QUARKS ONLINE WORKSHOPS-2021, May 31 – June 5, 2021 Integrability, Holography, Higher-Spin Gravity and Strings

Observables and Invariants in 4D Higher Spin Gravity

Alexey Sharapov

Department of Quantum Field Theory Tomsk State University

Based on joint papers with E. Skvortsov: arXiv:2102.02253, arXiv:2006.13986

June 1, 2021

1/14

General Remarks

Lower-Spin Success Stories

```
Spin-0, 1/2, 1:
```

 ${\sf Standard\ Model} \quad \leftrightarrow \quad {\sf Geometry\ of\ vector\ bundles/Semisimple\ Lie\ groups\ and\ their\ reps.}$

Spin-2:

Einstein Gravity \leftrightarrow Reimann geometry/Tensor algebra

Spin > 2:

 $\mathsf{HS} \,\, \mathsf{Gravity} \qquad \leftrightarrow \,\, \mathsf{Non\text{-}commutative} \,\, \mathsf{geometry/Cyclic} \,\, \mathsf{cohomology}$

 $(Euclidean \ Geometry) \quad \stackrel{\mathsf{GR}}{\longrightarrow} \quad (\mathsf{Non-Euclidean} \ \mathsf{Geometry}) \quad \stackrel{\mathsf{HSGRA}}{\longrightarrow} \quad (\mathsf{Non-Commutative} \ \mathsf{Geometry})$

Outline

- Formal dynamical systems and their invariants
- Higher-spin algebra in D=4
- Classification of invariants in 4D HSGRA
- Weak Lagrangians for 4D HSGRA
- Higher-spin waves and currents

Formal Dynamical Systems

Let $\{W^A\}$ be a collection of differential forms on M, then EoM read

$$dW^A = f_{BC}^A W^A \wedge W^B + c_{BCD}^A W^B \wedge W^C \wedge W^D + \cdots \equiv Q^A(W)$$

[D. Sullivan; R. D'Auria & P. Fré; P. van Nieuwenhuizen; M. Vasiliev, ...]

Formal integrability ($d^2 = 0 \implies Q^2 = 0$) implies:

- f_{BC}^{A} are structure constants of some graded Lie algebra L;
- c_{BCD}^{A} is a Chevalley–Eilenberg cocycle of the Lie algebra L.

Together the f's, c's, ... define the structure of an L_{∞} -algebra.

The system enjoys the gauge symmetry

$$\delta_{\varepsilon}W^{A}=d\varepsilon^{A}+\varepsilon^{B}\wedge\partial_{B}Q^{A}(W)$$

Physical Observables

$$Q = \int_{\Sigma} J, \qquad J = J_n + J_{n+1} + J_{n+2} + \cdots, \qquad \partial \Sigma = 0,$$

$$J_n = J_{A_1 A_2 \cdots A_n} W^{A_1} \wedge W^{A_2} \wedge \cdots \wedge W^{A_n}.$$

Gauge invariance:

$$\delta_{arepsilon} \mathcal{Q} pprox 0 \quad \Leftrightarrow \quad dJ pprox 0 \quad \text{(on-shell)}$$

J defines a (lower-degree) conservation law (aka characteristic cohomology).

 $J_{A_1\cdots A_n}$ is a scalar cocycle of the Lie algebra L:

$$f_{[A_0A_1}^A J_{AA_2\cdots A_n]} = 0.$$

[G. Barnich & M. Grigoriev, 2011]

Higher Spin Algebras

Fact: The Lie algebras underlying HSGRA originate from **associative algebras**:

$$L = L(A)$$
, $[a, b] = ab - (-1)^{|a||b|}ba$, $\forall a, b \in A$.

[B. Sundborg; E. Sezgin & P. Sundell; I. Klebanov & A. Polyakov]

From Chevalley–Eilenberg to Hochschild

Let gI(A) be the matrix extension of a HS algebra A.

Chevalley–Eilenberg
$$\Rightarrow$$
 Cyclic \Rightarrow Hochschild $H^{\bullet}(gl(A))$ $HC^{\bullet}(A)$ $HH^{\bullet}(A)$ \uparrow Non-Commutative Geometry

4D Higher Spin Gravity

Fields: the 1-form field ω and 0-form field C with values in gl(A).

Field equations:

$$d\omega = \omega \wedge \omega + \mathcal{V}(\omega, \omega, C) + \cdots, \qquad dC = \omega C - C\omega + \mathcal{V}(\omega, C, C) + \cdots$$

The extended HS algebra in 4D [E. Fradkin & M. Vasiliev, '87]:

$$A=(A_1\rtimes\mathbb{Z}_2)\otimes(A_1\rtimes\mathbb{Z}_2)\,,$$

$$A_1 \rtimes \mathbb{Z}_2$$
: $qp - pq = 1$, $\kappa q = -q\kappa$, $\kappa p = -p\kappa$, $\kappa^2 = 1$.

$$HH^2(A,A)=\mathbb{R}^2 \quad \Rightarrow \quad \text{2-parameter deformation } A(\nu,\bar{\nu}) \quad \Rightarrow \quad \text{2 coupling constants:}$$

$$qp-pq=1+
u\kappa$$
 (deformed oscillator algebra)

[E. Wigner, '50]

Classification of Observables in 4D HSGRA

$$J_{n,m} = J(\underbrace{\omega,\ldots,\omega}_{n},\underbrace{C,\ldots,C}_{m}) + o(C^{m+1}), \qquad dJ_{n,m} \approx 0, \qquad n = 0,1,2,3,4.$$

