Conformal Geometry

Euihun Joung (Kyung Hee University)
in collaboration with Mingi Kim and Yujin Kim [2106.xxxx]

Weyl Invariant Densities

- Type-B Anomaly: Weyl invariant densities $\begin{gathered}\text { [Bonora et al, Deser\&Schwimmer, } \\ \text { o., Boulanger] }\end{gathered}$
- 8d Classification [Boulanger\&Erdmenger]
- Basis: Weyl-covariant derivatives of Weyl tensors
- Weyl variation of each basis: $\sim \partial \sigma$
- Make an ansatz in this basis / Ask the Weyl invariance
- Revisit the problem by unfolding conformal geometry

SO(2,d) Gauge Formulation

- Conformal Geometry, Q-curvature, Tractor calculus
[Thomas, Fefferman, Graham, Gover, ...]
- Cartan Geometry (Parabolic Geometry) [Cartan, ..., Sharpe, ...]

Gauge Field $\quad \hat{A}=e^{a} \hat{P}_{a}+\frac{1}{2} \omega^{a b} \hat{J}_{a b}+f^{a} \hat{K}_{a}+b \hat{D}$

Curvature

$$
\begin{aligned}
F_{\hat{P}}^{a} & =\left(\mathrm{D}^{L}+b\right) e^{a}, & & F_{J}^{a b}=R^{a b}-2 f^{[a} \wedge e^{b]}, \\
F_{\hat{K}}^{a} & =\left(\mathrm{D}^{L}-b\right) f^{a}, & & F_{\hat{D}}=\mathrm{d} b+f^{a} \wedge e_{a} .
\end{aligned}
$$

Constraints $\quad F_{\hat{P}}^{a} \stackrel{!}{=} 0, \quad i_{a} F_{\tilde{J}}^{a b} \stackrel{!}{=} 0, \quad\left(F_{\hat{D}} \stackrel{!}{=} 0\right)$

$$
\begin{gathered}
\omega_{a b, c}=E_{[b}^{\mu} E_{c]}^{\nu} \partial_{\mu} e_{a \nu}+E_{[c}^{\mu} E_{a]}^{\nu} \partial_{\mu} e_{b \nu}+E_{[b}^{\mu} E_{a]}^{\nu} \partial_{\mu} e_{c \nu}+2 b_{[a} \eta_{b] c} \\
f_{[a, b]}=\partial_{[a} b_{b]} \quad f_{(a, b)}=\frac{1}{d-2}\left(R_{a b}-\frac{\eta_{a b} R}{2(d-1)}\right)_{\substack{\text { Schouten } \\
\text { tensor }}}
\end{gathered}
$$

Gauge symmetry $\quad \delta \hat{A}=\mathrm{d} \hat{\Lambda}+[\hat{A}, \hat{\Lambda}], \quad \hat{\Lambda}=\epsilon^{a} \hat{P}_{a}+\frac{1}{2} \lambda^{a b} \hat{J}_{a b}+\kappa^{a} \hat{K}_{a}+\sigma \hat{D}$

We recover Conformal Geometry based on metric tensor

What we have

$$
\begin{aligned}
& \mathrm{D}^{K} e^{a}=0 \\
& \mathrm{D}^{K} \omega^{a b}-2 e^{[a} \wedge f^{b]}=\frac{1}{2} e_{c} \wedge e_{d} C^{a b, c d} \\
& \mathrm{D}^{K} b+e^{a} \wedge f_{a}=0 \\
& \mathrm{D}^{K} f^{a}=\frac{1}{2} e_{b} \wedge e_{c} C^{a, b c}
\end{aligned}
$$

$$
\begin{array}{ll}
C_{a b, c d} \sim \begin{array}{|c|c|}
\hline a & c \\
\hline b & d
\end{array}, & C_{c, a b} \sim \begin{array}{|l|l|}
\hline a & c \\
b & \\
\eta^{a b} C_{a b, c d}=0, & \eta^{a b} C_{a, b c}=0 \\
\text { Weyl tensor } & \text { Cotton tensor }
\end{array} .
\end{array}
$$

