Goldsone theorem for the spontaneous breakdown of spacetime symmetries

I. Kharuk, A. Shkerin
Moscow Institute of Physics and Technology, Institute for Nuclear Research RAS

Quarks 2018

Outline

1. Introduction: known peculiarities of the theories resulting from the spontaneous breakdown of spacetime symmetries
2. New results:

- New massive Nambu-Goldstone bosons
- Understanding the inverse Higgs phenomenon
- Goldstone's theorem

3. Conclusion

Known peculiarities

Redundant Nambu-Goldstone fields (picture from hep-th/0110285)

Known peculiarities

Redundant Nambu-Goldstone fields (picture from hep-th/0110285)

1. Introduce coset $G / H: \quad g_{H}=e^{i P_{\mu} x^{\mu}} e^{i P_{z} \xi} e^{i M_{z \mu} \omega^{\mu}}$
2. Calculate Maurer-Cartan forms:

$$
g_{H}^{-1} d g_{H}=i P_{\mu} \Omega_{P}^{\mu}+i P_{z} \Omega_{P}^{z}+i M_{z \mu} \Omega_{M}^{\mu}+i M_{\mu \nu} \Omega_{M}^{\mu \nu}
$$

3. Impose inverse Higgs constraints:

$$
\Omega_{P}^{z}\left(\partial_{\mu} \xi, \omega_{\mu}\right)
$$

Known peculiarities

Redundant Nambu-Goldstone fields (picture from hep-th/0110285)

1. Introduce coset $G / H: \quad g_{H}=e^{i P_{\mu} x^{\mu}} e^{i P_{z} \xi} e^{i M_{z \mu} \omega^{\mu}}$
2. Calculate Maurer-Cartan forms:

$$
g_{H}^{-1} d g_{H}=i P_{\mu} \Omega_{P}^{\mu}+i P_{z} \Omega_{P}^{z}+i M_{z \mu} \Omega_{M}^{\mu}+i M_{\mu \nu} \Omega_{M}^{\mu \nu}
$$

3. Impose inverse Higgs constraints:

$$
\Omega_{P}^{z}\left(\partial_{\mu} \xi, \omega_{\mu}\right)=0 \Rightarrow \omega_{\mu}=\omega_{\mu}\left(\partial_{\mu} \xi\right)
$$

Open questions

\rightarrow When one should impose inverse Higgs constraints?

Open questions

\rightarrow When one should impose inverse Higgs constraints?
\rightarrow Does it cover all possible effective Lagrangians?

Open questions

\rightarrow When one should impose inverse Higgs constraints?
\rightarrow Does it cover all possible effective Lagrangians?
\rightarrow Inverse Higgs effect - a trick, an effect, a gauge choice, ... ?

New massive Nambu-Goldstone bosons

SSB pattern: $\quad \operatorname{ISO}(d)_{S T} \times I S O(d)_{\text {int }} \rightarrow I S O(d)_{V}$
The Lagrangian of the theory:

$$
\mathcal{L}=-\frac{1}{2}\left(\partial_{i} \varphi^{a}\right)^{2}+\frac{1}{4}\left(\partial_{[i} V_{j]}^{a}\right)^{2}+\varkappa V_{a}^{i} \partial_{i} \varphi^{a}+\frac{\lambda}{4 d}\left(V_{a}^{i} V_{i}^{a}-d M_{V}^{2}\right)^{2}
$$

Vacuum solution:

$$
\varphi^{a}=\mu^{2} x^{a}, \quad V_{a}^{i}=M \delta_{a}^{i}, \quad M=\sqrt{M_{V}^{2}-\frac{\varkappa^{2}}{\lambda}}, \quad \mu^{2}=\varkappa M
$$

