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Study of the various aspects of FT in higher dimensions recently
attracts much attention due to the remarkable and sometimes even
unexpected properties at classical and quantum levels. The basic
space-time symmetry in relativistic models is Poincaré group. Theory
of unitary irreps of Poincaré group in four dimensions was constructed

in
[

E .Wigner(1939,1947),
V .Bargmann,E .Wigner(1948)

]

. The unitary irreps in higher dimensions

and their applications were considered in many papers and reviews;
see e.g. lectures [X.Bekaert, N.Boulanger (2006), hep-th/0611263]. Although
the generic construction of the Poincaré group irreps in any dimension
can be realized by the method of induced representations, many
specific aspects important for CFT and QFT deserve a separate study.
Some of such aspects can be formulated only for each concrete
dimension and not for all dimensions.
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In this report we construct the massless finite and infinite spin irreps of
the Poincaré group in 6d Minkowski space. Some aspects of such
irreps were considered earlier by [L.Mezincescu, P.Townsend (2014,2017)],
however many issues, especially the infinite spin representations, were
not addressed and complete analysis was not done. For us the
important paper is [X.Bekaert, J.Mourad, JHEP 0601 (2006)115, hep-th/0509092].
Recently there appeared the paper [S.Kuzenko, A.Pindur, Massless particles

in five and higher dimensions, Phys.Lett. B812 (2021) 136020], where the unitary
massless irreps of the Poincaré group in 5d Minkowski space were
constructed, some issues related to irreps in arbitrary dimensions were
briefly studied and the representations of super Poincaré group were
considered. In our study we mostly addressed to infinite spin
representations.
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Lie algebra iso(1,5) and its Casimir operators
To characterize the unitary irreps of d-dimensional Poincaré group
ISO↑(1,d − 1), or its covering ISpin↑(1,d − 1), we need to consider
the corresponding irreps of the Lie algebra
iso(1,d − 1) = ispin(1,d − 1) with generators {P̂n, M̂mk} (components
of momentum and angular momentum) and defining relations

[P̂n, P̂m] = 0 , [P̂n, M̂mk ] = i (ηknP̂m − ηmnP̂k) ,

[M̂nm, M̂kℓ] = i(ηnk M̂mℓ − ηmkM̂nℓ + ηmℓM̂nk − ηnℓM̂mk ) ,

where ||ηmk || = diag(+1,−1, . . . ,−1) – metric in R
1,d−1.

————————————————-
The algebra iso(1,d − 1) has [(d + 1)/2] Casimir operators since the
algebra iso(1,d − 1) is obtained by contraction from the simple Lie
algebra so(d + 1,C) of rank [(d + 1)/2].
Thus, the Lie algebra iso(1,5) of 6d Poincaré group has 3 Casimir
operators.
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To construct Casimirs for iso(1,5) we introduce the third rank tensor
Wmnk and the vector Υm which are elements of U(iso(1,5))

Wmnk = εmnklpr P
lMpr , Υm = εmnklpr P

nMklMpr .

Here εmnklpr form the total antisymmetric tensor with normalization
ε012345 = 1 and operators Wmnk and Υm obey

PmWmnk = 0 , [Pl ,Wmnk ] = 0 , PmΥm = 0 , [Pl ,Υm] = 0 .

Then we define the Casimir operators for iso(1,5) as

C2 := PmPm , C4 := 1
24 W mnkWmnk ,

C6 := 1
64 ΥmΥm

which are 2nd, 4th and 6th order operators in the generators of
U(iso(1,5)), respectively.
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Recall that in 4d Minkowski space any 2nd rank tensor Wmn = −Wnm

has the decomposition in sum of self-dual W (+)
mn and anti-self-dual

W (−)
mn parts Wmn = W (+)

mn + W (−)
mn and we have the decomposition

W 2 = (W (+))2 + (W (−))2 which reflects so(4,C) = sℓ(2,C) + sℓ(2,C).
—————————————–
In 6d Minkowski space any third rank tensor Wmnk also has the
decomposition in sum of self-dual W (+)

mnk and anti-self-dual W (−)
mnk parts

Wmnk = W (+)
mnk + W (−)

mnk , W (±)
mnk :=

1
2

(

Wmnk ± 1
3!