Weyl tensor

$$
\begin{gathered}
K=S O(1,1) \times S O(1, \mathrm{~d}-1) \text { covariant derivatives } \\
\mathrm{D}^{K} W^{[\Delta] a b \cdots}=\mathrm{D}^{L} W^{[\Delta] a b \cdots}+(|W|-\Delta) b W^{[\Delta] a b \cdots} \\
\Delta_{e}=0, \Delta_{\omega}=1, \Delta_{b}=1, \Delta_{f}=2 \\
|W|: \text { differential form degree }
\end{gathered}
$$

Unfolding

- Consider $C_{a b, c d}, C_{a, b c}$ as new fields (zero forms)
- Introduce "evolution" equation for $C_{a b, c d}, C_{a, b c}$

$$
\begin{gathered}
\mathrm{D}^{K} C^{a b, c d}=\left(\mathrm{D}^{L}-2 b\right) C^{a b, c d}=e_{f} C^{a b, c d, e}+(\text { pre-existing fields }) \\
\mathrm{D}^{K} C^{a, b c}=\left(\mathrm{D}^{L}-3 b\right) C^{a, b c}=e_{d} C^{a, b c, d}+\text { (pre-existing fields) } \\
\text { New zero form fields }
\end{gathered}
$$

Rule of the game

- New fields are completely determined by pre-existing fields
- No constraints on pre-existing fields
- Bianchi identity

$$
\begin{aligned}
& \left(\mathrm{D}^{L}-2 b\right)_{[k} C^{a b,}{ }_{c d)}-2 \delta_{[k}^{[a} C^{b],}{ }_{c d)}=0, \\
& \left(\mathrm{D}^{L}-3 b\right)_{[k} C^{a,}{ }_{c d)}-f_{b,[k} C^{a b,}{ }_{c d)}=0
\end{aligned}
$$

- Infinitely many new zero forms

$$
\begin{gathered}
C^{[\Delta] a(m), b(n)}=C^{[\Delta] a_{1} \cdots a_{m}, b_{1} \cdots b_{n}} \\
C^{[2] a(2), b(2)}=C^{\left(a_{1}\left|b_{1},\right| a_{2}\right) b_{2}}, \quad C^{[3] a(2), b}=C^{\left(a_{1}, a_{2}\right) b}
\end{gathered}
$$

- General form of the equations

Polynomials of zero forms

$$
\begin{aligned}
& \mathcal{E}^{[\Delta+1] a(m), b(n), c}(C)=\mathcal{E}_{d(p), e(q)}^{[\Delta+1] a(m), b(n), c} C^{[\Delta+1] d(p), e(q)} \\
& \quad+\sum_{\substack{\Delta_{1}, \Delta_{2} \\
\Delta_{1}+\Delta_{2}=\Delta+1}} \mathcal{E}_{d(p), e(q) \mid f(s), g(t)}^{\left[\Delta_{1}, \Delta_{2}\right] a(m), b(n), c} C^{\left[\Delta_{1}\right] d(p), e(q)} C^{\left[\Delta_{2}\right] f(s), g(t)}+\cdots
\end{aligned}
$$

First order

$$
\begin{aligned}
& \left(\hat{P}^{c} C\right)^{[\Delta] a(m), b(n)}=-\mathcal{E}_{d(p), e(q)}^{[\Delta+1] a(m), b(n), c} C^{[\Delta+1] d(p), e(q)} \\
& \mathrm{D}^{K} C^{[\Delta] a(m), b(n)}+e^{c}\left(\hat{P}_{c} C\right)^{[\Delta] a(m), b(n)}+f^{c}\left(\hat{K}_{c} C\right)^{[\Delta] a(m), b(n)}=\mathcal{O}\left(C^{2}\right)
\end{aligned}
$$

- \hat{P}_{a} and \hat{K}_{a} map $C^{[\Delta+1]}$ and $C^{[\Delta-1]}$ to $C^{[\Delta]}$
- Bianchi identity identifies \hat{P}_{a} and \hat{K}_{a} with $\operatorname{SO}(2, \mathrm{~d})$ generators

