No- π Theorem for Euclidean Massless Correlators

Konstantin Chetyrkin (UHH)
in collaboration with Pavel Baikov (MSU)

QUARKS 2018, Walday, 31.05.2018

Starting point: 1991

The seminal calculation /Gorishnii, Kataev, Larin/ of the $\mathcal{O}\left(\alpha_{s}^{3}\right)$ Adler function demonstrated for the first time a mysterious complete cancellation of all contributions proportional to ζ_{4} (abounding in separate diagrams) while odd zetas ζ_{3} and ζ_{5} survive! The result is π-free ($\zeta_{4}=\frac{\pi^{4}}{90}$ and $\zeta_{6}=\frac{\pi^{6}}{945}$)

$$
\begin{gathered}
d_{2}=-\frac{3}{32} C_{F}^{2}+C_{F} T_{f}\left[\zeta_{3}-\frac{11}{8}\right]+C_{F} C_{A}\left[\frac{123}{32}-\frac{11 \zeta_{3}}{4}\right] \\
d_{3}=-\frac{69}{128} C_{F}^{3}+C_{F}^{2} T_{f}\left[-\frac{29}{64}+\frac{19}{4} \zeta_{3}-5 \zeta_{5}\right]+C_{F} T_{f}^{2}\left[\frac{151}{54}-\frac{19}{9} \zeta_{3}\right]+C_{F}^{2} C_{A}\left[-\frac{127}{64}-\frac{143}{16} \zeta_{3}+\frac{55}{4} \zeta_{5}\right] \\
+C_{F} T_{f} C_{A}\left[-\frac{485}{27}+\frac{112}{9} \zeta_{3}+\frac{5}{6} \zeta_{5}\right]+C_{F} C_{A}^{2}\left[\frac{90445}{3456}-\frac{2737}{144} \zeta_{3}-\frac{55}{24} \zeta_{5}\right]
\end{gathered}
$$

the authors wrote: "We would like to stress the cancellations of ζ_{4} in the final results for $R(s)$. It is very interesting to find the origin of the cancellation of ζ_{4} in the physical quantity."

The situation got even more interesting about 20 years later: the $\mathcal{O}\left(\alpha_{s}{ }^{4}\right)$ contributions to the Adler function and to the coefficient function (CF) of $C_{B j p}$ the Bjorken sum rule /Baikov, Kühn, K. Ch. (2009-2010)/ were found to be

$$
\text { completely } \pi \text {-free }{ }^{\star}
$$

[^0]| | d_{4} | $\left(1 / C^{B j p}\right)_{4}$ |
| :--- | :--- | :--- |
| C_{F}^{4} | $\frac{4157}{2048}+\frac{3}{8} \zeta_{3}$ | $\frac{4157}{2048}+\frac{3}{8} \zeta_{3}$ |
| $\frac{n_{f} \frac{d_{F}^{a b c} d_{F}^{a b c d}}{d_{R}}}{}$ | $-\frac{13}{16}-\zeta_{3}+\frac{5}{2} \zeta_{5}$ | $-\frac{13}{16}-\zeta_{3}+\frac{5}{2} \zeta_{5}$ |
| $\frac{d_{F}^{a b c d} d_{A}^{a b c d}}{d_{R}}$ | $\frac{3}{16}-\frac{1}{4} \zeta_{3}-\frac{5}{4} \zeta_{5}$ | $\frac{3}{16}-\frac{1}{4} \zeta_{3}-\frac{5}{4} \zeta_{5}$ |
| $C_{F} T_{f}^{3}$ | $-\frac{6131}{972}+\frac{203}{54} \zeta_{3}+\frac{5}{3} \zeta_{5}$ | $-\frac{605}{972}$ |
| $C_{F}^{2} T_{f}^{2}$ | $\frac{5713}{1728}-\frac{581}{24} \zeta_{3}+\frac{125}{6} \zeta_{5}+3 \zeta_{3}^{2}$ | $\frac{869}{576}-\frac{29}{24} \zeta_{3}$ |
| $C_{F} T_{f}^{2} C_{A}$ | $\frac{340843}{5184}-\frac{10453}{288} \zeta_{3}-\frac{170}{9} \zeta_{5}-\frac{1}{2} \zeta_{3}^{2}$ | $\frac{165283}{20736}+\frac{43}{144} \zeta_{3}-\frac{5}{12} \zeta_{5}+\frac{1}{6} \zeta_{3}^{2} E Q N$ |
| $C_{F}^{3} T_{f}$ | $\frac{1001}{384}+\frac{99}{32} \zeta_{3}-\frac{125}{4} \zeta_{5}+\frac{105}{4} \zeta_{7}$ | $-\frac{473}{2304}-\frac{391}{96} \zeta_{3}+\frac{145}{24} \zeta_{5}$ |
| $C_{F}^{2} T_{f} C_{A}$ | $\frac{32357}{13824}+\frac{10661}{96} \zeta_{3}-\frac{5155}{48} \zeta_{5}-\frac{33}{4} \zeta_{3}^{2}-\frac{105}{8} \zeta_{7}$ | $-\frac{17309}{13824}+\frac{1127}{144} \zeta_{3}-\frac{95}{144} \zeta_{5}-\frac{35}{4} \zeta_{7}$ |
| $C_{F} T_{f} C_{A}^{2}$ | $-\frac{(\cdots)}{(\cdots)}+\frac{8609}{72} \zeta_{3}+\frac{18805}{288} \zeta_{5}-\frac{11}{2} \zeta_{3}^{2}+\frac{35}{16} \zeta_{7}$ | $-\frac{(\cdots)}{(\cdots)}-\frac{59}{64} \zeta_{3}+\frac{1855}{288} \zeta_{5}-\frac{11}{12} \zeta_{3}^{2}+\frac{35}{16} \zeta_{7}$ |
| $C_{F}^{3} C_{A}$ | $-\frac{253}{32}-\frac{139}{128} \zeta_{3}+\frac{2255}{32} \zeta_{5}-\frac{1155}{16} \zeta_{7}$ | $-\frac{8701}{4608}+\frac{1103}{96} \zeta_{3}-\frac{1045}{48} \zeta_{5}$ |
| $C_{F}^{2} C_{A}^{2}$ | $-\frac{592141}{18432}-\frac{43925}{384} \zeta_{3}+\frac{6505}{48} \zeta_{5}+\frac{1155}{32} \zeta_{7}$ | $-\frac{435425}{55296}-\frac{1591}{144} \zeta_{3}+\frac{55}{9} \zeta_{5}+\frac{385}{16} \zeta_{7}$ |
| $C_{F} C_{A}^{3}$ | $\frac{(\cdots)}{(\cdots)}-\frac{(\cdots)}{(\cdots)} \zeta_{3}-\frac{77995}{1152} \zeta_{5}+\frac{605}{32} \zeta_{3}^{2}-\frac{385}{64} \zeta_{7}$ | $\frac{(\cdots)}{(\cdots)}-\frac{(\cdots)}{(\cdots)} \zeta_{3}-\frac{12545}{1152} \zeta_{5}+\frac{121}{96} \zeta_{3}^{2}-\frac{385}{64} \zeta_{7}$ |

