

Status of NICA at JINR

NICA (Nuclotron based Ion Colider fAcility

Main targets:

- study of hot and dense baryonic matter at the energy range of max baryonic density
- investigation of nucleon spin structure, polarization phenomena

- development of accelerator facility for HEP @ JINR : construction of collider of relativistic ions from p to Au, polarized protons and deuterons with max energy up to $\sqrt{S_{NN}}$ = 11 GeV (Au^{79+}) and =27 GeV (p)

NUCLOTRON BASED ION COLLIDER FACILITY

experiments at NICA

Structure and Operation Regimes

Injection complex: 4 ion sources

	Source	KRION-6T	Laser	Douplasmatron	SPI new!
	particles	Au ³¹⁺	up to Mg ¹⁰⁺	p, d, He ²⁺	↑p,↑d
to be	particle/cycle commissioned	~2.5 10 ⁹	~10 ¹¹	p, d $\sim 5 \cdot 10^{12}$ He ²⁺ $\sim 10^{11}$	5 10 ¹¹
	repetition, Hz	10	0,5	1	0,2

Injection complex: 2 Linacs

Linac	LU-20	HILAC new!	
structure (section number)	RFQ + Alvarez type	RFQ + IH DTL(2)	
mass to charge ratio A/Z	1-3	1-6	
injection energy, keV/amu	150 for A/Z 1-3	17	
extraction energy, MeV/amu	5 (A/Z 1-3)	3.24 (A/Z=6)	
input current, mA	up to 20	up to 10	

A.Kovalenko for NICA Collaboration

Machines: Nuclotron (in operation since 1993)

Parameters	Nuclotron		
type	SC synchrotron		
particles	p, d, (p, d polarized), nuclei		
injection energy, MeV/u	5 (p, d) 570-685 (<mark>Au</mark>)		
max. kin. energy, GeV/u	12.1 (p); 5.6 (d); 4.4 (Au)		
magnetic rigidity, T m	25 – 43.25		
circumference, m	251.52		
cycle for collider mode, s	1.5-4.2 (active); 5.0 (total)		
vacuum, Torr	10-9		
intensity, Au ions/pulse	1 10 ⁹		
transition energy, GeV/u	7.0		
RF range, MHz	0.6 -6.9 (p,d) 0.947 – 1.147 (nuclei)		
spill of slow extraction, s	up to 10		

modernized in 2010-2015

Machine: Booster (under construction)

Parameter	Booster
type	SC synchrotron
particles	ions A/Z ≤ 3
injection energy, MeV/u	3.2
maximum energy, GeV/u	0.6
magnetic rigidity, T m	1.6 – 25.0
circumference, m	210.96
cycle for collider mode, s	4.02 (active); 5.0 (total)
vacuum, Torr	10 ⁻¹¹
intensity, Au ions/pulse	1.5 10 ⁹
transition energy, GeV/u	3.25
RF range, MHz	0.5 -2.53
spill of slow extraction, s	up to 10

Commissioning in 2019

BINP contribution to the Booster

two RF stations

tested at JINR - Oct. **'14**

• commissioning - 2017

fabricated and tested at BINP in 2016
delivered to JINR in April 2017
commissioned in 2017

electron cooling

Project status: on schedule

Nuclotron development

- ♦ Stable and safe operation up to maximum design energy
- ♦ Beam time for users > 70%
- ↑ Time losses < 8%
 </p>
- Development of cryogenic facility
- Modern automatic control system based on TANGO
- ♦ Test of stochastic cooling
- ♦ New RFQ fore-injector for LU-20

2 – 4 GHz bandwidth, the cooling of bunched and coasting deuteron and carbon beams was achieved

Nuclotron runs in 2015 -2018

• Run – **51 (**d, Li, C)

Run – 52 (d...) Technical

- Run 53 (d[†], Li)
- Run 54 (d[†],p[†]), C
- Run **55** (C, Ar, Kr,)

26 Jan. - 26 Mar., **2015**

June 2 – July 8, **2016**

Oct. 19 - Dec. 25, 2016

Feb. 1 – Mar. 24 , **2017**

Feb. - April **2018**

Run - 54

beam for users

Nuclotron run in 2018

• Run – 55 (C, Ar, Kr,)

