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Anomalous global symmetry
(flavor, R-symmetry, higher form, higher spin)

Noether current multiplet
(couples to vector/gravity multiplet)

“Small multiplet” “Large multiplet”

Supersymmetry

● N=1 vector multiplet in WZ gauge
● Conformal current multiplet
● R-multiplet
● Extended supersymmetry (N>1)
● ...

● N=1 vector multiplet in superspace
● Ferrara-Zumino multiplet
● S-multiplet (?)
● ...

Deformation of the 
supercharge algebra
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Noether’s theorem

Continuous global symmetries∗ lead to a conserved current

∂µJ µ = 0

and an associated conserved charge

Q =

ˆ
Ct
dd−1x J t

The conserved charges satisfy an algebra[
QI ,QJ

}
= fIJ

KQK , I, J,K = 1, 2, 3, · · ·

∗ I will focus exclusively on symmetries connected to the identity
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(Perturbative) Anomalies

Quantum anomalies arise due to the breaking of classical symmetries
by the UV regulator or the path integral measure

They are manifest in Ward identities and the charge algebra

Dµ〈J µ〉 = −A

∂µ〈J µ(x1)J ν(x2)J ρ(x3)〉 = contact terms

[
QI ,QJ

}
= fIJ

KQK + kIJ

The structure of anomalies is determined by the Wess-Zumino (WZ)
consistency conditions up to overall numerical coefficients

The algebra deformation kIJ is determined by the anomaly A
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Background fields

Global symmetries can be studied by turning on background gauge
fields Aµ that couple to the Noether currents J µ, i.e. (to linear order)

Z[A] = eiW [A] =

ˆ
Dφ exp

(
iS[φ] + i

ˆ
ddx A · J

)
The full, non-linear, functional W [A] is obtained by gauging the global
symmetry and integrating over the matter fields only – not Aµ

W [A] is the generating function of connected current correlators

〈J µ1(x1)J µ2(x2) · · · J µn(xn)〉 =
δnW [A]

δAµ1
(x1)δAµ2

(x2) · · · δAµn(xn)
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’t Hooft anomalies
If Z[A] transforms with a phase under a gauge transformation
Aµ → A+Dϑ and the phase cannot be removed by a local
counterterm the theory has a ’t Hooft anomaly

Z[A+Dϑ] = Z[A] exp
(
i

ˆ
ddxϑ · A(A)

)
For infinitesimal gauge parameter ϑ(x) this is equivalent to

δϑW [A] = G(ϑ,A)︸ ︷︷ ︸
integrated anomaly

=

ˆ
ddxϑ · A(A)︸ ︷︷ ︸

local anomaly

The gauge dependence of the effective action is equivalent to the non
conservation of the current

δϑW [A] =

ˆ
ddx

δW

δAaµ︸︷︷︸
〈J µa 〉

(Dµϑ)a =

ˆ
ddxϑ·A(A) ⇒ Dµ〈J µ〉 = −A(A)
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Wess-Zumino conditions

The anomalies must satisfy the Wess-Zumino (WZ) consistency
conditions, whose infinitesimal form is

(δϑ1
δϑ2
− δϑ2

δϑ1
)W [A] = δ[ϑ1,ϑ2]W [A]

or
δϑ1G(ϑ2, A)− δϑ2G(ϑ1, A) = G([ϑ1, ϑ2], A)

Any local functional Wloc[A] is a trivial solution of the WZ conditions

Nontrivial solutions of the WZ conditions are local functionals

G(ϑ,A) =

ˆ
ddxϑ · A(A)

that are not the gauge variation of a local functional Wloc[A]
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BRST transformations

Solving the WZ conditions is a cohomology problem

This is formalized by replacing the infinitesimal gauge parameter ϑa

with a Grassmann-valued Faddeev-Popov ghost va so that

δϑA = dA+ [A, ϑ] = Dϑ
δϑF = [F, ϑ]

→
sA = − dv −Av − vA = −Dv
sF = Fv − vF
sv = − 1

2 [v, v] = −v2

where F = dA+A2 is the field strength of A

The BRST operator s is nilpotent and so the WZ condition becomes

s2W [A] = 0 ⇔ sG(v,A) = 0

Nontrivial consistent anomalies are elements of the cohomology of s
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BRST algebra