εmnklpr W
lpr
)

In opposite to 4d case, in 6d case the square of the third rank tensor
Wmnk is the contraction of self-dual and anti-self-dual parts:

W mnk Wmnk = 2W (+)mnkW (−)
mnk , (1)

since we have W (+)mnk W (+)
mnk = W (−)mnkW (−)

mnk ≡ 0 . For this reason, in
6d case, the square of the third rank tensor Wmnk produces only one
Casimir operator (1) and there are no more independent invariant
operators constructed from Wmnk .
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Taking into account the expressions for operators Wmnk and Υk via
generators Pk ,Mnℓ, we obtain explicit form of the Casimirs C2, C4, C6:

C2 = PmPm , C4 = ΠmΠm − 1
2

MmnMmn C2 , (2)

C6 = −ΠkMkm ΠlM
lm +

1
2

(

MmnMmn − 8
)

C4

+
1
8

[

MklMkl

(

MmnMmn − 8
)

+ 2MmnMnkMklMlm

]

C2 , (3)

where we introduce new vector Π with components

Πm := Pk Mkm = Mkm Pk − 5i Pm , (4)

subject to (cf. with iso(1,d − 1) relations)

[Πn, Πk ] = −i Mnk C2 , [Mmn,Πk ] = i (ηmkΠn − ηnkΠm) . (5)

Further we consider the massless unitary representations of iso(1,5)
when:

C2 ≡ P2 = PmPm = 0 .
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Standard massless momentum reference frame

Let the algebra (2.1), (2.2) acts in the representation space H with
basis vectors |k , σ〉, where Pm|k , σ〉 = km|k , σ〉 and σ are eigenvalues
of all operators which generate commuting set with Pm. We take the
states |k , σ〉 for which the spectrum of momentum operators Pm form
the light-cone reference frame for massless particle momentum
km = (k0, ka, k5) = (k ,0,0,0,0, k), i.e. we have on the states |k , σ〉

P0 = P5 = k , Pa = 0 , a = 1,2,3,4 .

Further all operator formulas (written in the light-cone frame) should
be understood as a result of their action on the subspace Hk ⊂ H
spanned by vectors |k , σ〉 with fixed light-cone momentum km.
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The transition to this light-cone reference frame is conveniently
performed in the light-cone basis where any 6D vector
X m = (X 0,X a,X 5) has the light-cone coordinates X m = (X+,X−,X a),
where

X± =
1√
2

(

X 0 ± X 5
)

, X± =
1√
2
(X0 ± X5) ⇒ X± = X∓ , (6)

and the contraction of two 6D vectors X m and Y m is

X mYm = X+Y+ + X−Y− + X aYa = X−Y+ + X+Y− − XaYa . (7)

In the light-cone basis the components of P have eigenvalues

P+ = P− =
√

2k , P− = P+ = 0 , Pa = 0 , a = 1,2,3,4 .

The higher Casimirs in this frame take the form

Ĉ4 = −Π̂aΠ̂a ,

Ĉ6 = Π̂bMba Π̂cMca − 1
2 MbcMbc Π̂aΠ̂a ,

(8)

where we introduce Hermitian operators Π̂a :=
√

2kM+a – vectors in
4D. Note that derivation of (8) takes some efforts.
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The 4D operators Π̂a and Mab in view of (5) form the Lie algebra iso(4)

[Π̂a, Π̂b] = 0 , [Π̂a,Mbc] = i
(

δabΠ̂c − δacΠ̂b

)

, (9)

[Mab,Mcd ] = i (δbcMad − δbd Mac + δacMdb − δad Mcb) , (10)

and therefore generate the isometries of the four-dimensional
Euclidean space. As a result, the operators Ĉ4 and Ĉ6 defined in (8)
are the Casimirs of the iso(4) algebra.
It is known that six generators Mab of rotations in the space R

4 are
decomposed into the sum

Mab = M(+)
ab + M(−)

ab , (11)

of (anti)selfdual parts M(±)
ab := 1

2

(

Mab ± 1
2 ǫabcdMcd

)

. They form the
algebra so(4)

[M(±)
ab ,M(±)

cd ] = i
(

δbcM(±)
ad − δbdM(±)

ac + δacM(±)
db − δad M(±)

cb

)

,

[M(+)
ab ,M(−)

cd ] = 0 ,

which is direct sum su(2) + su(2), where M(+)
ab and M(−)

ab generate the
first and second algebras su(2) respectively.
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By using the ’t Hooft symbols ηi
ab = −ηi

ba, and η̄i′
ab = −η̄i′

ba, (i = 1,2,3):

