M}^{NQ} \partial_{M} \partial_{Q} \xi^{P}$$

$$\delta_{\xi} \zeta_{M}{}^{\hat{\Lambda}} = \mathcal{L}_{\xi} \zeta_{M}{}^{\hat{\Lambda}} + \Pi^{\hat{\Lambda}}{}_{QP} \mathcal{M}^{NQ} \partial_{M} \partial_{Q} \xi^{P}$$

give gauge-invariant duality equation

$$\mathcal{M}_{IJ}F^J = \Omega_{IJ}F^J$$

1907.02080

if 'master identity' satisfied

$$\Omega_{IJ}C^{JM}{}_{\widehat{\alpha}}T^{\widehat{\alpha}N}{}_{Q} = \overline{C}_{IQ}{}^{\widetilde{\beta}}\Pi_{\widetilde{\beta}}{}^{MN} + \overline{C}_{IQ}{}^{\widehat{\Lambda}}\Pi_{\widehat{\Lambda}}{}^{MN}$$
 indices moved with η

Only partial proof of this identity available!

Why is duality equation not sufficient?

Why is duality equation not sufficient? Constrained fields $\chi_M{}^{\tilde{\alpha}}$ and $\zeta_M{}^{\hat{\Lambda}}$ appear algebraically in most $F^I \Rightarrow$ all equations but $F_4 = \star F_7$ 'empty'

Why is duality equation not sufficient?

Constrained fields $\chi_M^{\tilde{\alpha}}$ and $\zeta_M^{\tilde{\Lambda}}$ appear algebraically in most $F^I \Rightarrow$ all equations but $F_4 = \star F_7$ 'empty'

⇒ need independent equations for constrained fields

Why is duality equation not sufficient? Constrained fields $\chi_M{}^{\tilde{\alpha}}$ and $\zeta_M{}^{\hat{\Lambda}}$ appear algebraically in most $F^I \Rightarrow$ all equations but $F_4 = \star F_7$ 'empty' \Rightarrow need independent equations for constrained fields

Theed independent equations for constrained news

Expect (pseudo-)Lagrangian of ExFT type [Hohm | Samtleben]

Why is duality equation not sufficient?

Constrained fields $\chi_M^{\tilde{\alpha}}$ and $\zeta_M^{\tilde{\Lambda}}$ appear algebraically in most $F^I \Rightarrow$ all equations but $F_4 = \star F_7$ 'empty'

⇒ need independent equations for constrained fields

Expect (pseudo-)Lagrangian of ExFT type Samtleben

Technical point: Recall that for E_n ExFT with $n \geq 8$ new structures appear due to non-closure of generalised diffeomorphisms $\begin{bmatrix} \text{Coimbra, Waldram } \\ \text{Strickland-Constable} \end{bmatrix}$ $\begin{bmatrix} \text{Berman, Cederwall } \\ \text{AK, Thompson} \end{bmatrix}$ $\begin{bmatrix} \text{Cederwall } \\ \text{Samtleben} \end{bmatrix}$ $\begin{bmatrix} \text{Cederwall } \\ \text{Palmkvist} \end{bmatrix}$.

Requires 'ancillary' gauge parameter $\Sigma_M{}^{\tilde{I}}$ where \tilde{I} labels E_{11} representation $R(\Lambda_3)\oplus\ldots$, index M section constrained. Have invariant tensor $C^{\tilde{I}}{}_{P\widehat{\alpha}}$

Write in terms of four pieces

$$\mathcal{L}_{E_{11}} = \mathcal{L}_{\mathsf{pot}_1} + \mathcal{L}_{\mathsf{pot}_2} + \mathcal{L}_{\mathsf{kin}} + \mathcal{L}_{\mathsf{top}}$$

Write in terms of four pieces

$$\mathcal{L}_{E_{11}} = \mathcal{L}_{\mathsf{pot}_1} + \mathcal{L}_{\mathsf{pot}_2} + \mathcal{L}_{\mathsf{kin}} + \mathcal{L}_{\mathsf{top}}$$