The cohomology problem that determines the consistent anomaly
can be solved using the anomaly descent procedure that follows from
the BRST algebra [Stora ’77, ’84; Zumino ’84; Mañes, Stora, Zumino ’85]

d2 = 0, s2 = 0, (d + s)2 = 0

We start by defining the quantities

Â ≡ A+ v, F̂ ≡ (d + s)Â+ Â2

The nilpotency of d and d + s imply respectively the Bianchi identities

dF +AF − FA = 0, (d + s)F̂ + ÂF̂ − F̂ Â = 0

These imply that the corresponding anomaly polynomials are closed

dPd+2(F ) = 0, (d + s)Pd+2(F̂ ) = 0
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Russian formula and anomaly descent
The next key ingredient is the “Russian formula”

F̂ = F

Together with the above results, this implies that

0 = Pd+2(F̂ )− Pd+2(F )

= (d + s)Ωd+1(Â, F̂ )− dΩd+1(A,F )

= sΩ
(0)
d+1(A,F ) + dΩ

(1)
d (v,A, F ) +O(v2)

where Ω
(k)
d+1−k determine the expansion of the Chern-Simons form

Ωd+1(Â, F̂ ) = Ωd+1(Â, F ) =
∑
k≥0

Ω
(k)
d+1−k(v,A, F )

Grouping terms of equal ghost number gives the descent equations

sΩ
(k)
d+1−k(v,A, F ) + dΩ

(k+1)
d−k (v,A, F ) = 0
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Consistent anomaly

The solution to the BRST cohomology problem is obtained from the
k = 1 descent relation, which integrated over Md, with ∂Md = ∅, gives

s

ˆ
Md

Ω
(1)
d (v,A, F ) = −

ˆ
Md

dΩ
(2)
d−1(v,A, F ) = 0

We identify the consistent anomaly

G(v,A) = N

ˆ
Md

Ω
(1)
d (v,A, F )

where N is a normalization factor determined by a 1-loop calculation

N =
i
d
2

(2π)
d
2
(
d+2
2

)
!
(nL − nR), d even, nL,R = # of chiral fermions
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Anomaly inflow
The descent relation for k = 0 leads to a toy version of anomaly
inflow. Integrating over Md+1 with ∂Md+1 = Md we obtain

s

ˆ
Md+1

NΩ
(0)
d+1(A,F ) = −N

ˆ
Md

Ω
(1)
d (v,A, F ) = −G(v,A)

Hence, the Chern-Simons form Ω
(0)
d+1(A,F ) “cancels” the anomaly

s
(
W [A] +N

ˆ
Md+1

Ω
(0)
d+1(A,F )

)
= 0

This relation provides a constructive way to determine the consistent
anomaly, given the general expression for the Chern-Simons form

Ω
(0)
d+1(A,F ) = Ωd+1(A,F ) = d+2

2

ˆ 1

0

dt Pd+2

(
A,F

d
2
t

)
where Ft ≡ tF + (t2 − t)A2
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BZ polynomial and the covariant current
The anomaly G(ϑ,A) implies that the consistent current J µ does not
transform covariantly under gauge transformations

δϑ〈J µa 〉 = δϑ

(δW [A]

δAaµ

)
= δϑ

( δ

δAaµ

)
W [A]+

δG(ϑ,A)

δAaµ

= [〈J µ〉, ϑ]a+
δG(ϑ,A)

δAaµ

Bardeen and Zumino (BZ) [Bardeen, Zumino ’84] showed that there
exists a local polynomial X µ(A) that transforms as

δϑX µa (A) = [X µ(A), ϑ]a−
δG(ϑ,A)

δAaµ

It follows that the sum of J µ and X µ(A) does transform covariantly

〈J µcov〉 ≡ 〈J µ〉+ X µ(A), δϑ〈J µcov〉 = [〈J µcov〉, ϑ]
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Covariant anomaly
The BZ polynomial is also determined by the anomaly polynomial
ˆ
ddx δA · X (A) = −N d(d+2)