- 'Holographic correlators': $J_{0,n} = \operatorname{Tr}(C^n) + \cdots$
- Surface currents: $J_{2,2n+1} = \text{Tr}(\mathcal{V}_{1,2}(\omega,\omega,\mathcal{C})\mathcal{C}^{2n}) + \cdots$
- Counter-terms: $J_{4,2n+2} = \operatorname{Tr} (\mathcal{V}_1(\omega,\omega,\mathcal{C})\mathcal{V}_2(\omega,\omega,\mathcal{C})\mathcal{C}^{2n}) + \cdots$

```
\nexists gauge invariants \sim \omega^4 + \cdots but \exists gauge invariants \sim \omega^5 + \cdots
```

```
[E. Sezgin, P. Sundell, C. Iazeolla, N. Colombo, V. Didenko, E. Skvortsov, ... ]
[V. Didenko, N. Misuna, M. Vasiliev, 2015]
[M. Vasiliev, 2015]
```

Presymplectic AKSZ Models

The Lagrangian of an AKSZ-type σ -model reads

$$\mathcal{L} = \Theta_A(W) \wedge dW^A - H(W)$$
.

Geometrically,

- H(W) is a function,
- $\Theta = \Theta_A(W)\delta W^A$ is the 1-form of presymplectic potential, and
- $\Omega = \delta \Theta$ is a presymplectic 2-form on the (graded) target space of W's.

$$\delta \mathcal{L} = 0 \quad \Leftrightarrow \quad \Omega_{AB} (dW^A - Q^A(W)) = 0 \,,$$

 $Q^A\Omega_{AB}=\partial_B H$, i.e. Q is a Hamiltonian vector field associated with H.

If (Ω_{AB}) is degenerate, then \mathcal{L} is a **weak Lagrangian** for $dW^A = Q^A(W)$.

[K. Alkalaev & M. Grigoriev, 2014]

Weak Lagrangians for 4D HSGRA

$$\mathcal{L}_t = \mathrm{Tr} \Big[\mathcal{V}_t(\omega,\omega,\mathcal{C}) \wedge (d\omega - \omega \wedge \omega) \Big] + o(\mathcal{C}^2) \,, \qquad \mathcal{V}_t = \cos(t) \mathcal{V}_1 + \sin(t) \mathcal{V}_2$$

$$EL(\mathcal{L}_t) \supset (\text{solutions to HSGRA EoM})$$

The leading term in \mathcal{L}_t provides the action principle for the 'free EoM'

$$d\omega = \omega \wedge \omega$$
, $dC = [\omega, C]$.

 $\mathcal{V}_t(\omega,\omega,\mathcal{C})$ is an **integrating multiplier** of the inverse problem of calculus of variations.

[K. Krasnov, E. Skvortsov, T. Tran, 2021]

Other proposal for Lagrangian: [N. Boulanger & P. Sundell, 2011].

Higher Spin Waves and Currents

Linearization over the HS vacuum $d\omega=\omega\wedge\omega$, C=0 gives the EoM for HS waves:

$$D ilde{\omega} = \mathcal{V}(\omega,\omega, ilde{\mathcal{C}})\,, \qquad D ilde{\mathcal{C}} = 0\,.$$
 [C. Aragone & S. Deser '79]

- $\bullet \ \ \ \, \text{Local symmetries:} \quad \ \, \delta_{\varepsilon} \tilde{\omega} = D \varepsilon \,, \qquad \delta_{\varepsilon} \tilde{C} = 0 \,.$
- Global symmetries: $\delta_{\xi}\tilde{\omega} = [\xi, \tilde{\omega}] + \mathcal{V}(\xi, \omega, \tilde{C}) \mathcal{V}(\omega, \xi, \tilde{C}), \quad \delta_{\xi}C = [\xi, \tilde{C}], \quad D\xi = 0.$

The weak Lagrangian for HS waves reads

$$\tilde{\mathcal{L}}_t = \operatorname{Tr} \big[\mathcal{V}_t(\omega, \omega, \tilde{\mathcal{C}}) \wedge D\tilde{\omega} + \Lambda_t(\omega, \omega, \omega, \tilde{\mathcal{C}}) \wedge D\tilde{\mathcal{C}} - \frac{1}{2} \mathcal{V}_t(\omega, \omega, \tilde{\mathcal{C}}) \wedge \mathcal{V}(\omega, \omega, \tilde{\mathcal{C}}) \big].$$

Noether's correspondence \Rightarrow (gauge non-invariant) HS conserved currents:

$$J_{\xi} = \tilde{C} imes \tilde{C} + \tilde{C} imes \tilde{\omega} \,, \qquad \qquad \delta_{\varepsilon} J_{\xi} = d(\ldots) \,.$$

[O. Gelfond, E. Skvotsov, M. Vasiliev, 2008; P. Smirnov & M. Vasiliev, 2017]

Where does Non-Commutative Geometry Come From?

Conclusion

We constructed and classified all physical observables, presymplectic structures and weak Lagrangians for 4D HSGRA.

Further perspectives:

- Deformation/path-integral quantization of HSGRA.
- Renormalizability/finiteness of HSGRA (no local counter-terms).
- Correlation functions in Chern–Simons Matter theories / 3D bosonization.

Thank You!