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• The program devoted to calculation of simultaneous spectra of IM’s

in CFT has been initiated by BLZ in 1994 (KdV system)

• AGT relation (2009) gave new insights (BO system)

• There is an interpolating integrable system called ILW. It’s spectrum

is found to be described by BAE (Nekrasov-Okounkov,A.L. 2013)

• BA has been proved by Feigin et all in q−deformed case (also by

Aganagic and Okounkov)

• We suggested alternative proof in the conformal case

• generalized it to BCD CFT’s

• generalized it to paraCFT (N = 1 Virasoro etc): Y( ̂gl(1)) → Y( ̂gl(n))
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Introduction

There is a large class of 2D QFT’s defined by Toda action

S0 =

∫ 
 1

8π

(
∂µϕ · ∂µϕ

)
+Λ

N∑

r=1

e

(
αr·ϕ

)
 d2x.

This theory properly coupled to a background metric, defines a conformal

field theory. However, it is well known, that under some conditions on

the set (α1, . . . ,αN) it also enjoys enlarged conformal symmetry usually

referred as W−algebra.

There is a class of such distinguishable sets (α1, . . . ,αN) with semi-

classical behavior

αr = ber for all r = 1, . . . , N,

where er are finite in the limit b → 0. The vectors er have to be simple

roots of a semi-simple Lie algebra g of rank N .
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An interesting question arises if one perturbs the theory by an additional

exponential field

S0 → S0 + λ
∫
e

(
αN+1·ϕ

)
d2x.

Typically this perturbation breaks down all the W−algebra symmetry

down to Poincaré symmetry. However, there is a special class of per-

turbations, called the integrable ones, which survive an infinite symmetry

of the original theory in a very non-trivial way (Zamolodchikov 1989).

Namely, one can argue there are infinitely many mutually commuting

local Integrals of Motion Iλs and Īλs which are perturbative in λ

Iλs = Is+O(λ), Īλs = Īs+O(λ),

where (Is, Īs) are defined in CFT.
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Thus any integrable perturbation inherits a distinguishable set of local

IM’s Is in conformal field theory. The seminal program devoted to cal-

culation of simultaneous spectra of Is has been initiated by Bazhanov,

Lukyanov and Zamolodchikov in 1994.

We use an alternative approach, based on affine Yangian symmetry. We

consider the case of sl(n) symmetry

S =

∫ 
 1

8π

(
∂µϕ · ∂µϕ

)
+Λ

n−1∑

k=1

eb(ϕk+1−ϕk) +Λeb(ϕ1−ϕn)

 d2x.

With the last term dropped, we have the conformal field theory, whose

symmetry algebra can be described by quantum Miura-Gelfand-Dikii trans-

formation

(
Q∂ − ∂ϕn

)(
Q∂ − ∂ϕn−1

)
. . .

(
Q∂ − ∂ϕ2

)(
Q∂ − ∂ϕ1

)
=

= (Q∂)n+
n∑

k=1

W (k)(z)(Q∂)n−k,

where Q = b+ b−1.
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In fact, one can drop any other exponent, leading to different, but iso-

morphic W−algebra. For example, dropping the term eb(ϕ2−ϕ1), one has

different formula

(
Q∂ − ∂ϕ1

)(
Q∂ − ∂ϕn

)
. . .

(
Q∂ − ∂ϕ3

)(
Q∂ − ∂ϕ2

)
=

= (Q∂)n+
n∑

k=1

W̃ (k)(z)(Q∂)n−k.

By symmetry arguments, it is clear that local Integrals of Motion Is

should belong to the intersection of these two W−algebras. In particular,

one can check that

I1 = − 1

2π

∫ 

n∑

i<j

(hi · ∂ϕ)(hj · ∂ϕ)

 dx,

I2 =
1

2π

∫ 


n∑

i<j<k

(hi · ∂ϕ)(hj · ∂ϕ)(hk · ∂ϕ) +Q
∑

i<j

(hi · ∂ϕ)(hj · ∂2ϕ)

 dx,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

where hi = ei − 1
n

∑
k=1 ek indeed satisfy this requirement.
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This point of view that IM’s should belong to intersection of two W -

algebras automatically implies that the intertwining operator T1

T1W̃
(k)(z) =W (k)(z)T1,

will be itself an Integral of Motion. The operator T1 will be primarily

important for us.