4

ˆ 1

0

dt t

ˆ
Md

Pd+2

(
δA,A, F

d−2
2

t

)
where again Ft ≡ tF + (t2 − t)A2 and δA is a general variation of A

The BZ polynomial, and hence the covariant current, cannot be
expressed as the variation of an effective action in Md

The divergence of the covariant current is

Dµ〈J µcov〉 = −Acov(A)

where the covariant anomaly

Gcov(v,A) =

ˆ
Md

ddx v · Acov(A) = N d+2
2

ˆ
Md

Pd+2

(
v, F

d
2

)
depends only on the field strength F
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An identity
There is a general local relation between the BZ polynomial and the
consistent anomaly that plays an important role in the following

F aµνX νa (A)−AaµAa(A) = 0

or equivalently, for any vector field κµ,

Ω
(1)
d (ikA,A, F ) +

d(d+ 2)

4

ˆ 1

0

dt tPd+2

(
ikF,A, F

d−2
2

t

)
= 0

e.g. for the Abelian case in d = 4

FτνX ν(A)−AτA(A) ∝ εµνρσ
(
FµνFρσAτ + 4AνFρσFτµ

)
= 0

since antisymmetrizing five indices in four dimensions gives zero

F[µνFρσAτ ] = 0
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Ward identities
The anomalous conservation of the consistent current in the presence
of an arbitrary gauge field Aµ is an example of a Ward identity

Dµ〈J µ〉 = −A(A) (∗)

As we saw, this is obtained by writing δϑW [A] in two different ways

δϑW [A] =

ˆ
ddxϑ · A(A) =

ˆ
ddx

δW

δAaµ︸︷︷︸
〈J µ〉

(Dµϑ)a︸ ︷︷ ︸
δϑAaµ

where the first equality is a consequence of the WZ conditions, while
the second follows from the chain rule and the definition of 〈J µ〉

Successive derivatives of (∗) with respect to Aµ lead to the Ward
identities for any correlator of consistent currents

∂µ1
〈J µ1(x1)J µ2(x2) · · · J µn(xn)〉 = contact terms
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Spacetime symmetries

Spacetime symmetries, such as diffeomorphisms and local Lorentz
transformations, act on multiple background fields

As a result, the Ward identities for these symmetries contain several
operators, besides the energy-momentum tensor

As a warmup for supersymmetry, let us consider the diffeomorphism
Ward identity in the presence of an anomalous flavor symmetry

The current operators related to these symmetries are

〈T µa 〉 = e−1
δW

δeaµ
, 〈J µ〉 = e−1

δW

δAµ
, e ≡ det(eaµ)

(Recall that gµν = eaµ e
b
ν ηab)
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Gravitational anomalies

The transformations of W [e,A] under diffeomorphisms and Lorentz
transformations define the diffeomorphism and Lorentz anomalies

δξW [e,A] = GD(ξ,Γ, R, F ), δλW [e,A] = GL(λ, ω,R, F )

where Γ and ω are respectively the Christoffel and spin connections

GL can be determined by standard SO(d) descent, while GD may be
obtained from an effective GL(d) descent with parameter ∂µξν

In fact, GL and GD are related by a local counterterm and so one of
the two can always be set to zero [Bardeen, Zumino ’84]

A counterterm shifts also the mixed gauge-gravitational anomaly
between diffeomorphisms and gauge transformations and so both GL
and GD can be set to zero unless d = 4k + 2, k = 0, 1, . . .
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Diffeomorphism Ward identity
The diffeomorphism Ward identity follows from the transformation law

δξW [e,A] =

ˆ
ddx e ξ · AD =

ˆ
ddx e

(
δξe

a
µ〈T µa 〉+ δξAµ · 〈J µ〉

)
= −
ˆ
ddx e ξµ

(
eaµ∇ν〈T νa 〉 − Fµν · 〈J ν〉+Aµ · Dν〈J ν〉 − ωµabeν[a〈T νb] 〉

)
The terms involving the flavor current can be simplified as

−Fµν · 〈J ν〉+Aµ · Dν〈J ν〉 = −Fµν · 〈J νcov〉+Fµν · X ν(A)−Aµ · A(A)︸ ︷︷ ︸
=0

Hence, only the flavor field strength and covariant current appear

eaµ∇ν〈T νa 〉 − Fµν · 〈J νcov〉 − ωµabeν[a〈T νb] 〉 = −ADµ

This extends to the gravitational anomaly and stress tensor, i.e.
T → Tcov, AD → Acov