New massive Nambu-Goldstone bosons

SSB pattern: $\quad I S O(d)_{S T} \times I S O(d)_{\text {int }} \rightarrow I S O(d)_{V}$
The Lagrangian of the theory:

$$
\mathcal{L}=-\frac{1}{2}\left(\partial_{i} \varphi^{a}\right)^{2}+\frac{1}{4}\left(\partial_{[i} V_{j j}^{a}\right)^{2}+\varkappa V_{a}^{i} \partial_{i} \varphi^{a}+\frac{\lambda}{4 d}\left(V_{a}^{i} V_{i}^{a}-d M_{V}^{2}\right)^{2}
$$

Vacuum solution:

$$
\varphi^{a}=\mu^{2} x^{a}, \quad V_{a}^{i}=M \delta_{a}^{i}, \quad M=\sqrt{M_{V}^{2}-\frac{\varkappa^{2}}{\lambda}}, \quad \mu^{2}=\varkappa M
$$

Parametrizing Nambu-Goldstone modes:
$\varphi^{a}(x)=\mu^{2} x^{a}+\psi^{a}(x), \quad V_{a}^{i}(x)=\Omega_{a}^{i}(\omega) M, \quad \Omega_{a}^{i}=\delta_{a}^{i}+\omega_{a}^{i}-\frac{1}{2} \omega_{b}^{i} \omega_{a}^{b}+\ldots$
Effective Lagrangian(s):

$$
\mathcal{L}_{\psi, A}=-\frac{1}{2}\left(\partial_{i} \psi^{a}\right)^{2}+\frac{1}{4}\left(\partial_{[i} A_{j]}^{a}\right)^{2}-\frac{1}{2} \varkappa^{2} A_{j}^{i} A_{i}^{j}+\varkappa A_{a}^{i} \partial_{i} \psi^{a}
$$

New massive Nambu-Goldstone bosons

SSB pattern: $\quad I S O(d)_{S T} \times I S O(d)_{\text {int }} \rightarrow I S O(d)_{V}$
The Lagrangian of the theory:

$$
\mathcal{L}=-\frac{1}{2}\left(\partial_{i} \varphi^{a}\right)^{2}+\frac{1}{4}\left(\partial_{[i} V_{j]}^{a}\right)^{2}+\varkappa V_{a}^{i} \partial_{i} \varphi^{a}+\frac{\lambda}{4 d}\left(V_{a}^{i} V_{i}^{a}-d M_{V}^{2}\right)^{2}
$$

Vacuum solution:

$$
\varphi^{a}=\mu^{2} x^{a}, \quad V_{a}^{i}=M \delta_{a}^{i}, \quad M=\sqrt{M_{V}^{2}-\frac{\varkappa^{2}}{\lambda}}, \quad \mu^{2}=\varkappa M
$$

Parametrizing Nambu-Goldstone modes:
$\varphi^{a}(x)=\mu^{2} x^{a}+\psi^{a}(x), \quad V_{a}^{i}(x)=\Omega_{a}^{i}(\omega) M, \quad \Omega_{a}^{i}=\delta_{a}^{i}+\omega_{a}^{i}-\frac{1}{2} \omega_{b}^{i} \omega_{a}^{b}+\ldots$
Effective Lagrangian(s):

$$
\mathcal{L}_{\psi, A}=-\frac{1}{2}\left(\partial_{i} \psi^{a}\right)^{2}+\frac{1}{4}\left(\partial_{[i} A_{j]}^{a}\right)^{2}-\frac{1}{2} \varkappa^{2} A_{j}^{i} A_{i}^{j}+\varkappa A_{a}^{i} \partial_{i} \psi^{a}
$$

$$
A_{j}^{i} \text { integrated out: } \quad \mathcal{L}_{\psi}=-\frac{1}{4}\left(\left(\partial_{i} \psi^{a}\right)^{2}+\left(\partial_{a} \psi^{a}\right)^{2}\right)
$$