Actually it is natural to define more operators, which will map between

different W−algebras corresponding to different permutations of factors

in Miura formula. The Maulik-Okounkov R−matrix corresponds to ele-

mentary transposition

Ri,j

(
Q∂ − ∂ϕi

)(
Q∂ − ∂ϕj

)
=
(
Q∂ − ∂ϕj

)(
Q∂ − ∂ϕi

)
Ri,j,

while the operator T1 corresponds to the long cycle permutation

T1 = R1,2R1,3 . . .R1,n−1R1,n.

6



The operator Ri,j acts in the tensor product of two Fock representations

of Heisenberg algebra with the highest weight parameters ui and uj

Fui ⊗ Fuj
Ri,j−→ Fui ⊗ Fuj

and its matrix depends on difference ui−uj. Then it follows immediately

from the definition that Ri,j(ui − uj) satisfies the Yang-Baxter equation

R1,2(u1 − u2)R1,3(u1 − u3)R2,3(u2 − u3) =

= R2,3(u2 − u3)R1,3(u1 − u3)R1,2(u1 − u2),

and hence the whole machinery of quantum inverse scattering method

can be applied. In particular, one can construct a family of commuting

transfer-matrices on n−sites

T(u) = Tr′
(
R0,1(u−u1)R0,2(u−u2) . . .R0,n−1(u−un−1)R0,n(u−un)

)∣∣∣∣Fu
.
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At u = u1 one has R0,1 = P0,1 a permutation operator and hence

T(u1) = R1,2R1,3 . . .R1,n−1R1,n = T1,

which implies that T(u) commutes with local Integrals of Motion Is and

can be taken as a generating function.

The notation Tr′ corresponds to certain regularization of the trace, which

goes through the introduction of a twist parameter q

Tr′(. . . ) def
= lim

q→1

1

χ(q)
Tr

(
qL

(0)
0 . . .

)
, where χ(q) =

∞∏

k=1

1

1− qk

and L
(0)
0 =

∑
k>0 a

(0)
−k a

(0)
k is the level operator in auxiliary space Fu. Re-

markably, the introduction of the twist parameter does not spoil the

integrability, that is the twist deformed transfer-matrices

Tq(u) = Tr
(
qL

(0)
0 R0,1(u−u1)R0,2(u−u2) . . .R0,n−1(u−un−1)R0,n(u−un)

)∣∣∣∣Fu
,

still commute.
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On the level of local Integrals of Motion this deformation corresponds to

the non-local deformation Is → Is(q) called quantum ILWn (Intermediate

Long Wave) integrable system. In particular

I1(q) =
1

2π

∫ 
1
2

n∑

k=1

(∂ϕk)
2


 dx,

I2(q) =
1

2π

∫ 
1
3

n∑

k=1

(∂ϕk)
3 +Q


 i
2

∑

i,j

∂ϕiD∂ϕj +
∑

i<j

∂ϕi∂
2ϕj




 dx,

I3(q) =
1

2π

∫ 
1
4

n∑

k=1

(∂ϕk)
4 + . . .


 dx,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

where D is the non-locality operator whose Fourier image is

D(k) = k
1 + qk

1− qk
.
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The spectrum of ILWn integrable system is governed by finite type Bethe

ansatz equations which have been conjectured by Nekrasov and Okounkov

and independently by A.L.

q
∏

j 6=i

(xi − xj − ǫ1)(xi − xj − ǫ2)(xi − xj − ǫ3)

(xi − xj + ǫ1)(xi − xj + ǫ2)(xi − xj + ǫ3)

n∏

k=1

xi − uk +
ǫ3
2

xi − uk − ǫ3
2

= 1

such that the eigenvalues of Is(q) are symmetric polynomials in Bethe

roots

I1(q) ∼ −1

2

n∑

k=1

u2k +N, I2(q) ∼ 1

3

n∑

k=1

u3k − 2i
N∑

j=1

xj, . . .

Here we use the notations (Nekrasov)

b =

√
ǫ2
ǫ1
, b−1 =

√
ǫ1
ǫ2

and ǫ3
def
= −ǫ1 − ǫ2.
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The transfer-matrix Tq(u) corresponds to periodic boundary conditions.

