Observables and Invariants in 4D Higher Spin Gravity

Alexey Sharapov
Department of Quantum Field Theory
Tomsk State University
Based on joint papers with E. Skvortsov: arXiv:2102.02253, arXiv:2006.13986

General Remarks

```
Lower-Spin Success Stories
Spin-0, 1/2, 1:
Standard Model }\leftrightarrow\mathrm{ Geometry of vector bundles/Semisimple Lie groups and their reps.
Spin-2:
Einstein Gravity }\leftrightarrow\mathrm{ Reimann geometry/Tensor algebra
Spin > 2:
HS Gravity }\leftrightarrow\mathrm{ Non-commutative geometry/Cyclic cohomology
```

(Euclidean Geometry) $\xrightarrow{\text { GR }}$ (Non-Euclidean Geometry) $\xrightarrow{\text { HSGRA }} \quad$ (Non-Commutative Geometry)

Outline

- Formal dynamical systems and their invariants
- Higher-spin algebra in $D=4$
- Classification of invariants in 4D HSGRA
- Weak Lagrangians for 4D HSGRA
- Higher-spin waves and currents

Formal Dynamical Systems

Let $\left\{W^{A}\right\}$ be a collection of differential forms on M, then EoM read

$$
d W^{A}=f_{B C}^{A} W^{A} \wedge W^{B}+c_{B C D}^{A} W^{B} \wedge W^{C} \wedge W^{D}+\cdots \equiv Q^{A}(W)
$$

[D. Sullivan; R. D'Auria \& P. Fré; P. van Nieuwenhuizen; M. Vasiliev, ...]
Formal integrability $\left(d^{2}=0 \Rightarrow Q^{2}=0\right)$ implies:

- $f_{B C}^{A}$ are structure constants of some graded Lie algebra L;
- $c_{B C D}^{A}$ is a Chevalley-Eilenberg cocycle of the Lie algebra L.

Together the $f^{\prime} s, c^{\prime} s, \ldots$ define the structure of an L_{∞}-algebra.
The system enjoys the gauge symmetry

$$
\delta_{\varepsilon} W^{A}=d \varepsilon^{A}+\varepsilon^{B} \wedge \partial_{B} Q^{A}(W)
$$

Physical Observables

$$
\begin{gathered}
\mathcal{Q}=\int_{\Sigma} J, \quad J=J_{n}+J_{n+1}+J_{n+2}+\cdots, \quad \partial \Sigma=0 \\
J_{n}=J_{A_{1} A_{2} \cdots A_{n}} W^{A_{1}} \wedge W^{A_{2}} \wedge \cdots \wedge W^{A_{n}} .
\end{gathered}
$$

Gauge invariance:

$$
\delta_{\varepsilon} \mathcal{Q} \approx 0 \quad \Leftrightarrow \quad d J \approx 0 \quad \text { (on-shell) }
$$

J defines a (lower-degree) conservation law (aka characteristic cohomology).
$J_{A_{1} \cdots A_{n}}$ is a scalar cocycle of the Lie algebra L :

$$
f_{\left[A_{0} A_{1}\right.}^{A} J_{\left.A A_{2} \cdots A_{n}\right]}=0
$$

[G. Barnich \& M. Grigoriev, 2011]

Higher Spin Algebras

Fact: The Lie algebras underlying HSGRA originate from associative algebras:

$$
L=L(A), \quad[a, b]=a b-(-1)^{|a||b|} b a, \quad \forall a, b \in A
$$

AdS/CFT

[B. Sundborg; E. Sezgin \& P. Sundell; I. Klebanov \& A. Polyakov]

From Chevalley-Eilenberg to Hochschild

Let $g l(A)$ be the matrix extension of a HS algebra A.

Chevalley-Eilenberg

\Rightarrow
Hochschild $H H^{\bullet}(A)$

4D Higher Spin Gravity

Fields: the 1-form field ω and 0 -form field C with values in $g l(A)$.
Field equations:

$$
d \omega=\omega \wedge \omega+\mathcal{V}(\omega, \omega, C)+\cdots, \quad d C=\omega C-C \omega+\mathcal{V}(\omega, C, C)+\cdots
$$

The extended HS algebra in 4D [E. Fradkin \& M. Vasiliev, '87]:

$$
\begin{gathered}
A=\left(A_{1} \rtimes \mathbb{Z}_{2}\right) \otimes\left(A_{1} \rtimes \mathbb{Z}_{2}\right), \\
A_{1} \rtimes \mathbb{Z}_{2}: \quad q p-p q=1, \quad \kappa q=-q \kappa, \quad \kappa p=-p \kappa, \quad \kappa^{2}=1 .
\end{gathered}
$$

$H H^{2}(A, A)=\mathbb{R}^{2} \quad \Rightarrow \quad$ 2-parameter deformation $A(\nu, \bar{\nu}) \quad \Rightarrow \quad 2$ coupling constants:

$$
q p-p q=1+\nu \kappa \quad \text { (deformed oscillator algebra) }
$$

[E. Wigner, '50]

Classification of Observables in 4D HSGRA

$$
J_{n, m}=J(\underbrace{\omega, \ldots, \omega}_{n}, \underbrace{C, \ldots, C}_{m})+o\left(C^{m+1}\right), \quad d J_{n, m} \approx 0, \quad n=0,1,2,3,4 .
$$