Feb. - April 2018

The run was completely devoted to data taken at BM@N setup

The Collider

45 T*m, 4.5 GeV/u for **Au**⁷⁹⁺

QUARKS-2018, June 2, 2018

A.Kovalenko for NICA Collaboration

SC Magnets for Booster, Collider & SIS-100/FAIR workshop at VBLHEP JINR (bld. 217)

He liquefier has been put in operation, 1000 l/h

Physics program and the setups at NICA

Exploration of the QCD PD - Density Frontier

Exploring high-density baryonic matter: maximum freeze-out density

NICA is well suited for exploring the transition between the hadronic and q-g phases at the highest baryon density. This is the top priority of the NICA program.

Physics objectives

- Bulk properties, EOS
 - particle yields & spectra, ratios, femtoscopy, flow
- In-Medium modification of hadron properties
 - onset of low-mass dilepton enhancement
- Deconfinement (chiral) phase transition at high ho_{B}
 - enhanced strangeness production
- QCD Critical Point
 - event-by-event fluctuations & correlations
- Chiral Magnetic (Vortical) effect, \(\Lambda \) polarization
- Hypernuclei

New issues: NICA White Paper, SQM proceedings

Physics targets for the exploration of first order phase transitions in the region of the QCD phase diagram accessible to NICA & CBM and possible observable effects of a "mixed phase culminates this year in the release of the "NICA White Paper" as a Topical Issue of the **EPJ A** (July 2016).

111 contributions,188 authorsfrom 24 countries

New issue of the ESFRI Roadmap

Main Research Infrastructure in Particle and Nuclear Physics

PARTICLE PHYSICS NUCLEAR PHYSICS

NICA – Complementary Project

Present and future HI experiments

Present and future HI F.T. experiments

Baryonic Matter at Nuclotron (BM@N)

experiment at Nuclotron extracted beams

BM@N Collaboration:

Russia: INR, MEPhi, SINP, MSU,

IHEP, S-Ptr Radium Inst.

Bulgaria: Plovdiv University;

China: Tsinghua University, Beijin;

Poland: Warsaw Tech.Uni.

Israel: Tel Aviv Uni., Weitzman Inst.

Germany: Frankfurt Uni.; eoi GSI

USA: MIT

Physics:

- ✓ strange / multi-strange hyperon and hypernuclei production at the threshold
- ✓ hadron femtoscopy
- ✓ short range correlations
- ✓ event-by event fluctuations
- ✓ in-medium modifications of strange & vector mesons in dense nuclear matter
- ✓ electromagnetic probes, states decaying into γ, e (with ECAL)

QUARKS-2018, June 2, 2018 A.Kovalenko for NICA Collaboration

BM@N plans

year	2016	2017 FebMar.	2017 NovDec.	2019	2020 +
beam	d (∱)	C, Ar	Kr	Au	Au, p
maximum intensity, Hz	1M	1 M	1 M	1 M	10M
trig. rate, Hz	10k	10k	20 k	20 k	50k
central tracker	6 GEM half pl.	8 GEM half pl.	10 GEM half pl.	8 GEM full pl.	12 GEM or 8+2Si
expiment status	techn. run	techn. run	physics run	physics stage 1	physics stage 2

beam: $E_{kin} = 3.5, 4.0, 4.5 AGeV$

Present and future HI collider experiments

MultiPurpose Detector (MPD)

Main target:

 study of hot and dense baryonic matter at the energy range of max net baryonic density

MPD Collaboration:

- JINR, Dubna;
- Tsinghua University, Beijing, China;
- MEPhl, Moscow, Russia.
- INR, RAS, Russia;
- PPC BSU, Minsk, Belarus;
- WUT, Warsaw, Poland;

• FCF-M UAS, Sinaloa, Mexico;

DF, CIEA del I.P.N, Mexico;

ICN UNA; Mexico:

- FCF-MB UAP, Puebla, Mexico;
 - PI Az.AS, Baku, Azerbaijan;
 - ITEP, NC KI, Moscow, Russia;
- PNPI NC KI, Saint Petersburg, Russia;
 - CPPT USTC, Hefei, China;
- SS, HU, Huzhou, Republic of South Africa.