From Bianchi identity

$$
\begin{aligned}
& \left(\hat{P}_{[c} \hat{P}_{d]} C\right)^{[\Delta] a(m), b(n)}=0, \quad\left(\hat{K}_{[c} \hat{K}_{d]} C\right)^{[\Delta] a(m), b(n)}=0 \\
& \left(\left(\left[\hat{K}_{a}, \hat{P}_{b}\right]+\hat{J}_{a b}-\eta_{a b} \hat{D}\right) C\right)^{[\Delta] a(m), b(n)}=0
\end{aligned}
$$

$$
\begin{aligned}
& \hat{K}^{a} C^{[\Delta](m, n)}=\left(\left(k_{1+}^{\Delta, m, n}\right) \mathcal{Y}_{1+}^{a}+k_{1-}^{\Delta, m, n} \mathcal{Y}_{1-}^{a}+k_{2+}^{\Delta, m, n} \mathcal{Y}_{2+}^{a}+k_{2-}^{\Delta, m, n} \mathcal{Y}_{2-}^{a}\right) C^{[\Delta](m, n)}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{P}^{a} C^{[\Delta](m, n)}=\left(p_{1+}^{\Delta, m, n} \mathcal{Y}_{1+}^{a}+p_{1-}^{\Delta, m, n} \mathcal{Y}_{1-}^{a}+k_{2+}^{\Delta, m, n} \mathcal{Y}_{2+}^{a}+p_{2-}^{\Delta, m, n} \mathcal{Y}_{2-}^{a}\right) C^{[\Delta](m, n)} \\
& \left.\hat{K}^{a} C^{[\Delta](m, n)}=\left(k_{1+}^{\Delta, m, n}\right) \mathcal{Y}_{1+}^{a}+k_{1-}^{\Delta, m, n} \mathcal{Y}_{1-}^{a}+k_{2+}^{\Delta, m, n} \mathcal{Y}_{2+}^{a}+k_{2-}^{\Delta, m, n} \mathcal{Y}_{2-}^{a}\right) C^{[\Delta](m, n)}
\end{aligned}
$$

$$
\begin{aligned}
{\left[\hat{P}_{a}, \hat{P}_{b}\right]=0 } & \Rightarrow p p+p p=0 \\
{\left[\hat{K}_{a}, \hat{K}_{b}\right]=0 } & \Rightarrow k k+k k=0 \\
{\left[\hat{K}_{a}, \hat{P}_{b}\right]=\eta_{a b} \hat{D}-\hat{J}_{a b} } & \Rightarrow p k+k p=\#
\end{aligned}
$$

- Unique off-shell system up to field redefinition ambiguity
- Various on-shell systems
- Conformal gravity (Bach flat geomtry)
- Einstein gravity
- Higher-depth analogues

Representation

- On-shell Fradkin-Tseytlin module

$$
\mathcal{D}(2,(s, s))=\mathcal{S}(2-s,(s)) \ominus \mathcal{D}(s+d-2,(s))
$$

Bach flat equation

- Off-shell Fradkin-Tseytlin module (shadow module)

$$
\mathcal{S}(0,(2))=\mathcal{V}(0,(2)) \ominus \mathcal{V}(-1,(1)) \oplus \mathcal{D}(-1,(1))
$$

Metric Gauge Conformal Killing

$$
=\bigoplus_{m, n=0}^{\infty}[(2+n+2 m,(n+2,2)) \oplus(3+n+2 m,(n+2,1)) \oplus(4+n+2 m,(n+2))]
$$

Match what we found!

Higher order (sketch)

Nonlinear equation

$$
\mathrm{D}^{K} C^{I}=e_{a} \mathcal{E}^{I, a}(C)+f_{a} \mathcal{F}^{I, a}(C)
$$

Bianchi identity

$$
\begin{aligned}
0= & e_{a} \wedge e_{b}\left(\frac{1}{4} C^{[2] a c, b d}\left(\hat{J}_{c d} C\right)^{I}-\frac{1}{2} C^{[3] c a, b} \mathcal{F}^{I}{ }_{c}(C)+\mathcal{E}^{J, b}(C) \frac{\partial \mathcal{E}^{I, a}}{\partial C^{J}}\right) \\
& +e_{a} \wedge f_{b}\left(\left(\hat{J}^{a b} C\right)^{I}-\Delta_{I} \eta^{a b} C^{I}+\mathcal{F}^{J, b}(C) \frac{\partial \mathcal{E}^{I, a}}{\partial C^{J}}-\mathcal{E}^{J, a}(C) \frac{\partial \mathcal{F}^{I, b}}{\partial C^{J}}\right) \\
& +f_{a} \wedge f_{b} \mathcal{F}^{J, b}(C) \frac{\partial \mathcal{F}^{I, a}}{\partial C^{J}}
\end{aligned}
$$