It is related to the affine Dynkin diagram

where each circle lives on the edge of the spin chain

Fu1 ⊗ · · · ⊗ Fun ,

and to each pair of neighboring factors one associates the screening

Fuk ⊗Fuk+1 −→
∮
dz eb(ϕk−ϕk+1) ,

The corresponding integrable QFT is sl(n) affine Toda theory

S =

∫ 
 1

8π

(
∂µϕ · ∂µϕ

)
+Λ

n−1∑

k=1

eb(ϕk+1−ϕk) +Λeb(ϕ1−ϕn)

 d2x.
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But one can also consider fixed b.c. In this case, according to Sklyanin,

one has to find the K-operator which obeys KRKR equation

R[∂ϕ1 − ∂ϕ2]Kα1R[∂ϕ1 + ∂ϕ2]Kα2 = Kα2R[∂ϕ1 + ∂ϕ2]Kα1R[∂ϕ1 − ∂ϕ2].

There are three solutions which correspond to affine Dynkin diagrams:

D̂n

B̂n

B̂∨
n

Ĉn

Ĉ∨
n

B̂Cn
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The spectrum in the boundary case is given by BAE equations

rα(xi)r
β(xi)A(xi)A

−1(−xi)
∏

j 6=i
G(xi − xj)G

−1(−xi − xj) = 1,

G(x) =
(x− ǫ1)(x− ǫ2)(x− ǫ3)

(x+ ǫ1)(x+ ǫ2)(x+ ǫ3)
, A(x) =

n∏

k=1

x− uk +
ǫ3
2

x− uk − ǫ3
2

,

rα(x) = −x+ ǫα/2

x− ǫα/2
.

where α = 1,2,3 corresponds to three boundary conditions

(α0 ·ϕ) =





−ϕ1
−2ϕ1
−ϕ1 − ϕ2

(αr ·ϕ) = ϕr−ϕr+1, (αn ·ϕ) =





ϕn

2ϕn

ϕn−1 + ϕn

In particular, the spectrum of I3 is given by

I3 ∼ Ivac3 +


4N − 4

n∑

k=1

u2k
ǫ1ǫ2

+
ǫ21 + ǫ22
3ǫ1ǫ2

(
2n−

ǫα+ ǫβ

ǫ3

)
N+

+
4

ǫ1ǫ2

(
2n−

ǫα+ ǫβ

ǫ3

) N∑

k=1

x2k ,

13



R-matrix

It is clear from the definition that Ri,j trivially commutes with the center

of mass field ϕi+ ϕj, that is

Ri,j = R
∣∣∣∣
J→∂ϕi−∂ϕj

2

,

where R is the Liouville reflection operator for the U(1) current algebra

J(z)J(w) =
1

2(z − w)2
+ . . .

which is defined as

R(−J2 +Q∂J) = (−J2 −Q∂J)R. (*)

This relation can be used for calculation of R. Consider highest weight

representation generated by the negative mode operators a−k from the

vacuum state |u〉:

a0|u〉 = u|u〉, an|u〉 = 0 for n > 0.
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Then (*) is equivalent to the infinite set of relations

RL(+)
−λ1 . . . L

(+)
−λn|u〉 = Rvac(u)L

(−)
−λ1 . . . L

(−)
−λn|u〉,

where L
(±)
n are the components of T (±) = −J2 ±Q∂J

L
(±)
n =

∑

k 6=0,n

akan−k+(2a0±inQ)an, L
(+)
0 = L

(−)
0 =

Q2

4
+a20+2

∑

k>0

a−kak.

and Rvac(u) is an eigenvalue for the vacuum state. One can compute

the matrix of R. For example at the level 1 one has

RL(+)
−1 |u〉 = L

(−)
−1 |u〉 =⇒ Ra−1|u〉 =

2u+ iQ

2u− iQ
a−1|u〉.

Similarly, at the level 2 one obtains

Ra−2|u〉 =

((
8u3 +2u(3Q2 − 1)− iQ(2Q2 +1)

)
a−2 − 8iQua2−1

)
|u〉

(2u− iQ)(2u− iQ− ib)(2u− iQ− ib−1)
,

Ra2−1|u〉 =

(
−4iQua−2 +

(
8u3 +2u(3Q2 − 1) + iQ(2Q2 +1)

)
a2−1

)
|u〉

(2u− iQ)(2u− iQ− ib)(2u− iQ− ib−1)
.
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Commutation relations of the Yang-Baxter algebra

The Maulik-Okounkov R-matrix defines the Yang-Baxter algebra in a

standard way

Rij(u− v)Li(u)Lj(v) = Lj(v)Li(u)Rij(u− v).