Applying the coset space construction

The corresponding coset space: $\quad g_{H}=e^{i \tilde{P}_{\mu} x^{\mu}} e^{i \bar{P}_{a} \psi^{a}} e^{\frac{i}{2} \bar{M}_{a b} \omega^{a b}}$
Covariant derivatives: $\quad D_{\mu} \psi^{a}=\partial_{\mu} \psi^{a}-\mu^{2} \omega_{\mu}^{a}, \quad D_{\mu} \omega^{\lambda \sigma} \simeq \partial_{\mu} \omega^{\lambda \sigma}$
The effective Lagrangian:

$$
-\frac{1}{2}\left(D_{i} \psi^{a}\right)^{2}=-\frac{1}{2}\left(\partial_{i} \psi^{a}\right)^{2}-\frac{1}{2} \varkappa^{2} A_{a}^{i} A_{a}^{i}+\varkappa A_{a}^{i} \partial_{i} \psi^{a} \quad, \quad A_{a}^{i}=M \omega_{a}^{i}
$$

Applying the coset space construction

The corresponding coset space: $\quad g_{H}=e^{i \tilde{P}_{\mu} x^{\mu}} e^{i \bar{P}_{a} \psi^{a}} e^{\frac{i}{2} \bar{M}_{a b} \omega^{a b}}$
Covariant derivatives: $\quad D_{\mu} \psi^{a}=\partial_{\mu} \psi^{a}-\mu^{2} \omega_{\mu}^{a}, \quad D_{\mu} \omega^{\lambda \sigma} \simeq \partial_{\mu} \omega^{\lambda \sigma}$
The effective Lagrangian:

$$
-\frac{1}{2}\left(D_{i} \psi^{a}\right)^{2}=-\frac{1}{2}\left(\partial_{i} \psi^{a}\right)^{2}-\frac{1}{2} \varkappa^{2} A_{a}^{i} A_{a}^{i}+\varkappa A_{a}^{i} \partial_{i} \psi^{a} \quad, \quad A_{a}^{i}=M \omega_{a}^{i}
$$

Imposing inverse Higgs constraints:

$$
\mathcal{L}_{\psi}=-\frac{1}{8}\left(D_{\{i} \psi_{a\}}\right)^{2}=-\frac{1}{4}\left(\left(\partial_{i} \psi^{a}\right)^{2}+\left(\partial_{a} \psi^{a}\right)^{2}\right)
$$

Understanding the inverse Higgs phenomenon

What is the physical meaning of the inverse Higgs phenomenon?

Understanding the inverse Higgs phenomenon

What is the physical meaning of the inverse Higgs phenomenon?
The same SSB pattern, but with redundant fields:

$$
I S O(d)_{S T} \times I S O(d)_{i n t} \rightarrow I S O(d)_{V}
$$

The Lagrangian of the theory:

$$
\mathcal{L}=-\frac{1}{2}\left(\square \varphi^{a}\right)^{2}-\frac{1}{2}\left(\partial_{i} \theta\right)^{2}+\frac{1}{4}\left(\partial_{[i} V_{j]}^{a}\right)^{2}+\lambda \theta V_{a}^{i} \partial_{i} \varphi^{a}
$$

Vacuum solution:

$$
\varphi^{a}=\mu^{2} x^{a}, \quad \theta=0, \quad V_{a}^{i}=0
$$

Understanding the inverse Higgs phenomenon

What is the physical meaning of the inverse Higgs phenomenon?
The same SSB pattern, but with redundant fields:

$$
I S O(d)_{S T} \times I S O(d)_{i n t} \rightarrow I S O(d)_{V}
$$

The Lagrangian of the theory:

$$
\mathcal{L}=-\frac{1}{2}\left(\square \varphi^{a}\right)^{2}-\frac{1}{2}\left(\partial_{i} \theta\right)^{2}+\frac{1}{4}\left(\partial_{[i} V_{j]}^{a}\right)^{2}+\lambda \theta V_{a}^{i} \partial_{i} \varphi^{a}
$$

Vacuum solution: $\quad \varphi^{a}=\mu^{2} x^{a}, \quad \theta=0, \quad V_{a}^{i}=0$.
The effective Lagrangian:

$$
\mathcal{L}_{\psi}=-\frac{1}{2}\left(\square \psi^{a}\right)^{2}-\frac{1}{2}\left(\partial_{i} \theta\right)^{2}+\frac{1}{4}\left(\partial_{[i} V_{j]}^{a}\right)^{2}+\lambda \theta V_{a}^{i}\left(\mu^{2} \delta_{i}^{a}+\partial_{i} \psi^{a}\right)
$$