MPD detector for Heavy-Ion Collisions @ NICA

Vitkovice Heavy Machinery, Ostrava

Support rings: Ø 6.63 m, 43.7 tons each need to have holes machining, sandblasting, painting

2 Poles: Ø 4.5 m, 47 tons each

28, February 2018

Cradles 2 main parts are in progress: 1.47x4.15x7.68, m; 34 tons in total

Two 80/20 tons Cranes by "URALKRAN" are ready Appendix 2

NICA schedule

running time

In the medium-term prospect the NICA complex will be the only facility in Europe providing unique high intensity ion beams (from **p** to **Au**, **p** ? and **d** ?) in the energy range from **2 – 27 GeV** (c.m.s.), which could be used for both fundamental and applied researches.

Researches at the NICA complex will contribute to

- discovery and study of new forms of nuclear matter;
- comprehensive study of nucleon spin structure;
- applied researches, like irradiation of biological objects
 by heavy ion beams (space mission program) etc.

NICA operation in Polarized Mode (1)

Polarization control for p and d in NICA collider

	number	B _{max} , T	L, m	BL, T⋅m
Main tune shifts solenoid	8	7,3	5,5	0÷40
Weak solenoid for polarization control (red)	6	1,5	0,4	0÷0,6

Study of nucleon spin structure

must confirm

$$\frac{1}{2} = \frac{1}{2}\Sigma_q + \Sigma_g + L_q + L_g.$$

NICA collider will provide collisions of protons and deuterons with all combinations of polarization – *transversal and longitudinal*

It will allow to measure all 8 intrinsic-transverse-momentum dependent **PDF**s (at leading twist) **in one experiment**

Matveev-Muradyan-Tavkhelidze-Drell-Yan mechanism and SIDIS processes – are good tools for these measurements

Direct photons production (gluon polarization)

RF Government disposal

ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ

РАСПОРЯЖЕНИЕ

от 27 апреля 2016 г. № 783-р

МОСКВА

О подписании Соглашения между Российской Федерации и международной научно-исследовательской организацией О ядерных исследований о создании и экс сверхпроводящих колец на встречных пуч

- 1. В соответствии с пунктом 1 стать "О международных договорах Российской представленный Минобрнауки России соглас Минфином России, Минэкономразвития 1 межправительственной научно-исследова Объединенным институтом ядерных исследо между Правительством Российской Феде межправительственной научно-исследова Объединенным институтом ядерных ис и эксплуатации комплекса сверхпроводящих тяжелых ионов NICA (прилагается).
- 2. Поручить Минобрнауки России провести с международной межправительственной научно-исследовательской организацией Объединенным институтом ядерных и по достижении договоренности подписать от имени Правительства Российской Федерации указанное в пункте 1 настоящего распоряжения Соглашение, разрешив вносить в прилагаемый проект изменения, не имеющие принципиального характера.

3. Определить вклад Российской Федерации в создание базовой конфигурации комплекса сверхпроводящих колец на встречных пучках тяжелых ионов NICA до 2020 года в размере 8800 млн. рублей (в ценах 2013 года) за счет средств федерального бюджета.

4. Минобрнауки России выделить в 2016 году 4837,9 млн. рублей

Agreement between the RF Government and the Joint Institute for Nuclear Research

has been signed on June 3-d

переговоры исследований

международную скую организацию в целях финансового их колец на встречных жетных ассигнований, едеральным законом м числе за 2016 год ьеме 2340 млн. рублей,

ачиная с формирования последующие периоды джетные ассигнования финансирования ции "Развитие науки и ния вклада Российской лекса сверхпроводящих

колец на встречных пучках тяжелых ионов NICA до размера, указанного в пункте 3 настоящего распоряжения.

Д.Медведев

2947103

Concluding remarks

- NICA complex has a potential for competitive research in dense baryonic matter and spin physics
- The construction of accelerator complex is going well in close cooperation with many laboratories
- The construction of both detectors BM@N & MPD is going close to the schedule, SPD project and spin physics program are under preparation
- NICA recognized as a part of European research infr.
- NICA got a status of mega-project developed at RF
- NICA is open for new participants

Thank you!