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Gribov Ambiguity

@ Generating functional for Yang-Mills Theory

7= / DAe~iS
@ Action 1
S= —Z/d“xtr [FF,,]

where Fj, the field stregh associated to A, = AJ T,
@ To avoid overcounting we must fix the gauge G? [AH] =0

Orbits

G*[A,]=0
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Gribov Ambiguity

@ The restriction is carried out using the Fadeev-Popov method

6G? [Af (x)]
dab (y)

@ Coulomb gauge does not fix the gauge completely = Gribov copies
[Gribov (1978)]

= [DAs (67 [A]) detM e Miy(x,y) =

Orbits

e Same for all gauge fixing conditions [Singer(1978)].
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Gribov Ambiguity

@ The condition for this to happen is
G’ g tAug+g gl =0 , g#1
@ Infinitesimal gauge transformations, 6A, = Dy«

G? [(Au+ Du)] =0

— /d“y/\/lab(x,y)fxb (y)=0

@ Infinitesimal Gribov copies — zero modes of the Faddeev-Popov
operator

@ The functional integral Z is ill-defined
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Gribov Ambiguity

Q

dCo
Co _\

e
S

@ Gribov proposed to restrict the path integral to the Gribov region
= { Ay, G?[A,] = 0| det M > 0}

e (p is bounded and convex [van Baal (1992)]
@ All orbits intersect the Gribov region [Dell’ Antonio, Zwanziger
(1991)]
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Gribov Ambiguity

@ The restriction can be implemented in the form
2 = N [ DAS (27 A,) det (M) exp (~Syua) V (Co)

@ The factor V ((p) ensures integration only over Cp.
@ Gluon propagator is modified: Dﬁf( ) = 6%g2 qu (5MV - qg;”).
[Gribov (1978)]

@ Imaginary poles — gluons are not in the spectrum — Confinement

@ Studies at finite temperature show a critical T for which imaginary
poles disappear [Canfora, Pais, Salgado-Rebolledo (2014)]

@ Restriction to the Gribov horizon can be properly implemented to
match with lattice results [Sorella et al (2008)]

(Universidad Adolfo Ibanez) Patricio Salgado-Rebolledo 31/05/18 7/ 26



Degenerate Systems

@ Hamiltonian Systems — Symplectic geometry
e Symplectic manifold = (M, Q})
QO=dA
o First order action
L=Ap"—H

Poisson Bracket = Inverse of ()

{ZA,ZB} — QAB

Euler-Lagrange equations

Qppz? = dgH

e det ) # 0 = Regular systems
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Degenerate Systems

det Q) = 0 with fixed rank = Local Symmetries
@ det () = 0 and non-constant rank = Degenerate systems.

QABZA = BBH

@ Degeneracy surfaces . = {z € I'/ det ) = 0}

Divide phase space into dynamical disconnected regions
[Saavedra, Troncoso, Zanelli (2001)]

The measure for the Hilbert space vanishes at the degeneracy
surfaces [de Michelli, Zanelli (2012)]
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Gribov Ambiguity as Degeneracy

@ Consider a system with a finite number of degrees of freedom and a
local symmetry.
s = / dt L(x)
6S = 0 for some dx
@ Local symmetry — constraints.
@ In the Hamiltonian formalism there are primary constraints
P (x) =0
@ Dirac Formalism: Preservation in time of these can lead to secondary

constraints, tertiary constraints, etc
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Gribov Ambiguity as Degeneracy

@ They can be classified in first and second class

op = (1 7a)

@ First class constraints = generators of the local symmetries

@ Second class constraints can be eliminated by implementing Dirac
brackets

{F.6}Y ={F.G} — {F.7)C*{y5 G}
where
Cop = {Vwr 18}
@ Quantization — fix the gauge — extra constraints G; such that first
class constraints become second class.

v = (¢, G)

@ Defining Dirac brackets we can set all the constraints to zero strongly
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Gribov Ambiguity as Degeneracy

@ Proper gauge fixing:
@ Accessibility
@ Complete gauge fixation [Henneaux, Teitelboim (1992)]

@ Dirac brackets — Symplectic structure of the reduced phase space.
{y? "y =07
1
Qred = EQ;i)ddya A dyb
@ We can redefine the Dirac matrix by defining v, — ¥, = Vi,
1
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Gribov Ambiguity as Degeneracy

o In other words we use new coordinates z** = (7, y?)

