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Overview of Q-balls

Overview of Q-balls

@ Q-balls are a class of non-topological solitons existing in theories of complex
scalar field possessing (global) U(1)-symmetry (Rosen, G.’68; Coleman, S.’85)

@ They are well-studied objects with numerous applications in astrophysics and
cosmology, condensed matter physics, even non-linear optics.

o They allow for simple (sometimes analytical) treatment (Theodorakis, S’00)

@ They can serve as prototypes for more complicated objects arising in realistic
setting (e.g. boson stars).




Setup

@ We will be interested in the models of one complex scalar field in 34+1 dimensions
with a potential of a special form,

General Lagrangian

L= 0ugl* — V(4]

The ansatz, energy and charge of a Q-ball

¢ = f(r)et, E = [d3 ((VF)? — w22 4 V(f)), Q = 2w [ d¥x 2

We will study small perturbations on top of these configurations.

@ The potential will be chosen so that to allow for analytical treatment of both the
solitons and their perturbations.

o Note that the problem of finding a spectrum of bound states of a Q-ball is not an
eigenvalue problem for an Hermitian operator.



Spectrum in the flat potential

Q-balls in the flat potential

Consider a potential consisting of two parabolic branches joined at some point
|¢] = v. Require the presence of a flat direction,

Parabolic potential with the flat direction

V(o)) = m?lgP0 (1 - %) + m?v26 (% -1)

The set of Q-balls split on two branches. One of them (with w < wc) contains
classically stable solutions. Another (with w > wc) corresponds to unstable
“Q-clouds” (Alford, M. G.’88)

The critical frequency wc &~ 0.960m corresponds to the soliton with the minimal
possible energy and charge.
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Figure: E(Q) for the Q-balls in the flat parabolic potential (Gulamov, I. E., Nugaev, E. Ya. and
Smolyakov, M. N."13) 5/17



Spectrum in the flat potential

Perturbations of Q-balls in the flat potential

An appropriate ansatz governing the dynamics of small oscillations on top of the
classically stable Q-balls reads as follows (M. N. Smolyakov'18)

Perturbation ansatz

¢ =do+vet, (R 1) = @ (r)et + (e )Y m(6, )

where the parameter « is taken to be real and positive, 1/}5/), wgl) are real functions of
the radial coordinate and Y/ ,, are spherical harmonics.
Substituting this into the linearized equations of motion, one gets

Equations for perturbations

(A, — ’(’; D w2 - g(r)) O(ry = (e (r) =0

(a - 150 4 =2 = e(0) 00) - s (0 =0

r

The functions g and h are determined by the potential. In our case

hry =56 (%2 -1) , s() =m0 (1= 50) + k() J

Hence, equations are disentangled everywhere except the single point R such that
f(R) =v.
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Spectrum in the flat potential

Perturbations of Q-balls in the flat potential

To study bound states, one imposes

Boundary conditions

Ber=0, aufl| =o

and also v+ w < m.
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Figure: The discrete spectrum of linear perturbations of classically stable Q-balls in the flat
potential, at / = 0. All quantities are normalized to the parameter m.



Spectrum in the flat potential

Perturbations of Q-balls in the flat potential

Features of the spectrum:

@ At w — 0, one has Q — co. Hence, large Q-balls possess soft modes. In this
limit, the spectrum linearizes,

Yn = knw , kn~—, n=1,3,45, ...

@ The number of bound states of large Q-balls is proportional to its size3.

@ At intermediate frequencies the Q-balls do not support bound states.

@ Close to the stability bound w = wc one vibrational spherically-symmetric mode

reappears. For it
Y~ Vwe —w

This mode continues analytically into the instability region where it becomes the
decay mode.



Spectrum in the flat potential

Perturbations of Q-balls in the flat potential

The structure of the spectrum with a non-zero orbital momentum is similar to that

with / = 0:
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Figure: The discrete spectrum of linear perturbations of classically stable Q-balls in the flat
potential, at / = 1 (the left panel) and / = 2 (the right panel).