'Universal potential term' $\frac{|Hohm|}{|Samtleben|}$ $\frac{|Cederwall|}{|Palmkvist|}$ only E_{11} current

$$\mathcal{L}_{\mathsf{pot}_1} = -\frac{1}{4} \kappa_{\alpha\beta} \mathcal{M}^{MN} J_M{}^{\alpha} J_N{}^{\beta} + \frac{1}{2} J_{M\alpha} T^{\beta M}{}_P \mathcal{M}^{PQ} T^{\alpha N}{}_Q J_{N\beta}$$

Write in terms of four pieces

$$\mathcal{L}_{E_{11}} = \mathcal{L}_{\mathsf{pot}_1} + \mathcal{L}_{\mathsf{pot}_2} + \mathcal{L}_{\mathsf{kin}} + \mathcal{L}_{\mathsf{top}}$$

'Universal potential term' $\frac{|Hohm|}{|Samtleben|}$ $\frac{|Cederwall|}{|Palmkvist|}$ only E_{11} current

$$\mathcal{L}_{\mathsf{pot}_1} = -\frac{1}{4} \kappa_{\alpha\beta} \mathcal{M}^{MN} J_M{}^{\alpha} J_N{}^{\beta} + \frac{1}{2} J_{M\alpha} T^{\beta M}{}_P \mathcal{M}^{PQ} T^{\alpha N}{}_Q J_{N\beta}$$

'Ancillary potential term' Hohm Cederwall Palmkvist

 E_{11} current and constrained $\chi_M^{\tilde{\alpha}}$

$$\mathcal{L}_{\mathsf{pot}_2} = -\frac{1}{2} \mathcal{M}_{\tilde{I}\tilde{J}} C^{\tilde{I}}{}_{P\widehat{\alpha}} C^{\tilde{J}}{}_{Q\widehat{\beta}} \mathcal{M}^{QM} \mathcal{M}^{PN} J_{M}{}^{\widehat{\alpha}} J_{N}{}^{\widehat{\beta}}$$

Uses the representation with index \tilde{I} furnished by ancillary gauge transformation. Generalises extra E_8 term

all fields

$$\mathcal{L}_{\mathsf{kin}} = \frac{1}{4} \mathcal{M}_{IJ} C^{IM}{}_{\widehat{\alpha}} C^{JN}{}_{\widehat{\beta}} J_{M}{}^{\widehat{\alpha}} J_{N}{}^{\widehat{\beta}} - \frac{1}{2} \mathcal{M}_{IJ} C^{IM}{}_{\widehat{\alpha}} C^{JN}{}_{\widehat{\Lambda}} J_{M}{}^{\widehat{\alpha}} \zeta_{N}{}^{\widehat{\Lambda}}$$
$$- \frac{1}{4} \mathcal{M}_{IJ} C^{IM}{}_{\widehat{\Lambda}} C^{JN}{}_{\widehat{\Xi}} \zeta_{M}{}^{\widehat{\Lambda}} \zeta_{N}{}^{\widehat{\Xi}} = \frac{1}{4} \mathcal{M}_{IJ} F^{I} F^{J} + O(\zeta)$$

all fields

$$\mathcal{L}_{\mathsf{kin}} = \frac{1}{4} \mathcal{M}_{IJ} C^{IM}{}_{\widehat{\alpha}} C^{JN}{}_{\widehat{\beta}} J_{M}{}^{\widehat{\alpha}} J_{N}{}^{\widehat{\beta}} - \frac{1}{2} \mathcal{M}_{IJ} C^{IM}{}_{\widehat{\alpha}} C^{JN}{}_{\widehat{\Lambda}} J_{M}{}^{\widehat{\alpha}} \zeta_{N}{}^{\widehat{\Lambda}}$$
$$- \frac{1}{4} \mathcal{M}_{IJ} C^{IM}{}_{\widehat{\Lambda}} C^{JN}{}_{\widehat{\Xi}} \zeta_{M}{}^{\widehat{\Lambda}} \zeta_{N}{}^{\widehat{\Xi}} = \frac{1}{4} \mathcal{M}_{IJ} F^{I} F^{J} + O(\zeta)$$