- 'Holographic correlators': $J_{0, n}=\operatorname{Tr}\left(C^{n}\right)+\cdots$
- Surface currents: $J_{2,2 n+1}=\operatorname{Tr}\left(\mathcal{V}_{1,2}(\omega, \omega, C) C^{2 n}\right)+\cdots$
- Counter-terms: $J_{4,2 n+2}=\operatorname{Tr}\left(\mathcal{V}_{1}(\omega, \omega, C) \mathcal{V}_{2}(\omega, \omega, C) C^{2 n}\right)+\cdots$ \nexists gauge invariants $\sim \omega^{4}+\cdots \quad$ but $\quad \exists$ gauge invariants $\sim \omega^{5}+\cdots$
[E. Sezgin, P. Sundell, C. Iazeolla, N. Colombo, V. Didenko, E. Skvortsov, ...]
[V. Didenko, N. Misuna, M. Vasiliev, 2015]
[M. Vasiliev, 2015]

Presymplectic AKSZ Models

The Lagrangian of an AKSZ-type σ-model reads

$$
\mathcal{L}=\Theta_{A}(W) \wedge d W^{A}-H(W)
$$

Geometrically,

- $H(W)$ is a function,
- $\Theta=\Theta_{A}(W) \delta W^{A}$ is the 1-form of presymplectic potential, and
- $\Omega=\delta \Theta$ is a presymplectic 2-form on the (graded) target space of W 's.

$$
\delta \mathcal{L}=0 \quad \Leftrightarrow \quad \Omega_{A B}\left(d W^{A}-Q^{A}(W)\right)=0
$$

$Q^{A} \Omega_{A B}=\partial_{B} H$, i.e. Q is a Hamiltonian vector field associated with H. If $\left(\Omega_{A B}\right)$ is degenerate, then \mathcal{L} is a weak Lagrangian for $d W^{A}=Q^{A}(W)$.
[K. Alkalaev \& M. Grigoriev, 2014]

Weak Lagrangians for 4D HSGRA

$$
\mathcal{L}_{t}=\operatorname{Tr}\left[\mathcal{V}_{t}(\omega, \omega, C) \wedge(d \omega-\omega \wedge \omega)\right]+o\left(C^{2}\right), \quad \mathcal{V}_{t}=\cos (t) \mathcal{V}_{1}+\sin (t) \mathcal{V}_{2}
$$

$$
E L\left(\mathcal{L}_{t}\right) \supset \text { (solutions to HSGRA EoM) }
$$

The leading term in \mathcal{L}_{t} provides the action principle for the 'free EoM'

$$
d \omega=\omega \wedge \omega, \quad d C=[\omega, C] .
$$

$\mathcal{V}_{t}(\omega, \omega, C)$ is an integrating multiplier of the inverse problem of calculus of variations.
[K. Krasnov, E. Skvortsov, T. Tran, 2021]
Other proposal for Lagrangian: [N . Boulanger \& P. Sundell, 2011].

Higher Spin Waves and Currents

Linearization over the HS vacuum $d \omega=\omega \wedge \omega, C=0$ gives the EoM for HS waves:

$$
D \tilde{\omega}=\mathcal{V}(\omega, \omega, \tilde{C}), \quad D \tilde{C}=0 . \quad[\text { C. Aragone \& S. Deser '79] }
$$

- Local symmetries: $\quad \delta_{\varepsilon} \tilde{\omega}=D \varepsilon, \quad \delta_{\varepsilon} \tilde{C}=0$.
- Global symmetries: $\delta_{\xi} \tilde{\omega}=[\xi, \tilde{\omega}]+\mathcal{V}(\xi, \omega, \tilde{C})-\mathcal{V}(\omega, \xi, \tilde{C}), \quad \delta_{\xi} C=[\xi, \tilde{C}], \quad D \xi=0$.

The weak Lagrangian for HS waves reads

$$
\tilde{\mathcal{L}}_{t}=\operatorname{Tr}\left[\mathcal{V}_{t}(\omega, \omega, \tilde{C}) \wedge D \tilde{\omega}+\Lambda_{t}(\omega, \omega, \omega, \tilde{C}) \wedge D \tilde{C}-\frac{1}{2} \mathcal{V}_{t}(\omega, \omega, \tilde{C}) \wedge \mathcal{V}(\omega, \omega, \tilde{C})\right]
$$

Noether's correspondence \Rightarrow (gauge non-invariant) HS conserved currents:

$$
J_{\xi}=\tilde{C} \times \tilde{C}+\tilde{C} \times \tilde{\omega}, \quad \delta_{\varepsilon} J_{\xi}=d(\ldots)
$$

[O. Gelfond, E. Skvotsov, M. Vasiliev, 2008; P. Smirnov \& M. Vasiliev, 2017]

Where does Non-Commutative Geometry Come From?

$$
d W^{A}=Q^{A}(W), \quad Q^{2}=0
$$

Algebra

L_{∞}-algebra, i.e. ∞-extension of the graded Lie bracket $[\mathrm{a}, \mathrm{b}]= \pm[b, a]$	
antisymetrization	Homological vector field Q on a graded manifold \mathcal{M} with coordinates $W^{A} W^{B}= \pm W^{B} W^{A}$
A_{∞}-algebra, i.e. ∞-extension of an associative algebra structure ab $\neq \pm b a$	Homological vector field Q on a non-commutative manifold \mathcal{M} with coordinates $W^{A} W^{B} \neq \pm W^{B} W^{A}$

Conclusion

We constructed and classified all physical observables, presymplectic structures and weak Lagrangians for 4D HSGRA.

Further perspectives:

- Deformation/path-integral quantization of HSGRA.
- Renormalizability/finiteness of HSGRA (no local counter-terms).
- Correlation functions in Chern-Simons Matter theories / 3D bosonization.

Thank You!