Note the absence of vibrational modes near the cusp point w = we.
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Spectrum in the polynomial potential

Polynomial potential

In order to allow Q-balls in a theory of one scalar field with a polynomial potential, it
is necessary to include non-renormalizable self-interactions in the latter. Here we
consider the simplest bounded below potential of the sixth degree,

Polynomial potential

V(gD = (5 (18P = v?)* +u2;, ) 167, 8>0

The frequencies of Q-balls are confined in the region

Whin < w < m =4/ m|n+6v4

The thin-wall approximation is applicable near the lower limit. It is controlled by the
small parameter
€ = W — Wnin



Spectrum in the polynomial potential

Q-balls in the thin-wall regime

In the thin-wall regime, the properties of a Q-ball are well captured by few quantities
— the distance R to the wall and the magnitude fy of the field in the interior region.

In order to justify the description of a soliton in terms of a finite set of variables, a
suitable thin-wall ansatz must be adopted.

To study perturbations on top of a Q-ball, it suffices to choose the simplest ansatz:

Thin-wall ansatz

f(r) = R0 (1 - %)

With this ansatz the energy and the charge of the Q-ball are
min

8 4
Q= 57rR3wf02 s E = 87R%V5v* + §7rR3 (w2 + w? ) f02

Minimizing E while keeping Q fixed, one gets

fo=v+0(), R= -+ 0(1)

2Wmin €

Vo2 1 J
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Spectrum in the polynomial potential

Perturbations in the thin-wall regime

The equations for perturbations are the same as before. The functions f and g are
now given by

h(r) = —45v2f2(r) + 65f4(r),  g(r) = m> —85v2f2(r) + 95f4(r) J

The equations are disentangled in the exterior of the Q-ball, r > R. In the interior,
r < R, one obtains separate equations for the rotated vector = = (£1,&>)7 such that

v =U=,
where U diagonalizes the non-diagonal part of the linearized equations.

The resulting solutions are joined at r = R. This gives the spectrum of allowed values
of ~.



Spectrum in the polynomial potential

Perturbations in the thin-wall regime
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Figure: The spectrum of vibrational modes of stable Q-balls in the thin-wall approximation. The
parameters of the potential are § = 1.5, v = 0.9, wmin = 0.126. All quantities are normalized to
m. The left panel shows the full spectrum of the spherically-symmetric modes, / = 0. The right
panel compares the modes of the 1st “energy level” and with different orbital momenta.

The features of the spectrum near the bound w = wp;, are the same as for the flat
parabolic potential.

13/17



Conclusions

Conclusions

@ The spectra of vibrations of the Q-balls in our examples have some properties in
common. In fact, those properties are model-independent.

o Large Q-balls in the model with the flat potential possess soft modes with
vy ~w — 0, well below the mass m of the free boson in vacuum.

o Q-balls with the near-critical charge have the vibrational mode related to the
decay mode of Q-clouds.

o It is important to note that the near-critical regime of these (in general,
relativistic) solitons can be analyzed by the means of the perturbation theory with
respect to the relative frequency 7 of an excitation.

14 /17



Conclusions

Thank you!



Backups

Decay mode of Q-clouds in the flat potential

The decay mode is captured by the following spherically-symmetric ansatz,

2 ) — t
P(x,t) =¢(r)e’,  y>0 )
Define 4 as
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Figure: Left panel: the decay rate of unstable Q-balls in the flat parabolic potential. Right panel:
the transition between the decay and the vibrational modes.
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Backups

Perturbation theory near the cusp point

Whenever ~ is small, one can make use of the perturbation theory with respect to +.
Then, the linear perturbations of a Q-ball take a simple form

of of
Y1~y + 00, v~ —f o= +0()
Ow Ow

Similarly, for the decay mode we have

of
we M~ if 95—+ 0(77)

In this expression, the first term represents the Goldstone mode corresponding to the
global U(1)-symmetry of the theory.
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