Polynomial Expansions

$$
\mathcal{E}^{[\Delta], a}(C)=\sum_{k=1}^{\left[\frac{\Delta+1}{2}\right]} \mathcal{E}_{k}^{[\Delta], a}(C), \quad \mathcal{F}^{[\Delta], a}(C)=\sum_{k=1}^{\left[\frac{\Delta-1}{2}\right]} \mathcal{F}_{k}^{[\Delta], a}(C)
$$

$\frac{1}{4} C^{[2] a c, b d}\left(\hat{J}_{c d} C\right)^{[2]}+\mathcal{E}_{2}^{[3],[a}\left(C^{[2]}, C^{[2]}\right) \frac{\partial \mathcal{E}_{1}^{[2], b]}\left(C^{[3]}\right)}{\partial C^{[3]}}=0$
$\frac{1}{4} C^{[2] a c, b d}\left(\hat{J}_{c d} C\right)^{[3]}-\frac{1}{2} C^{[3]} c^{[a, b]} \mathcal{F}_{1}^{[3], c}\left(C^{[2]}\right)+\mathcal{E}_{1}^{[2],[a}\left(C^{[3]}\right) \frac{\partial \mathcal{E}_{2}^{[3], b]}\left(C^{[2]}, C^{[2]}\right)}{\partial C^{[2]}}+\mathcal{E}_{2}^{[4],[a}\left(C^{[2]}, C^{[3]}\right) \frac{\partial \mathcal{E}_{1}^{[3], b]}\left(C^{[4]}\right)}{\partial C^{[4]}}=0$

$$
\frac{1}{4} C^{[2] a c, b d}\left(\hat{J}_{c d} C\right)^{[4]}+\mathcal{E}_{1}^{[3],[a}\left(C^{[4]}\right) \frac{\partial \mathcal{E}_{2}^{[4], b]}\left(C^{[2]}, C^{[3]}\right)}{\partial C^{[3]}}+\mathcal{E}_{2}^{[5],[a}\left(C^{[2]}, C^{[4]}\right) \frac{\partial \mathcal{E}_{1}^{[4], b]}\left(C^{[5]}\right)}{\partial C^{[5]}}=0
$$

$$
-\frac{1}{2} C^{[3]} c^{[a, b]} \mathcal{F}_{1}^{[4], c}\left(C^{[3]}\right)+\mathcal{E}_{1}^{[2],[a}\left(C^{[3]}\right) \frac{\partial \mathcal{E}_{2}^{[4], b]}\left(C^{[2]}, C^{[3]}\right)}{\partial C^{[2]}}+\mathcal{E}_{2}^{[5],[a}\left(C^{[3]}, C^{[3]}\right) \frac{\partial \mathcal{E}_{1}^{[1], b]}\left(C^{[5]}\right)}{\partial C^{[5]}}=0
$$

$$
\mathcal{F}_{1}^{[3], b}\left(C^{[2]}\right) \frac{\partial \mathcal{E}_{2}^{[4], a}\left(C^{[2]}, C^{[3]}\right)}{\partial C^{[3]}}-\mathcal{E}_{2}^{[3], b}\left(C^{[2]}, C^{[2]}\right) \frac{\partial \mathcal{F}_{1}^{[4], a}\left(C^{[3]}\right)}{\partial C^{[3]}}+\mathcal{F}_{2}^{[5], b}\left(C^{[2]}, C^{[2]}\right) \frac{\partial \mathcal{E}_{1}^{[4], a}\left(C^{[5]}\right)}{\partial C^{[5]}}=0
$$

At each order, finite dimensional linear equations

Reduction

Impose algebraic constraints $\Phi(e, \omega, b, f, C)=0$

- Einstein gravity $\Phi^{a}=f^{a}-\Lambda e_{b}$
- Other gravitational theories $\Phi^{a}=f^{a}-\ell^{2} C^{[4] a b} e_{b}$

$$
\Phi^{a}=f^{a}-F(C) e_{b}
$$

- Conformal gravity $\Phi^{[d](2,0)}=C^{[d](2,0)}+\mathcal{O}\left(C^{2}\right)$

K-invariance of constraint

$$
\delta_{\kappa} \Phi^{[d](2,0)}(C)=\kappa^{a} \mathcal{F}^{I, a}(C) \frac{\partial \Phi^{[d](2,0)}(C)}{\partial C^{I}}=0
$$