Here Li(u) is treated as an operator in some quantum space, a tensor

product of n Fock spaces in our case, and as a matrix in auxiliary Fock

space Fu. This algebra becomes an infinite set of quadratic relations

between the matrix elements labeled by two partitions

Lλ,µ(u)
def
= 〈u|aλL(u)a−µ|u〉 where a−µ|u〉 = a−µ1a−µ2 . . . |u〉.
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We introduce three basic currents of degree 0, 1 and −1

h(u)
def
= L∅,∅(u), e(u)

def
= h−1(u) · L∅,�(u), f(u)

def
= L�,∅(u) · h−1(u),

as well as an auxiliary current

ψ(u)
def
=

(
L�,�(u−Q)− L∅,�(u−Q)h−1(u−Q)L�,∅(u−Q)

)
h−1(u−Q)

As follows from the definition of R they admit large u expansion

h(u) = 1+
h0
u

+
h1
u2

+ . . . , e(u) =
e0
u

+
e1
u2

+ . . . ,

f(u) =
f0
u

+
f1
u2

+ . . . , ψ(u) = 1+
ψ0

u
+
ψ1

u2
+ . . .
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It proves convenient to introduce higher currents labeled by 3D partitions.

In particular, on level 2 one has three eλ(u) currents

e (u) =
ibQ

(b2 − 1)(b2 +2)
h−1(u)

(
L∅,��(u)− ibL∅,�

�

(u)

)
,

e (u) =
ib−1Q

(b−2 − 1)(b−2 +2)
h−1(u)

(
L∅,��(u)− ib−1L∅,�

�

(u)

)
,

e (u) = Q
[
be (u) + b−1e (u)− e2(u)

]
.

and similarly for fλ(u). Then we have:
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h, e, f, ψ relations

[h(u), ψ(v)] = 0, [ψ(u), ψ(v)] = 0, [h(u), h(v)] = 0,

(u− v − ǫ3)h(u)e(v) = (u− v)e(v)h(u)−ǫ3h(u)e(u),
(u− v − ǫ3)f(v)h(u) = (u− v)h(u)f(v)−ǫ3f(u)h(u),

(u− v)[e(u), f(v)] = ψ(u)− ψ(v),

ee, ff relations

g(u− v)

[
e(u)e(v)− e (v)

u− v+ ǫ1
− e (v)

u− v+ ǫ2
− e (v)

u− v+ ǫ3

]
=

= ḡ(u− v)

[
e(v)e(u)− e (u)

u− v − ǫ1
− e (u)

u− v − ǫ2
− e (u)

u− v − ǫ3

]
,

ḡ(u− v)

[
f(u)f(v)− f (v)

u− v − ǫ1
− f (v)

u− v − ǫ2
− f (v)

u− v − ǫ3

]
=

= g(u− v)

[
f(v)f(u)− f (u)

u− v+ ǫ1
− f (u)

u− v+ ǫ2
− f (u)

u− v+ ǫ3

]
,
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where

g(x)
def
= (x+ ǫ1)(x+ ǫ2)(x+ ǫ3), ḡ(x)

def
= (x− ǫ1)(x− ǫ2)(x− ǫ3).

and Serre relations

∑

σ∈S3
(uσ1 − 2uσ2 + uσ3)e(uσ1)e(uσ2)e(uσ3)+

+
∑

σ∈S3
[e(uσ1), e (uσ2) + e (uσ2) + e (uσ2)] = 0,

and

∑

σ∈S3
(uσ1 − 2uσ2 + uσ3)f(uσ1)f(uσ2)f(uσ3)+

+
∑

σ∈S3
[f(uσ1), f (uσ2) + f (uσ2) + f (uσ2)] = 0.
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Zero twist integrable system

Suppose, one has an eigenvector of h(u)

h(u)|Λ〉 = hΛ(u)|Λ〉,

then one can try to create new states by repetitive application of e(v).