For topological term (no explicit \mathcal{M} dependence) take inspiration from E_9 ExFT $\begin{bmatrix} \text{Bossard, Ciceri} \\ \text{Inverso, AK, Samtleben} \end{bmatrix}$

$$\begin{split} \mathcal{L}_{\mathsf{top}} &= \frac{1}{2} \Pi_{\tilde{\alpha}}{}^{MN} \Big(2 \partial_{[M} \chi_{N]}{}^{\tilde{\alpha}} + J_{[M}{}^{\alpha} T_{\alpha}{}^{\tilde{\alpha}}{}_{\tilde{\beta}} \chi_{N]}{}^{\tilde{\beta}} + J_{M}{}^{\alpha} K_{[\alpha}{}^{\tilde{\alpha}}{}_{\beta]} J_{N}{}^{\beta} \Big) \\ &- \frac{1}{2} \Omega_{IJ} C^{IM}{}_{\widehat{\alpha}} C^{JN}{}_{\widehat{\Lambda}} J_{M}{}^{\widehat{\alpha}} \zeta_{N}{}^{\widehat{\Lambda}} & \text{all fields} \end{split}$$

First line is rigid E_{11} -invariant $d\chi$ total derivative

E_{11} **ExFT**

Pseudo-Lagrangian $\mathcal{L}_{E_{11}}$

- is gauge-invariant: $\delta_{\xi} \mathcal{L}_{E_{11}} = \partial_M (\xi^M \mathcal{L}_{E_{11}})$
- combination of terms fixed by this requirement. Split somewhat artificial
- when varied w.r.t. constrained fields produces subset of duality equation $\mathcal{M}_{IJ}F^J=\Omega_{IJ}F^J$ \Rightarrow consistent \checkmark
- ullet when varied w.r.t. E_{11} fields gives needed equations for constrained fields

E_{11} **ExFT**

Pseudo-Lagrangian $\mathcal{L}_{E_{11}}$

- is gauge-invariant: $\delta_{\xi} \mathcal{L}_{E_{11}} = \partial_M (\xi^M \mathcal{L}_{E_{11}})$
- combination of terms fixed by this requirement. Split somewhat artificial
- when varied w.r.t. constrained fields produces subset of duality equation $\mathcal{M}_{IJ}F^J=\Omega_{IJ}F^J$ \Rightarrow consistent \checkmark
- ullet when varied w.r.t. E_{11} fields gives needed equations for constrained fields

Question: How does this describe D = 11 supergravity?

Write pseudo-Lagrangian on GL(11) solution to section constraint

$$\mathcal{L}_{E_{11}} = \sqrt{-g} \Big(R - \frac{1}{2 \cdot 4!} \mathcal{F}_{n_1 \dots n_4} \mathcal{F}^{n_1 \dots n_4} \Big) - \frac{1}{144^2} \varepsilon^{n_1 \dots n_{11}} A_{n_1 n_2 n_3} \mathcal{F}_{n_4 \dots n_7} \mathcal{F}_{n_8 \dots n_{11}}$$

$$+ \partial(\dots) + \sum_{k=0}^{\infty} \left| \mathcal{E}_{I_{(k)}} \right|^2 - \text{can be ignored with duality equation}$$