@ Implementing the constraints strongly, the path integral in
Hamiltonian form is

z= [pyes = [Dz116(3)) €
@ Turning back to the old variables
z= N/ DX 15 () det{G;, 9} &
o det{Gj, ¢;} is identified with the Faddeev-Popov determinant and

Mij ={Gi, ¢;}
@ If the system has Gribov ambiguity then

det{G;, ¢;} = 0 at the Gribov horizon
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Gribov Ambiguity as Degeneracy

@ Dirac matrix

Cuo={r,7)}= ( {flj\/lGjJ} {‘;,Méjj} ) -

Therefore det C ~ (det M)?
In the new coordinates

(A 25 = < {ya,oyb} C(L >

det Q! = det L (det M)?
o () regular = det Qr_e}, blows up at the Gribov horizon

—> det ()¢ = 0 at the Gribov horizon

@ Theorem: In the presence of Gribov ambiguity the reduced system is
degenerate [Canfora, de Michelli, Salgado-Rebolledo, Zanelli
(2015)].
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FLPR Model

@ Solvable model [Friedberg, Lee, Pang, Ren (1995)].

1, . .
L= ((x+ayq) + (7 — axq)*+ (2= )?) = V(p)
@ Canonical momenta
px =3 =X+ayq, p, =% =y—axq,
p:=%=2-9q, pg=%=
@ First class constraints
¢ =pqg~0

¢ = pz+a(xpy —ypx) =0
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FLPR Model

® ¢ generates helicoidal orbits d4(x, y, z, q) = €(t)(—ay,ax,1,0)

@ Gauge condition
G=z—Ax=0

e G presents Gribov Ambiguity M = {G,¢} =1+ aly

Patricio Salgado-Rebolledo
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FLPR Model

@ The pair G , ¢ is second class everywhere, except at the Gribov
horizon

E= {(X:Px.y.py,z,pz) er|M=0}
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FLPR Model

@ Second class constraints {G, ¢}

Yi:m=G=z-Ax, 7y =¢=p;+a(xp, —ypx)

@ Setting constraints strongly equal to zero — z and p, eliminated

from phase space
o M
Cy = < M 0 >

@ Dirac matrix

@ Dirac brackets
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FLPR Model

@ Reduced symplectic form is

w M 0 0 0
b= wApe 0 0 -1
—aAx 0 1 0

o Closed but degenerates precisely at the Gribov horizon

det[wab] = M?

2 ={(x.px,y.py) €To| Y(u) =M =0}
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FLPR Model

@ The degeneracy surface divides phase space into dynamically
disconnected regions

Ci={(x,y.2)|z—Ax =0, 1+ady >0},
C_:={(x,y.2)|z—Ax=0,14+aly <0} .
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Conclusions

We have studied Gribov ambiguity from a Hamiltonian point of view

@ It has been shown that, for finite dimensional systems, the presence of
Gribov copies implies a degeneracy for the reduced phase space

@ We have studied the FLPR model and found the degenerate reduced
symplectic form in the presence of a Gribov horizon

@ The degeneracy surface divides phase space into dynamically
disconnected regions

@ This suggests that the restriction to the Gribov horizon in QCD is
natural
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Future Directions

@ To look for explicit degeneracies in the symplectic form for Yang-Mills
theories after gauge fixing [WORK IN PROGRESS]
@ In Yang-Mills theory the canonical momenta associated to the gauge

fied A;’, is
m =% __fw
(%)
@ There is a primary constraint
9 =15~0

@ The canonical hamiltonian is given by
H= /d3x (A1l — L) = /d3x (Ho + A3 (D;)abHL>

where 1 1
Ho = §H;H? - ZF,-jF;J'
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Future Directions

o Total hamiltonian
Hr = H+ [ dxpg!

@ Preservation in time of the primary constraint leads to
¢, =~ (D;), "I, =

o Theset {99, ¢,} is first class.
o Eliminating ¢° and A3 the extended action

S — / dxO / dx (AT — Ho — A%,)

is invariant only under the transformations generated by ¢,

x) = [ dye® (1) 142 (x).9 ()} = (D), Pe® (x)
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Future Directions

@ The first class constraints satisfy {¢_, ¢, } = ¢,
@ To fix the gauge we choose the Coulomb condition G? = aiA;? ~0
o Now the set v, = (¢,, G?) is second class
@ Dirac matrix
0 —9'(Dj)? 6% (x = y) >
Cag (x,y) = -
AB (X, ) <8’(D,~)ab53(x—y)b 0

Eigenvalue equation

—8" (5aba,' + I'fC'ZA,g) ch =€ (A,) a? .
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Future Directions

e For vanishing gauge potentials —9'9;,a? = ea? has positive
eigenvalues € = p?

@ For small enough gauge fields A? there are only positive eigenvalues

o For sufficiently large gauge fields, a zero mode € = 0 can appear

@ This will be a zero mode of the Dirac Matrix and of the reduced
symplectic form

@ Set the constraints strongly to zero and evaluate Dirac brackets

@ Compute the reduced phase space symplectic form and look for
degeneracies

@ Generalization for the theory at finite temperature

@ In the finite temperature case the degeneracy should disappear at
some critical temperature
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Thank You !
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