From commutation relations one finds that

h(u)e(v)|Λ〉 = u− v

u− v − ǫ3
hΛ(u)e(v)|Λ〉 −

ǫ3
u− v − ǫ3

L∅,�(u)|Λ〉,

and hence in general e(v)|Λ〉 is not an eigenvector of h(u). However if

e(v)|Λ〉 develops a singularity at some value v = x, typically a pole, then

the second term is negligible and we have a new eigenvector

|Λ̃〉 = 1

2πi

∮

Cx
e(v)|Λ〉dv, h(u)|Λ̃〉 = (u− x)

(u− x− ǫ3)
hΛ(u)|Λ̃〉

21



Using this property, one can generate any eigenvector from the vacuum

state by successive application of e(u). We note that the operators e(u)

do not commute. However we have

∮

Cy
dv
∮

Cx
du e(u)e(v)|Λ〉 =

3∏

α=1

(x− y − ǫα)

(x− y+ ǫα)

∮

Cy
dv
∮

Cx
du e(v)e(u)|Λ〉

provided that x and y are simple poles and that y 6= x+ ǫα. Consider

the tensor product of n Fock modules generated from the vacuum state

|∅〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉

Fx1 ⊗ · · · ⊗ Fxn = span{a(1)
−λ(1)

. . . a
(n)

−λ(n)
|∅〉 : λ(k) = λ

(k)
1 ≥ λ

(k)
2 ≥ . . . }.

Our normalizations of h(u) and ψ(u) imply that

h(u)|∅〉 = |∅〉, ψ(u)|∅〉 =
n∏

k=1

u− xk + ǫ3
u− xk

|∅〉.
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Moreover the vacuum state is annihilated by f(u)

f(u)|∅〉 = 0,

while the new states are generated by the modes of e(u). Moreover the

vacuum state is annihilated by f(u), while the new states are generated

by the modes of e(u). The eigenfunctions of h(u) provide a basis |~λ〉

|~λ〉 ∼
∮

CN

duN · · ·
∮

C1

du1 e(uN) . . . e(u1)|∅〉, N = |~λ| =
n∑

k=1

|λ(k)|,

The contours go counterclockwise around simple poles located at the

contents of Young diagrams in ~λ

c� = xk − (i− 1)ǫ1 − (j − 1)ǫ2.
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ILW Integrals of Motion and Bethe ansatz

Consider the monodromy matrix on n sites Tq(u). One can easily see

that Tq(u) admits the following large u expansion

Tq(u) = Λ(u, q) exp

(
1

u
I1 +

1

u2
I2 + . . .

)
,

where Λ(u, q) is a normalization factor and I1 and I2 are the first ILWn

Integrals of Motion. Among other Integrals of Motion there is a particular

one called KZ integral

T1
def
= Tq(u1).

Using the fact that R0,1(0) = P0,1, one finds

T1 = qL
(1)
0 R1,2(u1 − u2)R1,3(u1 − u3) . . .R1,n(u1 − un).
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We take the tensor product of n+N Fock spaces

Fu1 ⊗ · · · ⊗ Fun︸ ︷︷ ︸
quantum space

⊗Fx1 ⊗ · · · ⊗ FxN︸ ︷︷ ︸
auxiliary space

Consider the special state in the auxiliary space

|χ〉x def
= |�, . . . ,�︸ ︷︷ ︸

N

〉 ∼
∮

CN

dzN · · ·
∮

C1

dz1 e(zN) . . . e(z1)|∅〉x,

where the contour Ck encircles the point xk.

h(u)|χ〉x =
N∏

k=1

u− xk
u− xk − ǫ3

|χ〉x.

and (here S(x) = (x+ǫ1)(x+ǫ2)
x(x+ǫ3)

)

x〈∅|f(z) . . . f(z1)|χ〉x = Symx




N∏

a=1

1

za − xa

∏

a<b

S(xa − xb)


 ,
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Now we define the off-shell Bethe vector as

|B(x)〉u def
=x〈∅|R(x,u)|χ〉x ⊗ |∅〉u,

where

R(x,u) = Rx1u1 . . .RxNu1 . . .Rx1un . . .RxNun.