Write pseudo-Lagrangian on GL(11) solution to section constraint

$$\mathcal{L}_{E_{11}} = \sqrt{-g} \Big(R - \frac{1}{2 \cdot 4!} \mathcal{F}_{n_1 \dots n_4} \mathcal{F}^{n_1 \dots n_4} \Big) - \frac{1}{144^2} \varepsilon^{n_1 \dots n_{11}} A_{n_1 n_2 n_3} \mathcal{F}_{n_4 \dots n_7} \mathcal{F}_{n_8 \dots n_{11}}$$

$$+ \partial(\cdots) + \sum_{l=2}^{\infty} \left| \mathcal{E}_{I_{(k)}} \right|^2 - \text{can be ignored with duality equation}$$

Produces exactly D = 11 SUGRA equations of motion

Write pseudo-Lagrangian on GL(11) solution to section constraint

$$\mathcal{L}_{E_{11}} = \sqrt{-g} \left(R - \frac{1}{2 \cdot 4!} \mathcal{F}_{n_1 \dots n_4} \mathcal{F}^{n_1 \dots n_4} \right) - \frac{1}{144^2} \varepsilon^{n_1 \dots n_{11}} A_{n_1 n_2 n_3} \mathcal{F}_{n_4 \dots n_7} \mathcal{F}_{n_8 \dots n_{11}}$$

$$+ \partial(\dots) + \sum_{k=2}^{\infty} \left| \mathcal{E}_{I_{(k)}} \right|^2 - \text{can be ignored with duality equation}$$

Produces exactly D = 11 SUGRA equations of motion

Similar analysis for E_8 ExFT

Expect same for $GL(D) \times E_{11-D}$ ($D \ge 2$)

Write pseudo-Lagrangian on GL(11) solution to section constraint

$$\mathcal{L}_{E_{11}} = \sqrt{-g} \Big(R - \frac{1}{2 \cdot 4!} \mathcal{F}_{n_1 \dots n_4} \mathcal{F}^{n_1 \dots n_4} \Big) - \frac{1}{144^2} \varepsilon^{n_1 \dots n_{11}} A_{n_1 n_2 n_3} \mathcal{F}_{n_4 \dots n_7} \mathcal{F}_{n_8 \dots n_{11}}$$

$$+ \partial(\cdots) + \sum_{l=2}^{\infty} \left| \mathcal{E}_{I_{(k)}} \right|^2 - \text{can be ignored with duality equation}$$

Produces exactly D = 11 SUGRA equations of motion

Similar analysis for E_8 ExFT

Expect same for $GL(D) \times E_{11-D}$ $(D \ge 2)$

Note: This does <u>not</u> show E_{11} invariance of D=11 SUGRA. Broken by solution to section constraint

Conclusions

- Constructed pseudo-Lagrangian and duality equations invariant under E_{11} generalised diffeomorphisms
- Ingredients: section constraint, extra constrained fields
- Reduces to all known SUGRAS/ExFTs
- Dual gravity realised sim. to [West] [Boulanger] Hohm
- Some remaining assumptions about E_{11} representations (η_{IJ} , 'master' identity)

Conclusions

- Constructed pseudo-Lagrangian and duality equations invariant under E_{11} generalised diffeomorphisms
- Ingredients: section constraint, extra constrained fields
- Reduces to all known SUGRAS/ExFTs
- Dual gravity realised sim. to [West] Boulanger Hohm
- Some remaining assumptions about E_{11} representations (η_{IJ} , 'master' identity)

What next?

- Clarify relation to cosmological E_{10} model
- Add fermions and supersymmetry? Exotic branes?
- Could do the same for other algebras, D = 4 GR

Conclusions

- Constructed pseudo-Lagrangian and duality equations invariant under E_{11} generalised diffeomorphisms
- Ingredients: section constraint, extra constrained fields
- Reduces to all known SUGRAS/ExFTs
- Dual gravity realised sim. to [West] Boulanger Hohm
- Some remaining assumptions about E_{11} representations (η_{IJ} , 'master' identity)

What next?

- Clarify relation to cosmological E_{10} model
- Add fermions and supersymmetry? Exotic branes?
- Could do the same for other algebras, D = 4 GR

Thank you for your attention