ηi
ab =

{

ǫiab a,b = 1,2,3,
δia b = 4,

η̄i′
ab =

{

ǫi′ab a,b = 1,2,3,
−δi′a b = 4.

we connect (anti-)selfdual SO(4) tensors M(±)
ab with the SO(3) vectors

M(+)
i , M(−)

i′
by means of the following relations

M(+)
ab = −ηi

abM(+)
i , M(−)

ab = −η̄i′
abM(−)

i′ . (12)

Operators M(+)
i and M(−)

i′ form two su(2) algebras with standard
commutators

[M(+)
i ,M(+)

j ] = iǫijkM(+)
k , [M(−)

i′ ,M(−)

j′ ] = iǫi′j′k′M
(−)

k′ , [M(+)
i ,M(−)

j′ ] = 0 .

Recall that the algebra iso(4) with basis elements Πa and M(±)
ab

generate stability subgroup for 6D massless unitary irreps.
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In case of this noncompact symmetry there are two different cases
which are defined by the value of the Casimir operator C4 = Π̂aΠ̂a, i.e.
square of “four-translation” generator Π̂a in R

4. So, below we consider
the following unitary massless representations.

Finite spin (”helicity”) representations .
In these cases the SO(4) four-vector Π̂a has zero square:

Π̂aΠ̂a = 0 . (13)

Infinite (continuous) spin representations .
In case of these representations the Euclidean four-vector Π̂a has
nonzero square:

Π̂aΠ̂a = µ2 6= 0 . (14)

Below we consider these cases in details.
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Massless finite spin representations for iso(1,5) are characterized by
the fulfillment of condition (13): Π̂aΠ̂a = 0, which implies for Euclidean
4-vector:

Π̂a = 0 , ∀ a = 1,2,3,4 . (15)

As result, the Casimir operators Ĉ4 and Ĉ6 vanish in this case

Ĉ4 = −Π̂aΠ̂a = 0 , Ĉ6 = Π̂bMba Π̂cMca − 1
2

MbcMbc Π̂aΠ̂a = 0 ,

In passing from this light-cone reference frame to an arbitrary basis,
we get that all Casimir operators on the massless finite spin states
take zero values [L.Mezincescu, A.Routh, P.Townsend, Annals Phys.
346 (2014) 66]

C4 ≡ 1
24

W 2 = 0, C6 ≡ 1
26Υ

kΥk = 0 .

Due to (15) the Euclidean four-translations are zero for these
representations. As a result such unitary representations are finite
dimensional (they are induced from irreps of the compact Lie algebra
so(4)). Each such 6D massless representation defines the finite
number of massless particle states.
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6D helicity operators

Now we show that the Casimir operators of the stability group SO(4)
define the 6D helicity operators.
First, consider the vector Υm = εmnklpr PnMklMpr . In the light-cone
reference frame P+ =

√
2k , P− = 0 , Pa = 0 the vector Υm

has the components

Υ+ = Λ1P+ , Υ− = Υa = 0 , (16)

where coefficient Λ1 is the Casimir operator for so(4)

Λ1 := ǫabcdMabMcd . (17)

We can write (16) to the general momentum frame. Namely, in view of
[Υm,Pk ] = 0, ΥkPk = 0 and since Υm is light like vector, we have:

Υm = Λ1Pm , Λ1 :=
Υ0

P0
, (18)

We stress that the operator Λ1 is a central element in U(iso(1,5))
since it is invariant under the 6D Poincare transformations.
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Recall that so(4) irreps are characterized by two second Casimir
operators (M(±))2. The second operator appears as helicity operator
Λ2 in the construction proposed recently in [S.Kuzenko, A.Pindur, Phys.Lett.

B 812 (2021) 136020; arXiv:2010.07124]. In their prescription the different
third order vector is considered

Sm := 3MnkP[mMnk ] = Mnk MnkPm − 2MknMmnPk , (19)

where square brackets denote antisymmetrization. For this vector we
obtain

SmSm = M2M2P2 + 4
[

Πk MkmΠlM lm − M2(Π2 + P2) + Π2
]

,

PmSm = M2P2 − 2Π2 , [Sm,Pn] = 2iMmnP2 + 4iΠ[mPn] .
(20)

where M2 := MnmMnm and Π2 := ΠlΠl . From these relations on the
shell of the conditions P+ =