The off-shell Bethe vector |Ψ(x)〉 can be represented by the following

picture

replacements

|B(x)〉 =

∅

∅

∅

∅

∅∅ ∅∅∅∅∅∅

|χ〉x

u1 u2 u3 u4 un−3un−2un−1 un

xN

xN−1

x2

x1
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Consider the matrix element between |B(x)〉u and generic state

ω~λ(x|u)
def
= u〈∅|a(1)

λ(1)
. . . a

(n)

λ(n)
|B(x)〉u =x〈∅|L

λ(1),∅
(u1) . . .Lλ(n),∅(un)|χ〉x,

It can be expressed through h(u) and f(z) via contour integral

ω~λ
(x|u) =

1

(2πi)N
×

×
∮
F~λ(

~z|u) x〈∅|h(u1) f(z(1)1 )f(z
(1)
2 ) . . .

︸ ︷︷ ︸
|λ(1)|

h(u2) f(z
(2)
1 )f(z

(2)
2 ) . . .

︸ ︷︷ ︸
|λ(2)|

. . . h(un) f(z
(n
1︸

where

F~λ(
~z|u) =

n∏

k=1

F
λ(k)

(
z
(k)
1 , . . . , z

(k)

|λ(k)|

∣∣∣uk
)
.
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The action of the KZ Integral of Motion on off-shell Bethe vector |B(x)〉u
is very simple and can be explained by the following picture

∅

∅

∅

∅

∅

∅

∅

∅

∅∅ ∅∅∅∅∅∅∅∅ ∅∅∅∅∅∅

|χ〉x|χ〉x

u1

u1

u2

u2

u3

u3

un

un

xNxN

x2x2
x1x1

qL0

qL0

=

Projecting this equation on arbitrary state, one obtains

u〈∅|a(1)
λ(1)

. . . a
(n)

λ(n)
|T1|B(x)〉u =

= q|λ
(1)|

x〈∅|L
λ(2),∅

(u2) . . .Lλ(n),∅(un)Lλ(1),∅(u1)|χ〉x
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If we require that |B(x)〉u is an eigenstate for T1 we have to demand

q|λ
(1)|

x〈∅|L
λ(2),∅

(u2) . . .Lλ(n),∅(un)Lλ(1),∅(u1)|χ〉x =

= T1(u)x〈∅|L
λ(1),∅

(u1) . . .Lλ(n),∅(un)|χ〉x,

which should hold for any set of partitions ~λ. The eigenvalue T1(u) is

T1(u) =
N∏

k=1

xk − u1
xk − u1 + ǫ3

.

For generic ~λ the eigenstate equation implies the integral identity

q|λ
(1)|

∮
F~λ(

~z|u) x〈∅|h(u2) f(z(2)1 ) . . .
︸ ︷︷ ︸

|λ(2)|

. . . h(un) f(z
(n)
1 ) . . .

︸ ︷︷ ︸
|λ(n)|

h(u1) f(z
(1)
1 ) . . .

︸ ︷︷ ︸
|λ(1)|

|χ〉x

= T1(u)
∮
F~λ(

~z|u) x〈∅|h(u1) f(z(1)1 ) . . .
︸ ︷︷ ︸

|λ(1)|

h(u2) f(z
(2)
1 ) . . .

︸ ︷︷ ︸
|λ(2)|

. . . h(un) f(z
(n)
1 ) . . .

︸ ︷︷ ︸
|λ(n)|

|

which holds provided that x obeys Bethe ansatz equations

q
∏

j 6=i

3∏

α=1

xi − xj − ǫα

xi − xj + ǫα

n∏

k=1

xi − uk + ǫ3
xi − uk

= 1 for all i = 1, . . . , N.
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Boundary Bethe ansatz

In the boundary case we found the following representation for the off-

shell Bethe vector

|∅〉

∅ ∅∅∅∅∅∅∅

u1u2u3

x1

x2

x3

un−1un

|B(x)〉 =

|χ〉x
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The formula for the off-shell Bethe vector can be revised. One observes

that the definition of |B(x)〉 can be interpreted as a product of some

L−operators L(un) . . .L(u1) sandwiched between 〈Kx| and
∣∣∣∣
χ
∅

〉

x

|∅〉

∅ ∅∅∅∅∅∅∅

u1u2u3

x1

x1

x2

x2

x3

x3

un−1un

|B(x)〉 =

〈Kx| L(u2)

|χ〉x

∣∣∣∣
χ
∅

〉

x

Then one can proceed in exactly the same way as in the periodic case.
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Y(ĝl(2))

The corresponding R−matrix should be searched in the NSR algebra

[Lm, Ln] = (m− n)Lm+n+
ĉ

8
(m3 −m)δm,−n,

[Lm, Gr] =

(
m

2
− r

)
Gm+r,

{Gr, Gs} = 2Lr+s+
ĉ

2

(
r2 − 1

4

)
δr,−s.

