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Overview of Q-balls

Q-balls are a class of non-topological solitons existing in theories of complex
scalar field possessing (global) U(1)-symmetry (Rosen, G.’68; Coleman, S.’85)

They are well-studied objects with numerous applications in astrophysics and
cosmology, condensed matter physics, even non-linear optics.

They allow for simple (sometimes analytical) treatment (Theodorakis, S’00)

They can serve as prototypes for more complicated objects arising in realistic
setting (e.g. boson stars).
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Setup

We will be interested in the models of one complex scalar field in 3+1 dimensions
with a potential of a special form,

General Lagrangian

L = |∂µφ|2 − V (|φ|)

The ansatz, energy and charge of a Q-ball

φ = f (r)e iωt , E =
∫
d3x ((~∇f )2 − ω2f 2 + V (f )) , Q = 2ω

∫
d3x f 2

We will study small perturbations on top of these configurations.

The potential will be chosen so that to allow for analytical treatment of both the
solitons and their perturbations.

Note that the problem of finding a spectrum of bound states of a Q-ball is not an
eigenvalue problem for an Hermitian operator.
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Q-balls in the flat potential

Consider a potential consisting of two parabolic branches joined at some point
|ϕ| = v . Require the presence of a flat direction,

Parabolic potential with the flat direction

V (|φ|) = m2|φ|2θ
(

1− |φ|
2

v2

)
+ m2v2θ

(
|φ|2
v2 − 1

)

The set of Q-balls split on two branches. One of them (with ω < ωc ) contains
classically stable solutions. Another (with ω > ωc ) corresponds to unstable
“Q-clouds” (Alford, M. G.’88)

The critical frequency ωc ≈ 0.960m corresponds to the soliton with the minimal
possible energy and charge.

Figure: E(Q) for the Q-balls in the flat parabolic potential (Gulamov, I. E., Nugaev, E. Ya. and
Smolyakov, M. N.’13) 5 / 17
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Perturbations of Q-balls in the flat potential

An appropriate ansatz governing the dynamics of small oscillations on top of the
classically stable Q-balls reads as follows (M. N. Smolyakov’18)

Perturbation ansatz

φ = φ0 + ψe iωt , ψ(~x , t) = (ψ
(l)
1 (r)e iγt + ψ

(l)
2 (r)e−iγt)Yl,m(θ, ϕ)

where the parameter γ is taken to be real and positive, ψ
(l)
1 , ψ

(l)
2 are real functions of

the radial coordinate and Yl,m are spherical harmonics.
Substituting this into the linearized equations of motion, one gets

Equations for perturbations

(
∆r −

l(l + 1)

r2
+ (ω + γ)2 − g(r)

)
ψ

(l)
1 (r)− h(r)ψ

(l)∗
2 (r) = 0(

∆r −
l(l + 1)

r2
+ (ω − γ)2 − g(r)

)
ψ

(l)
2 (r)− h(r)ψ

(l)∗
1 (r) = 0

The functions g and h are determined by the potential. In our case

h(r) = −m2

2
δ
(

f (r)
v
− 1
)
, g(r) = m2θ

(
1− f 2(r)

v2

)
+ h(r)

Hence, equations are disentangled everywhere except the single point R such that
f (R) = v .

6 / 17



Overview of Q-balls Setup Spectrum in the flat potential Spectrum in the polynomial potential Conclusions Backups

Perturbations of Q-balls in the flat potential

To study bound states, one imposes

Boundary conditions

ψ
(l)
1,2(∞) = 0 , ∂rψ

(l)
1,2

∣∣∣
r=0

= 0

and also γ + ω < m.

Figure: The discrete spectrum of linear perturbations of classically stable Q-balls in the flat
potential, at l = 0. All quantities are normalized to the parameter m.
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Perturbations of Q-balls in the flat potential

Features of the spectrum:

At ω → 0, one has Q →∞. Hence, large Q-balls possess soft modes. In this
limit, the spectrum linearizes,

γn = knω , kn ≈
nω

2
, n = 1, 3, 4, 5, ...

The number of bound states of large Q-balls is proportional to its size3.

At intermediate frequencies the Q-balls do not support bound states.