√
2k , P− = Pa = 0 and Π̂a = 0 (∀a),

which define finite spin representations, we obtain

PmSm = 0 , [Sm,Pn] = 0 , SmSm = 0 , (21)

which are the same as conditions for Υn.
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So, in case of massless finite spin representations, vectors Pm and Sm

are collinear as well
Sm = Λ2Pm , (22)

where the coefficient Λ2 is the second so(4) quadratic Casimir operator

Λ2 := MabMab , Λ2 :=
S0

P0
. (23)

which is the second helicity operator. So these massless irreps are
characterized by the pair (λ1, λ2), where λ1,2 ∈ R are eigenvalues of
Λ1,2. We can represent helicity operators Λ1,2 in the form

Λ1 = 2
(

M(+)
ab M(+)

ab − M(−)
ab M(−)

ab

)

= 8
(

M(+)
i M(+)

i − M(−)

i′ M(−)

i′

)

,

Λ2 = M(+)
ab M(+)

ab + M(−)
ab M(−)

ab = 4
(

M(+)
i M(+)

i + M(−)

i′ M(−)

i′

)

.

For unitary irreps, the operators M(+)
i M(+)

i and M(−)

i′ M(−)

i′ are equal to
j+(j+ + 1) and j−(j− + 1), respectively, and eigenvalues λ1,2 are

λ1 = 8j+(j+ + 1)− 8j−(j− + 1) ,

λ2 = 4j+(j+ + 1) + 4j−(j− + 1) , j± ∈ Z≥0/2 .
(24)
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Examples

First, we consider a fixed so(4) irrep and determine the values of the
helicities related to this irrep. We use the defining (vector)
representation for the so(4) generators:

(Mab)eg = i(δaeδbg − δagδbe) . (25)

Then we reconstruct the corresponding 6D fields, for which the
equations of motion and gauge fixing show that the independent
components are exactly those SO(4) fields which were considered
earlier in the four-dimensional picture.
1. Vector electromagnetic field
For the representation (25) the so(4) Casimir operators take the form

(Λ1)eg = ǫabcd (MabMcd)eg = 0 ,

(Λ2)eg = (MabMab)eg = 6δeg .
(26)

and their action on the 4-dimensional vector field Aa gives the following
values of helicities: λ1 = 0 , λ2 = 6 ; j+ = j− = 1

2 .
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This Euclidean 4D vector field Aa describes physical components of
the 6D vector gauge field Am. Indeed, in momentum representation
U(1) gauge field Am is determined up to gauge transformations

δAm = iPmϕ (27)

and described by the equations of motion

PmFmn = 0 , (28)

where Fmn = i(PmAn − PnAm) is the field strength. The proper gauge
fixing is the light-cone gauge

A+ = 0 . (29)

Then in the light-cone frame

P+ =
√

2k , P− = Pa = 0 ,

the equations of motion 28 give A− = 0 and independent field is the
transverse part Aa of the 6D gauge field Am.
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2. Linearized gravity field in 6D
Now we consider the space of SO(4) second rank tensors. In this case
the matrix representation of so(4) generators is

(Mab)e1e2,g1g2 = (Mab)e1g1δe2g2 + δe1g1(Mab)e2g2 (30)

and the SO(4) Casimir operators are

(Λ1)e1e2,g1g2 = ǫabcd(MabMcd )e1e2,g1g2 = 8ǫe1e2g1g2 ,

(Λ2)e1e2,g1g2 = (MabMab)e1e2,g1g2

= 4(3δe1g1δe2g2 + δe1g2δe2g1 − δe1e2δg1g2) .

(31)

First, we consider the SO(4) second rank tensor ĥab, which is
symmetric ĥab = ĥab and traceless ĥaa. On this field the helicity
operators (31) take the values

λ1 = 0 , λ2 = 16 ; j+ = j− = 1 . (32)

Let us show that this field ĥab describes the physical components of
the 6D linearized gravitational field.
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Let us show that this 4D field ĥab describes the physical components
of the 6D linearized gravitational field. Indeed, the 6D linearized
gravitational field hmn = hnm has gauge invariance

δhmn = iP(mϕn) (33)

and obeys the Pauli-Fierz equations of motion

P2hmn − PmPkhnk − PnPkhmk + PmPnhk
k = 0 . (34)

For the transformations (33) we can put again the light-cone gauge
(see e.g. [W. Siegel, Fields, hep-th/9912205])

h+m = 0 . (35)