Weyl invariants

- Ansatz for strictly Weyl invariant d-forms

$$
I_{d}=\epsilon_{a_{1} \cdots a_{d}} e^{a_{1}} \wedge \cdots \wedge e^{a_{d}} \mathcal{I}_{d}(C)
$$

- Gauge variation factorizes in even d

$$
\delta I_{d}=\epsilon_{a_{1} \cdots a_{d}}\left(\varepsilon^{a_{1}} e^{a_{2}} \wedge \cdots \wedge e^{a_{d}} \wedge f_{c}+\kappa_{c} e^{a_{1}} \wedge \cdots \wedge e^{a_{d}}\right) \mathcal{F}^{I, c}(C) \frac{\partial \mathcal{I}_{d}(C)}{\partial C^{I}}
$$

K-invariance of ansatz $\quad \mathcal{I}_{d}(C)=\mathcal{I}_{d}\left(C^{[2]}, C^{[3]}, \ldots, C^{[d-2]}\right)$

$$
\delta_{\kappa} \mathcal{I}_{d}(C)=\kappa^{a} \mathcal{F}^{I, a}(C) \frac{\partial \mathcal{I}_{d}(C)}{\partial C^{I}}=0
$$

* Essential same as [Boulanger\&Erdmenger]

4d $\quad \mathcal{I}_{4}(C)=c_{1} C^{[2] a(2), b(2)} C^{[2]}{ }_{a(2), b(2)}$

$\Delta=4$ scalar : 1

6d $\quad \mathcal{I}_{6}(C)=c_{1} C^{[4] a(2), b(2)} C^{[2]}{ }_{a(2), b(2)}+c_{2} C^{[3] a(3), b(2)} C^{[3]}{ }_{a(3), b(2)}+c_{3} C^{[3] a(2), b} C^{[3]}{ }_{a(2), b}$

(non-trivial) $\Delta=6$ scalars : 3

$$
\begin{aligned}
\delta_{\kappa} \mathcal{I}_{6}(C)= & c_{1}\left(\kappa_{c} C^{[3] a(2) c, b(2)}+\kappa^{b} C^{[3] a(2), b}\right) C_{a(2), b(2)}^{[2]} \\
& +2 c_{2} \kappa^{a} C^{[2] a(2), b(2)} C^{[3]}{ }_{a(3), b(2)}+2 c_{3} \kappa_{b} C^{[2] a(2), b(2)} C^{[3]}{ }_{a(2), b} \\
= & \left(c_{1}+2 c_{2}\right) \kappa^{a} \frac{C^{[2] a(2), b(2)} C^{[3]}{ }_{a(3), b(2)}+\left(c_{1}+2 c_{3}\right) \kappa^{a} C^{[2] a(2), b(2)} C^{[3]} b(2), a}{} \\
& \Delta=5 \text { vector: }: 2
\end{aligned}
$$

In 6d, there is 3-2=1 non-trivial Weyl invariant

	CC	CCC
$\Delta=8$ scalars	7	11
	\downarrow	\downarrow
$\Delta=7$ vectors	$8(6)$	7

* Boulanger, Erdmenger found 5=1(CC+CCC)+4(CCC)

10d

	CC	CCC	CCCC
$\Delta=10$ scalars	12	62	83
$\Delta=9$ vectors	$19(11)$	85	46

Nonlinear Action of SO(2,d)

- Nonlinear action $\quad \hat{P}^{a} C^{I}=\mathcal{E}^{I, a}(C) \quad \hat{K}^{a} C^{I}=\mathcal{F}^{I, a}(C)$ LIE ALGEBROID
- $\mathrm{SO}(2, \mathrm{~d})$ naturally acts on Space of functions of C
- Space of C: Hilbert space
- Space of functions of C: Fock space?
- Lowest states \rightarrow Lowest functions
- Weyl invariant: Lowest scalar function
- On-shell conformal gravity: Lowest tensor function

Future Plan

- Weyl invariants
- Add scalar field : Q-curvature
- Add conformal spin 3 field in 4d
[Beccaria,Tseytlin,Grigoriev, Kuzenko,Ponds,...]
- Conformal higher spin gravity
- Nonlinear representation theory?!
Thank you for your attention!