D using the gravitational BZ polynomial
22 / 40



Ward identity covariance

The appearance of the covariant current in the diffeomorphism Ward
identity can be understood using the WZ consistency conditions

Besides the diffeo-diffeo and gauge-gauge WZ conditions, W [e,A]
satisfies the mixed diffeo-gauge condition

(δϑδξ − δξδϑ)W = δϑ′W, ϑ′ = Lξϑ

However, GD(ξ,Γ, R, F ) does not depend on A and G(ϑ,A, F,R)
does not depend on Γ and so the following identities hold separately

δϑδξW = δϑGD(ξ,Γ, R, F ) = 0

δξδϑW + δϑ′W = δξG(ϑ,A, F,R) +G(ϑ′, A, F,R) = 0

The covariance of the diffeomorphism Ward identity follows
immediately from the first of these, namely δϑδξW = 0
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Supersymmetry Ward identity
In supersymmetric theories W satisfies the WZ condition

(δϑδε − δεδϑ)W = 0

However, using the general form of the flavor anomaly we determine

δεδϑW = δεG(ϑ,A) = −δϑ
ˆ
ddx δεA · X [A] 6= 0

Hence, in contrast to δϑδξW = 0 for diffeos, δϑδεW 6= 0. In particular,

δεW = −
ˆ
ddx δεA · X [A]︸ ︷︷ ︸

universal

+ gauge invariant︸ ︷︷ ︸
multiplet dependent

6= 0

The gauge invariant part is determined by the δεδε′ WZ condition

The supersymmetry Ward identity, therefore, takes the general formˆ
ddx (−ε̄ ∂µ〈Sµ〉+ δεAµ · 〈J µcov〉) = gauge invariant
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Example: 4d N = 1 vector multiplet

As a first example to illustrate this structure, let us consider 4d N = 1
theories with an anomalous Abelian flavor symmetry

∂µ〈J µ〉 =
κ

4
F̃µνFµν , F̃µν ≡ 1

2
εµνρσFρσ

Aµ and J µ belong to vector multiplets, which in the WZ gauge
comprise respectively (Aµ, λ

α, D) and (J µ,Oλα,OD)

The flavor current and background multiplets are related as usual by

〈J µ〉 =
δW

δAµ
, 〈Oλα〉 =

δW

δλα
, 〈OD〉 =

δW

δD
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Supersymmetry Ward identity
The WZ conditions take the form

(δϑδϑ′ − δϑ′δϑ)W = 0, (δεδϑ − δϑδε)W = 0

(δεδε′ − δε′δε)W = (δξ + δϑ)W, ξµ = −2i(εσµε̄− ε′σµε̄), ϑ = −ξµAµ

Their solution is [Itoyama, Nair, Ren ’85; Guadagnini, Mintchev ’86]

δϑW = − κ

4

ˆ
d4xϑ F̃µνFµν , κ = constant

δεW =

ˆ
d4x

(
− iεσµλ︸ ︷︷ ︸

δεAµ

κ εµνρσAνFρσ︸ ︷︷ ︸
Xµ(A)

+ 3κi ελλ
2︸ ︷︷ ︸

gauge invariant

+h.c.
)
6= 0

This leads to the supersymmetry Ward identity

∂µ〈Sµα〉+ i(σµλ)α〈J µcov〉+
(
iDδα

β + 1
2 (σµσν)α

βFµν
)
〈Oλβ〉

− (σµ∂µλ)α〈OD〉 = 3κiλαλ
2
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Generalized anomaly descent

The structure of anomalies in supersymmetric theories can be
determined by solving the full set of WZ consistency conditions

However, systematic methods for solving these, such as the anomaly
descent, must be generalized to accommodate supersymmetry

For minimal rigid supersymmetry in dimensions 2 to 6 (off-shell) and
up to 10 (on-shell), versions of a supersymmetric anomaly descent
have been discussed in [Itoyama, Nair, Ren ’85; Guadagnini, Mintchev ’86,
Kaiser ’88; Altevogt, Kaiser ’88; Baulieu, Martin ’08]