Understanding the inverse Higgs phenomenon

What is the physical meaning of the inverse Higgs phenomenon?
The same SSB pattern, but with redundant fields:

$$
I S O(d)_{S T} \times I S O(d)_{i n t} \rightarrow I S O(d)_{V}
$$

The Lagrangian of the theory:

$$
\mathcal{L}=-\frac{1}{2}\left(\square \varphi^{a}\right)^{2}-\frac{1}{2}\left(\partial_{i} \theta\right)^{2}+\frac{1}{4}\left(\partial_{[i} V_{j]}^{a}\right)^{2}+\lambda \theta V_{a}^{i} \partial_{i} \varphi^{a}
$$

Vacuum solution: $\quad \varphi^{a}=\mu^{2} x^{a}, \quad \theta=0, \quad V_{a}^{i}=0$.
The effective Lagrangian:

$$
\mathcal{L}_{\psi}=-\frac{1}{2}\left(\square \psi^{a}\right)^{2}-\frac{1}{2}\left(\partial_{i} \theta\right)^{2}+\frac{1}{4}\left(\partial_{[i} V_{j]}^{a}\right)^{2}+\lambda \theta V_{a}^{i}\left(\mu^{2} \delta_{i}^{a}+\partial_{i} \psi^{a}\right)
$$

How to obtain a theory including fields charged only under SO_{V} ?

Understanding the inverse Higgs phenomenon

Which coset should be used within the coset space technique?
Polar decomposition: $\quad \chi(x)=\gamma(x) \tilde{\chi}(x), \quad \tilde{\chi}^{T}(x)\left(\hat{Z}_{a} \chi_{\operatorname{vac}}(x)\right)=0$
Introduce $\chi(x), \tilde{\chi}(x)$ as:

$$
\chi(x)=\left(\phi^{1}, \ldots, \phi^{d}, V_{1}^{1}, \ldots, V_{d}^{d}, \theta\right), \quad \tilde{\chi}(x)=\left(\tilde{\phi}^{1}, \ldots, \tilde{\phi}^{d}, \tilde{V}_{1}^{1}, \ldots, \tilde{V}_{d}^{d}, \tilde{\theta}\right)
$$

Understanding the inverse Higgs phenomenon

Which coset should be used within the coset space technique?
Polar decomposition: $\quad \chi(x)=\gamma(x) \tilde{\chi}(x), \quad \tilde{\chi}^{T}(x)\left(\hat{Z}_{a} \chi_{\operatorname{vac}}(x)\right)=0$
Introduce $\chi(x), \tilde{\chi}(x)$ as:

$$
\begin{aligned}
& \chi(x)=\left(\phi^{1}, \ldots, \phi^{d}, V_{1}^{1}, \ldots, V_{d}^{d}, \theta\right), \quad \tilde{\chi}(x)=\left(\tilde{\phi}^{1}, \ldots, \tilde{\phi}^{d}, \tilde{V}_{1}^{1}, \ldots, \tilde{V}_{d}^{d}, \tilde{\theta}\right) \\
& Z_{a} \rightarrow \bar{P}_{a} \Rightarrow \tilde{\phi}^{a}=0 \\
& Z_{a} \rightarrow \bar{M}_{a b} \Rightarrow \tilde{\phi}^{a}=0
\end{aligned}
$$