We define the operator R as (we assume that Rvac(u) = 1)

RL(+)
−λ G

(+)
−r |u〉 = L

(−)
−λ G

(−)
−r |u〉,

where

G±
r =

∑

k 6=0

akψr−k + (a0 ± irQ)ψr,

L±
n =

1

2

∑

k 6=0,n

akan−k +
1

2

∑

r
rψn−rψr +

(
a0 ± inQ

2

)
an.
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One can compute the matrix of R. For example at level 1
2 one has

RG+

−1
2

|u〉 = G−
−1

2

|u〉 =⇒ Rψ−1
2
|u〉 = 2u+ iQ

2u− iQ
ψ−1

2
|u〉

On level 1

Ra−1|u〉 =
2u+ iQ

2u− iQ
a−1|u〉

On level 3
2:

Rψ−3
2
|u〉 =

(
(u− iQ

2 )2(u+ 3iQ
2 )− (u+ iQ

2 )
)
ψ−3

2
|u〉 − 2iuQa−1ψ−1

2
|u〉

(u− iQ
2 )(u− iQ

2 − ib)(u− iQ
2 − ib−1)

Ra−1ψ−1
2
|u〉 =

−2iuQψ−3
2
|u〉+

(
(u+ iQ

2 )2(u− 3iQ
2 )− (u− iQ

2 )
)
ψ−1

2
|u〉

(u− iQ
2 )(u− iQ

2 − ib)(u− iQ
2 − ib−1)

etc
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The ĝl(n)k has the form

Eij(z)Ekl(w) =
κδilδjk

(z − w)2
+
δjkEil(w)− δilEkj(w)

z − w
+ reg

The trace current U(z) =
∑
kEkk(z) trivially decouples so that we have

the decomposition ĝl(n)κ = H⊗ ŝl(n)κ, where H is the Heisenberg algebra.

It is well known that for κ = 1 the algebra admits free fermion represen-

tation

Eij =: ψ∗
iψj,

ψ∗
i (z)ψj(w) =

δij

z − w
+ reg, ψ∗

i (z)ψ
∗
j(w) = reg, ψi(z)ψj(w) = reg.

and that each free fermion can be represented as

ψk = eiφk ψ∗
k = e−iφk
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The R-matrix Rij should be an embedding of super Liouville reflection

operator R into

ĝl(2)1 ⊕ · · · ⊕ ĝl(2)1,

such that it is non-trivial only in ith and jth copies of ĝl(2)1. In order to

do so, for each ĝl(2)1 we bosonize fermions in its current matrix

E(j) =




i∂φ
(j)
1 e

i
(
φ
(j)
1 −φ(j)2

)

e
i
(
φ
(j)
2 −φ(j)1

)
i∂φ

(j)
2


 ,

and define

Rij
def
= R[Φ,Ψ],

where

Φ =
1

2

(
φ
(i)
1 − φ

(j)
1 + φ

(i)
2 − φ

(j)
2

)
,

Ψ =
1

i
√
2

(
e
i
2

(
(φ

(i)
1 −φ(j)1 )−(φ

(i)
2 −φ(j)2 )

)
− e

− i
2

(
(φ

(i)
1 −φ(j)1 )−(φ

(i)
2 −φ(j)2 )

))
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We note that from this definition it follows that Rij automatically com-

mutes with

φ
(i)
1 + φ

(j)
1 , φ

(i)
2 + φ

(j)
2

and

χ
def
= e

i
2

(
(φ

(i)
1 −φ(j)1 )−(φ

(i)
2 −φ(j)2 )

)
+ e

− i
2

(
(φ

(i)
1 −φ(j)1 )−(φ

(i)
2 −φ(j)2 )

)
.

or noticing that

E(i)+E(j) =




i
(
∂φ

(i)
1 + ∂φ

(j)
1

)
e
i
2

(
(φ

(i)
1 +φ

(j)
1 )−(φ

(i)
2 +φ

(j)
2 )