Close to the stability bound ω = ωc one vibrational spherically-symmetric mode
reappears. For it

γ ∼
√
ωc − ω

This mode continues analytically into the instability region where it becomes the
decay mode.
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Perturbations of Q-balls in the flat potential

The structure of the spectrum with a non-zero orbital momentum is similar to that
with l = 0:

Figure: The discrete spectrum of linear perturbations of classically stable Q-balls in the flat
potential, at l = 1 (the left panel) and l = 2 (the right panel).

Note the absence of vibrational modes near the cusp point ω = ωc .
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Polynomial potential

In order to allow Q-balls in a theory of one scalar field with a polynomial potential, it
is necessary to include non-renormalizable self-interactions in the latter. Here we
consider the simplest bounded below potential of the sixth degree,

Polynomial potential

V (|φ|) =
(
δ
(
|φ|2 − v2

)2
+ ω2

min

)
|φ2| , δ > 0

The frequencies of Q-balls are confined in the region

ωmin < ω < m =
√
ω2

min + δ v4

The thin-wall approximation is applicable near the lower limit. It is controlled by the
small parameter

ε = ω − ωmin
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Q-balls in the thin-wall regime

In the thin-wall regime, the properties of a Q-ball are well captured by few quantities
— the distance R to the wall and the magnitude f0 of the field in the interior region.

In order to justify the description of a soliton in terms of a finite set of variables, a
suitable thin-wall ansatz must be adopted.

To study perturbations on top of a Q-ball, it suffices to choose the simplest ansatz:

Thin-wall ansatz

f (r) = f0θ
(

1−
r

R

)
With this ansatz the energy and the charge of the Q-ball are

Q =
8

3
πR3ωf 2

0 , E = 8πR2
√
δv4 +

4

3
πR3

(
ω2 + ω2

min

)
f 2
0

Minimizing E while keeping Q fixed, one gets

f0 = v +O(ε) , R =

√
δv2

2ωmin

1

ε
+O(1)
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Perturbations in the thin-wall regime

The equations for perturbations are the same as before. The functions f and g are
now given by

h(r) = −4δv2f 2(r) + 6δf 4(r) , g(r) = m2 − 8δv2f 2(r) + 9δf 4(r)

The equations are disentangled in the exterior of the Q-ball, r > R. In the interior,
r < R, one obtains separate equations for the rotated vector Ξ = (ξ1, ξ2)T such that

Ψ = UΞ ,

where U diagonalizes the non-diagonal part of the linearized equations.

The resulting solutions are joined at r = R. This gives the spectrum of allowed values
of γ.
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Perturbations in the thin-wall regime
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Figure: The spectrum of vibrational modes of stable Q-balls in the thin-wall approximation. The
parameters of the potential are δ = 1.5, v = 0.9, ωmin = 0.126. All quantities are normalized to
m. The left panel shows the full spectrum of the spherically-symmetric modes, l = 0. The right
panel compares the modes of the 1st “energy level” and with different orbital momenta.

The features of the spectrum near the bound ω = ωmin are the same as for the flat
parabolic potential.
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Conclusions

The spectra of vibrations of the Q-balls in our examples have some properties in
common. In fact, those properties are model-independent.

Large Q-balls in the model with the flat potential possess soft modes with
γ ∼ ω → 0, well below the mass m of the free boson in vacuum.

Q-balls with the near-critical charge have the vibrational mode related to the
decay mode of Q-clouds.

It is important to note that the near-critical regime of these (in general,
relativistic) solitons can be analyzed by the means of the perturbation theory with
respect to the relative frequency γ of an excitation.
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Thank you!
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Decay mode of Q-clouds in the flat potential

The decay mode is captured by the following spherically-symmetric ansatz,

ψ(~x , t) = ζ(r)eγt , γ > 0

Define γ̃ as
γ̃2 ≡ γ2 for ω < ωc , γ̃2 ≡ −γ2 for ω ≥ ωc
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Figure: Left panel: the decay rate of unstable Q-balls in the flat parabolic potential. Right panel:
the transition between the decay and the vibrational modes.
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Perturbation theory near the cusp point

Whenever γ is small, one can make use of the perturbation theory with respect to γ.
Then, the linear perturbations of a Q-ball take a simple form

ψ1 ∼ f + γ
∂f

∂ω
+O(γ2) , ψ2 ∼ −f + γ

∂f

∂ω
+O(γ2)

Similarly, for the decay mode we have

ψe−γt ∼ if + γ
∂f

∂ω
+O(γ2)

In this expression, the first term represents the Goldstone mode corresponding to the
global U(1)-symmetry of the theory.
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