The equations of motion (34) give h−m = 0, ha
a = 0 in the light-cone

frame. As result, nonvanishing field is the traceless part ĥab of
transverse field hab of the 6D gravity field hmn.
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3. Third rank (anti-)selfdual antisymmetric tensor fields
Consider the SO(4) antisymmetric tensors of the second rank
Bab = −Bba, and their (anti-)selfdual parts

B(±)
ab = ±1

2
ǫabcdB(±)

cd . (36)

The tensors B(±)
ab form the spaces of two SO(4) irreps which make up

the SO(4) reducible representation in the space of all antisymmetric

rank 2 tensors associated to Young diagram [12] ≡ . In this case the

so(4) generators Mab and helicity operators Λ1,Λ2 have the same
representations as in the previous case. Eigenvalues of Λ1,Λ2 and
(M(±)

i )2 are

λ1 = 16 , λ2 = 8 ; j+ = 1 , j− = 0 ,

λ1 = −16 , λ2 = 8 ; j+ = 0 , j− = 1
(37)

on the spaces of the selfdual B(+)
ab anti-selfdual B(−)

ab fields.
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It is clear that these SO(4) (anti-)selfdual fields B(±)
[ab] are independent

components of the 6D massless (anti-)selfdual 3-rank fields B(±)
mnk

which satisfy the identities

B(±)
mnk = ± 1

3!
εmnklpr B

(±) lpr . (38)

Indeed, the equations of motion of the 6D massless fields B(±)
mnk are

a) PmB(±)
mnk = 0 , b) P[mB(±)

nkl ] = 0 , c) P2B(±)
nkl = 0 . (39)

Then in the light-cone frame the equations (39a) give B(±)
+mn = 0

whereas the equations (39b) produce B(±)
abc = 0. As a result,

independent fields of the 6D tensors B(±)
mnk are the SO(4) (anti-)selfdual

fields B(±)
−ab ≡ B(±)

ab which are subjected the SO(4) (anti-)selfdual
conditions (36) due to the 6D (anti-)selfdual conditions (38).
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Remark. One can generalize this example to the case of special
3n-rank selfdual and anti-selfdual 6-dimensional tensor fields. These
fields correspond to SO(4) irreducible representations in spaces of
2n-rank traceless selfdual and anti-selfdual tensors with components
B(±)

a1...a2n
be symmetrized in accordance to the Young diagram

[n2] ≡
. . .

. . .
. It is clear that for highest weights of such selfdual

and anti-selfdual representations of SO(4) we have respectively
j+ = n, j− = 0 and j+ = 0, j− = n and in view of general formulas (24)
we obtain the eigenvalues of helicity operators

λ1 = 8n(n + 1), λ2 = 4n(n + 1) ,

λ1 = −8n(n + 1), λ2 = 4n(n + 1) ,

which generalize (37).
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Massless infinite (continuous) spin irreps

Here we have the condition (14)

Π̂aΠ̂a = µ2 6= 0 , (40)

and the Euclidean four-vector Π̂a is nonzero. Then the representations
of the little group ISO(4), from which the 6D relativistic massless
representations are induced, are infinite dimensional. In these
representations the operator C4 has nonvanishing eigenvalue

C4 = Ĉ4 = −µ2 , µ 6= 0 . (41)

Moreover, for the condition (40) we can take the basis in which only the
fourth component is nonzero: Π̂1 = Π̂2 = Π̂3 = 0, Π̂4 = µ. Then
taking into account ηi

a4 = δia and η̄i′
a4 = −δi′a we obtain the value of the

Casimir operator:
Ĉ6 = −µ2 J iJ i , (42)

where

J i := M(+)
i + M(−)

i = −1
2
ǫijkM jk , i = 1,2,3 . (43)
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So the operators J i are in fact the generators of the SO(3) subgroup of
the SO(4) stability group. Therefore, in case of the unitary irreps we
have

J2 = s(s + 1) , (44)

where s is fixed integer or half-integer number. Thus, for the Casimir
operator (42) we obtain

C6 = Ĉ6 = −µ2 s(s + 1) , (45)

As a result, the massless infinite spin representations are
characterized by the pair (µ, s), where the real parameter µ defines the
eigenvalue of the Casimir operator C4 (41) and the (half-)integer
number s defines the eigenvalue of the Casimir operator C6 (45).
Let us examine in our consideration the D = 6 infinite integer spin
system [X.Bekaert, J.Mourad, JHEP 0601 (2006)115,
hep-th/0509092]. which is higher dimension generalization of the
D = 4 Wigner - Bargman model [E.Wigner (1939,1947), V.Bargmann
and E.Wigner (1948)].
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The Bekaert-Mourad model is described by the pair of the space-time
phase operators

xm ,pm , [xm,pk ] = iδm
k (46)

and two pairs of the additional bosonic phase vectors

wm , ξm , [wm, ξk ] = iδm
k ; um , ζm , [um, ζk ] = iδm

k . (47)