Our discussion is based on the BRST version of the supersymmetric
anomaly descent developed in [Kaiser ’88; Altevogt, Kaiser ’88], which is
based on the usual, purely bosonic, anomaly polynomial Pd+2(F )
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BRST and supersymmetry

In a supersymmetric anomaly descent one must be careful with the
fermions across dimensions, but since no fermions are present in
Pd+2(F ) we need only consider fermions in d+1 and d dimensions

The structure of the BRST algebra is generic, but let us focus on 3d
N = 1 rigid supersymmetry, which corresponds to 2d N = (1, 1)

δQ(ε)Aµ = − 1
2 ε̄γµλ, δQ(ε)λµ = 1

4 (γρσε)µFρσ

Supersymmetry requires a second BRST operator, c, such that

sAµ = Dµv
sλ = {λ, v}
sv = − v2

sα = 0

cAµ = − 1
2 ᾱγµλ

a + aν∂νAµ

cλ = 1
4γ

µνF aµνα+ aν∂νλ

cv = 1
4 ᾱγ

µαAµ + aν∂νv

caµ = − 1
4 ᾱγ

µα

where (va, α, aµ) are Faddeev-Popov ghosts
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BRST algebra
The above BRST transformations satisfy the algebra

d2 = 0, s2 = 0, (s+ c)2 = 0, (d + s)2 = 0, (d + s+ c)2 = 0

Also for diffeos where Lξ → sGL(d) + c. But diffeos satisfy also c2 = 0,
which facilitates a reformulation in terms of a standard GL(d) descent

The WZ conditions are equivalent to the BRST cohomology problem

(s+ c)2W [A, λ] = 0 ⇔ (s+ c)G({v, α, a}, A, λ) = 0

In addition to the quantities Â ≡ A+ v, F̂ ≡ (d + s)Â+ Â2 we define

Â ≡ Â+ u = A+ v + u, F̂ ≡ (d + s+ c)Â+ Â2

where u is unspecified (will set u = 0 later)

The nilpotency of d + s+ c implies the Bianchi identity

(d + s+ c)F̂ + ÂF̂ − F̂Â = 0
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Generalized descent equations

Recall that a key ingredient of the standard descent is the “Russian
formula” F̂ = F , which implies that Pd+2(F̂ )− Pd+2(F ) = 0

However, F̂ 6= F for any choice of u and so we define

Pd+2(F̂)−Pd+2(F ) = (d+s+c)Ωd+1(Â, F̂)−dΩd+1(A,F ) ≡
∑
k≥1

X
(k)
d+2−k

Expanding in total ghost number gives two sets of descent equations

(s+c)X
(k+1)
d+1−k+dX

(k+2)
d−k = 0, X

(k+1)
d+1−k = (s+c)Ω

(k)
d+1−k+dΩ

(k+1)
d−k

where Ω
(k)
d+1−k determine the expansion of the Chern-Simons form

Ωd+1(Â, Ĝ) =
∑
k≥0

Ω
(k)
d+1−k({v, α, a}, A, F )
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Supersymmetrized consistent anomaly
At k = 1 the second set of descent equations gives

X
(2)
d = (s+ c)Ω

(1)
d + dΩ

(2)
d−1

while from the definition of X(k+1)
d+1−k follows that (with u = 0)

X
(2)
d = d+2

2 Pd+2

(
cv, F

d
2
)

+ d(d+2)
4 Pd+2

(
cA, cA, F

d−2
2
)

Using this expression one finds that X(2)
d can be expressed as

X
(2)
d = (s+ c)Y

(1)
d + dZ

(2)
d−1

where Y (1)
d 6= Ω

(1)
d is gauge invariant, i.e. sY (1)

d = 0, and depends
only on the c ghosts, α and a

It follows that the supersymmetrized consistent anomaly is

(s+c)

ˆ
Md

(
Ω

(1)
d −Y

(1)
d

)
= 0 ⇒ G({v, α, a}, A, λ) = N

ˆ
Md

(
Ω

(1)
d −Y

(1)
d

)
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Supersymmetric Chern-Simons