Understanding the inverse Higgs phenomenon

Which coset should be used within the coset space technique?
Polar decomposition: $\quad \chi(x)=\gamma(x) \tilde{\chi}(x), \quad \tilde{\chi}^{T}(x)\left(\hat{Z}_{a} \chi_{\operatorname{vac}}(x)\right)=0$
Introduce $\chi(x), \tilde{\chi}(x)$ as:

$$
\begin{aligned}
& \chi(x)=\left(\phi^{1}, \ldots, \phi^{d}, V_{1}^{1}, \ldots, V_{d}^{d}, \theta\right), \quad \tilde{\chi}(x)=\left(\tilde{\phi}^{1}, \ldots, \tilde{\phi}^{d}, \tilde{V}_{1}^{1}, \ldots, \tilde{V}_{d}^{d}, \tilde{\theta}\right) \\
& Z_{a} \rightarrow \bar{P}_{a} \Rightarrow \tilde{\phi}^{a}=0 \\
& Z_{a} \rightarrow \bar{M}_{a b} \Rightarrow \tilde{\phi}^{a}=0
\end{aligned}
$$

- Hence, $\quad \tilde{\chi}(x)=\left(0, \ldots, 0, V_{1}^{1}, \ldots, V_{d}^{d}, \theta\right), \quad \gamma(x)=e^{i \bar{P}_{a} \xi^{a}}$

Since homogeneously transforming quantities are obtained from $\gamma^{-1} d \gamma$, one should not introduce $\omega^{a b}$ at all!

Understanding the inverse Higgs phenomenon

How to obtain a theory including fields charged only under SO_{V} ?
Redefine degrees of freedom: $\quad V_{a}^{i} \rightarrow \Omega_{a}^{b}(\psi) \tilde{V}_{b}^{i}$

Understanding the inverse Higgs phenomenon

How to obtain a theory including fields charged only under SO_{V} ?
Redefine degrees of freedom: $\quad V_{a}^{i} \rightarrow \Omega_{a}^{b}(\psi) \tilde{V}_{b}^{i}$
Does suitable $\Omega_{b}^{a}(\psi)$ exist?

Understanding the inverse Higgs phenomenon

How to obtain a theory including fields charged only under SO_{V} ?
Redefine degrees of freedom: $\quad V_{a}^{i} \rightarrow \Omega_{a}^{b}(\psi) \tilde{V}_{b}^{i}$

Does suitable $\Omega_{b}^{a}(\psi)$ exist?

Yes, if one can find any suitable coset:
consider $g_{H}=e^{i \tilde{P}_{\mu} x^{\mu}} e^{i \bar{P}_{a} \psi^{a}} e^{i \bar{M}_{a b} \omega^{a b}}$ and find the searched for expression.
Via polar decomposition:

$$
\gamma(x)=e^{i \bar{P}_{a} \psi^{a}} e^{\frac{i}{2} \bar{M}_{a b} \omega^{a b}}, \quad \omega^{a b}=\omega^{a b}\left(\psi^{a}\right)
$$

Goldstone's theorem

Let one be given an SSB pattern:

$$
G \rightarrow H,
$$

and let Z_{a} be broken generators and
$B_{n} \in Z_{a}:\left.\hat{B}_{n} \Phi\right|_{0} \neq 0$, then:

- $n_{N G}=$ nuber of B_{n}
- Nambu-Goldstone fields corresponding to B_{α} such that $\left[P_{\mu}, B_{\alpha}\right] \sim B_{n}$ are massive

Goldstone's theorem

Let one be given an SSB pattern:

$$
G \rightarrow H,
$$

and let Z_{a} be broken generators and
$B_{n} \in Z_{a}:\left.\hat{B}_{n} \Phi\right|_{0} \neq 0$, then:

- $n_{N G}=$ nuber of B_{n}
- Nambu-Goldstone fields corresponding to B_{α} such that $\left[P_{\mu}, B_{\alpha}\right] \sim B_{n}$ are massive

If some of the generators always act trivially at the origin, they never give rise to Nambu-Goldstone fields.
The conformal group: $\forall \Phi \hat{K}_{n} \Phi=0$

Conclusion

- The action of the generators on the vacuum at the origin uniquely fixes the number of Nambu-Goldstone fields
- Some of the Nambu-Goldstone fields are necessarily gapped
- Inverse Higgs constraints is a trick used to uncharge fields under the action of broken but acting trivially at the origin generators