These two pairs of vectors (47) are responsible for spinning degrees of
freedom.
Infinite integer spin field Ψ in Bekaert-Mourad model is described by
the D = 6 generalization of the Wigner-Bargmann equations

p2 Ψ = 0 , ξ ·p Ψ = 0 , (48)

(w ·p − µ)Ψ = 0 , (ξ ·ξ + 1)Ψ = 0 , (49)

and additional equations which involve the second pair (47)

u ·pΨ = 0 , ζ ·p Ψ = 0 , (50)

ζ ·ξΨ = 0 , ζ ·ζ Ψ = 0 , (u ·ζ − s)Ψ = 0 , (51)

where ξ ·p := ξmpm, etc.
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Note that, in contrast to the four-dimensional Wigner-Bargman model
with one pair of auxiliary variables wm, ξm, in the six-dimensional case
it is necessary to use the second pair of auxiliary vector variables um,
ζm to describe arbitrary infinite spin representations.
In the light-cone frame p− = pa = 0, p+ = const 6= 0, and in the
representation ξm = −i∂/∂wm, ζm = −i∂/∂um the equations (48)–(51)
can be solved as

Ψ = δ(p+w− − µ) δ(p+u−)Φ(wa,ua) , (52)

where Φ(wa,ua) has special series expansions presented in
[X.Bekaert, J.Mourad, JHEP 0601 (2006)115, hep-th/0509092].
Now we can determine the values of the Casimir operators C4,C6 on
the field (52). For such fields the generators of the iso(4) algebra have
the form

Mab = i
(

wa
∂

∂wb
− wb

∂

∂wa
+ ua

∂

∂ub
− ub

∂

∂ua

)

, Π̂a = −iµ
∂

∂wa
.

(53)
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As result, we obtain the fulfillment of the condition (41) for the Casimir
operator C4: C4 = Ĉ4 = −µ2. Moreover, the representations (53) lead
to the expression

Ĉ6 = µ2 ua
∂

∂ua

(

ub
∂

∂ub
+ 1

)

∂

∂wc

∂

∂wc
(54)

+µ2
(

ua
∂

∂wa
ub

∂

∂wb
− uaua

∂

∂wb

∂

∂wb

)

∂

∂uc

∂

∂uc

+µ2
(

uaua
∂

∂ub

∂

∂wb
− 2ua

∂

∂ua
ub

∂

∂wb

)

∂

∂uc

∂

∂wc

and due to the equations (48)–(51) we obtain C6 = Ĉ6 = −µ2s(s + 1)
on the fields (52).
Thus, the infinite spin field with only one additional vector variables
and obeying the Wigner-Bargmann equations (48)–(49) and additional
equations (50)–(51) describes the irreducible (µ, s) infinite spin
representation.
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Summary and outlook
We have studied the massless irreducible representations of the
Poincaré group in six-dimensional Minkowski space and give full
classification of all massless representations including infinite integer
spin case. The representations are described by three Casimir
operators C2,C4 and C6. The different forms and properties of these
operators are explored in the standard massless momentum reference
frame, where it is seen that the unitary representations of ISO(1,5)
group are induced from representations of SO(4) and ISO(4) groups
and correspondingly are divided into finite spin (helicity) and infinite
spin representations. Both these representations are studied in details.
It is proved that the finite spin representation is described by two
integer or half-integer numbers while the infinite spin representation is
described by one real parameter and one integer or half-integer
number. In case of half-integer spin we should introduce an additional
spinor or twistor variables like in [X.Bekaert, J.Mourad, JHEP 0601
(2006)115, hep-th/0509092].
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As a continuation of this research it would be interesting to describe
the massless representations with half-integer spin and massive
irreducible representations of six-dimensional Poincaré group with both
integer and half-integer spin. Another open problem is constructing the
representations of the corresponding six-dimensional super Poincaré
group. Also it would be useful to work out the field realizations of the
massless representations considered in this paper and explore the
new aspects of Lagrange formulation for these fields in six-dimensional
Minkowski space including infinite spin cases. We plan to study all
these problems in the forthcoming papers.
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