)
χ

e
− i

2

(
(φ

(i)
1 +φ

(j)
1 )−(φ

(i)
2 +φ

(j)
2 )

)
χ i

(
∂φ

(i)
2 + ∂φ

(j)
2

)


 ,

it means that Rij commutes with E(i) +E(j). That is the algebra is

ĝl(2)2 ×NSR

In general Y(ĝl(2)) → Y(ĝl(p))

ĝl(p)2 ×A(2, p)

where A(2, p) is the chiral algebra for the coset CFT (para-Liouville CFT)

ŝl(2)p × ŝl(2)n−p
ŝl(2)n

.
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The basis in rep of ĝl(2)1 is known to be given by colored partitions (chess

partitions). The YB algebra is generated by six currents:

h1(u) = L◦,◦ = 〈0|L(u)|0〉 h2(u) = L•,• =
〈1
2

∣∣∣L(u)
∣∣∣
1

2

〉

e1(u) = h−1
1 (u)L◦,�(u) = h−1

1 (u)〈0|L(u)|1〉,

e2(u) = h−1
2 (u)L•,�(u) = h−1

2 (u)
〈1
2

∣∣∣L(u)
∣∣∣− 1

2

〉

f1(u) = L�,◦(u)h
−1
1 (u) = 〈1|L(u)|0〉h−1

1 (u),

f2(u) = L�,•(u)h
−1
2 (u) =

〈
− 1

2

∣∣∣L(u)
∣∣∣
1

2

〉
h−1
2 (u)

and auxiliary currents

ψ1(u+Q) = L�,�(u)h
−1
1 (u)− L◦,�(u)h

−1
1 (u)L�,◦(u)h

−1
1 (u)

ψ2(u+Q) = L�,�(u)h
−1
1 (u)− L•,�(u)h

−1
1 (u)L�,•(u)h

−1
1 (u)
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One can find commutation relations (some of them)

[hi(u), hj(u)] = 0, ∀i, j = {1,2}

[hi(u), ej(v)] = [hi(u), fj(v)] = 0, ∀i 6= j = {1,2}

(∆+ ǫ3)h1(u)e1(v) = ǫ3L◦,�(u) +∆e1(v)h1(u),

(∆+ ǫ3)h2(u)e2(v) = ǫ3L•,�(u) +∆e2(v)h2(u)

(∆+ ǫ3)f1(v)h1(u) = ǫ3L�,◦(u) +∆h1(u)f1(v),

(∆+ ǫ3)f2(v)h2(u) = ǫ3L�,•(u) +∆h2(u)f2(v)

∆− ǫ3
∆

ei(u)ei(v) +
ǫ3
∆
ei(v)ei(v) =

∆+ ǫ3
∆

ei(v)ei(u)−
ǫ3
∆
ei(u)ei(u)

g(∆)

(
e1(v)e2(u)−

e (u)

∆+ ǫ1
− e (u)

∆+ ǫ2

)
= ḡ(∆)

(
e2(u)e1(v)−

e (v)

∆− ǫ1
− e (v)

∆− ǫ2

)

where

∆ = u− v, g(x) = (x+ ǫ1)(x+ ǫ2), ḡ(x) = (x− ǫ1)(x− ǫ2).
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Proceeding in exactly the same way as in gl(1) case we find the following

Bethe ansatz equations

n∏

l=1

ul − xi
ul − xi+ ǫ3

N1∏

j 6=i

xi − xj − ǫ3

xi − xj + ǫ3

N2∏

k=1

(yk − xi+ ǫ1)(yk − xi+ ǫ2)

(yk − xi − ǫ1)(yk − xi − ǫ2)
= qt,

and

N1∏

j=1

(yi − xj − ǫ1)(yi − xj − ǫ2)

(yi − xj + ǫ1)(yi − xj + ǫ2)

N2∏

k 6=i

yi − yk − ǫ3
yi − yk + ǫ3

= t−1.

where q and t are the twist parameters for the transfer-matrix

Tq,t(u) = tr

(
qL

(0)
0 th

(0)R0,n(u− un)...R0,1(u− u1)

)
.
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Ongoing studies

• Formfactors of local fields

• N = 2 W∞ algebra (Gaberdiel et al)

• Massive deformations
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