We have seen that the anomaly follows from the fact that X(2)
d can be

written in “normal form”, i.e. X(2)
d = (s+ c)Ω

(1)
d + dΩ

(2)
d−1, Y (1)

d 6= Ω
(1)
d

However, a supersymmetric Chern-Simons form exists iff also

X
(1)
d+1 = (s+ c)Y

(0)
d+1 + dZ

(1)
d , Y

(0)
d+1 6= Ω

(0)
d+1

In that case, the descent equations determine that

(s+ c)
(
Ω

(0)
d+1 − Y

(0)
d+1

)
= d

(
Z

(1)
d − Ω

(1)
d

)
Ω

(1)
d − Z

(1)
d = Ω

(1)
d − Y

(1)
d + (s+ c)-exact

which allows us to identify Ω
(0)
d+1 − Y

(0)
d+1 with a supersymmetric

Chern-Simons form and Ω
(1)
d − Z

(1)
d with the anomaly

33 / 40



Example

From the definition of X(k+1)
d+1−k follows that

X
(1)
d+1 = d+2

2 Pd+2

(
cA, F

d
2
)

The BRST transformations of the 3d N = 1 vector multiplet determine

X
(1)
3 = tr (−ᾱγλF ) + d tr (2iaAF )

c tr (λ̄λ ∗ 1) = −tr (ᾱγλF )− d tr (∗aλ̄λ)

Hence,
X

(1)
3 = (s + c) tr (λ̄λ ∗ 1)︸ ︷︷ ︸

Y
(0)
3

+d tr (2iaAF − ∗aλ̄λ)︸ ︷︷ ︸
Z

(1)
3

and the 3d N = 1 supersymmetric Chern-Simons (CS) form is

ΩCS = Ω
(0)
3 − Y

(0)
3 = tr

(
AdA+

2

3
A3 − λ̄λ ∗ 1

)
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Supersymmetric anomaly inflow

Turning the argument around, supersymmetric CS forms can be used
as a powerful tool to determine certain supersymmetrized anomalies

δ{ϑ,ε,··· }W = G({ϑ, ε, · · · }, {A,ω, · · · }) = δ{ϑ,ε,··· }SCS

where
SCS =

ˆ
Md+1

ΩCS, Md = ∂Md+1

Placing SCS on the LHS, i.e.

δ{ϑ,ε,··· }(W − SCS) = 0

gives an example of a codimension-1 supersymmetric anomaly inflow

Higher codimension supersymmetric inflows are realized e.g. on the
worldvolume of D-branes and membranes
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Example: 2d N = (p, q) flavor anomalies
The maximal vector multiplet with a pure CS action in 3d is the N = 3
multiplet (Aµ, λ

I , χ, σI , DI), I = 1, 2, 3

The N = 3 CS action is [Kao, Lee, Lee ’95]

LCS =
k

4π
tr
(
εµνρ

(
Aµ∂νAρ − 2i

3 AµAνAρ
)

− λ̄IλI + χ̄χ− 2σIDI + i
3εIJKσ

I [σJ , σK ]
)

Varying this action determines the anomalies for the 2d N = (p, q),
p, q ≤ 3, vector multiplet obtained by dimensional reduction

δG(ϑ)W =
k

4π
εν̂ρ̂
ˆ
d2x tr (ϑ∂ν̂Aρ̂)

δQ(ε)W =
k

4π

ˆ
d2x tr

(
δQ(ε)Aν̂ ε

ν̂ρ̂Aρ̂︸ ︷︷ ︸
X (A)

− 2σI(εIJK ε̄
Jγ∗λ

K + ε̄Iγ∗χ)︸ ︷︷ ︸
gauge invariant

)
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Summary

In several commonly encountered Noether current multiplets of
anomalous global symmetries supersymmetry is violated

δεW = −
ˆ
ddx δεA · X [A]︸ ︷︷ ︸

universal

+ gauge invariant︸ ︷︷ ︸
multiplet dependent

6= 0

The supersymmetry violating terms are determined by the WZ
consistency conditions in the presence of supersymmetry

In many cases, these can be solved by a generalized anomaly
descent procedure, or a supersymmetric Chern-Simons form

The supersymmetry violating terms affect the dependence of
(refined) supersymmetric observables on bosonic fugacities

Anomalous higher form and higher spin symmetries?
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Thank you for your attention!
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