Transcedentals: odd zetas: $\zeta_{3}, \zeta_{5}, \zeta_{7}$ BUT NOT even ones ζ_{4} or ζ_{6}

What is common between the Adler function and $C_{B j p}$? They both are "physical" (no anomalous dimension, depend only on the bare cc α_{s}).
The Adler function $D^{S S}$ for the scalar correlator is π-dependent already at $\mathcal{O}\left(\alpha_{s}{ }^{3}\right)^{\star}$ and even more at the next loop (expilict ζ_{4} and ζ_{6} terms) ${ }^{\star}{ }^{\star}$

In fact, one can construct a physical (read: scale-independent) object from $\mathcal{O}\left(\alpha_{s}^{L}\right)$ $D^{S S}$ and the ($\mathrm{L}+1$)-loop quark mass anomalous dimension γ_{m}.

For $\mathcal{O}\left(\alpha_{s}^{3}\right) D^{S S}$ it was done with expected result: all π dependence indeed disappeared! /Vermaseren, Larin van Ritbergen (1997)/

BUT for $\mathcal{O}\left(\alpha_{s}^{4}\right)$ correlators this stopped to work:
It was found /Baikov, K. Ch. Kühn (2017)/ that ζ_{4} does not dissappear from a scale-independent (SI) object constructed from $\mathcal{O}\left(\alpha_{s}^{4}\right) D^{S S}$ and 5-loop AD γ_{m}.
ζ_{4} also does not dissappear from the 5-loop gluon correlator (enters the hadronic decays of the Higgs boson) computed in
/ Herzog, Ruijl, Ueda, Vermaseren and Vogt (2017)/.

[^1]
2017: 2 new important developments

- 5-loop QCD β-function and quark AD γ_{m} were computed /Baikov, K. Ch. Kühn; Herzog, Ruijl, Ueda, Vermaseren and Vogt; Luthe, Maier, Marquard and Schroder/. First appearence of π in β_{5} (in form of ζ_{4})
- Jamin and Miravitllas have discovered that after a transition to a new so-called C-scheme all terms proportional to even zetas (ζ_{4} and ζ_{6}) do disappear from (SI versions of) the 5 -loop scalar correlator and the 5-loop gluon correlator (both enter the hadronic decays of the Higgs boson /Baikov, K. Ch. Kühn (2005); Herzog, Ruijl, Ueda, Vermaseren and Vogt (2017)).

They also suggested that the absence of even zetas after transition to the C-scheme is an universal feature of all $\mathcal{O}\left(\alpha_{s}^{5}\right)$ physical quantities \equiv no π-conjecture Later many more particular confirmations of the conjecture have been found and discussed and used for non-tivial check of many multiloop (4 and 5) results for ADs in /Davies and Vogt (2017); K. Ch, G. Falcioni, Herzog and Vermaseren (2017)/

A word about notations and conventions (goodbye β_{0} and γ_{0})
we use

1. $\quad \gamma(a)=\sum_{i \geq 1} \gamma_{i} a^{i}, \quad a=\frac{\alpha_{s}}{4 \pi}$
2. $\beta(a)=\sum_{i \geq 1} \beta_{i} a^{i}$
3. Landau gauge for QCD (for simplicity, could be relaxed)
4. G-scheme instead of $\overline{\mathrm{MS}}$ one: all ADs and betas are not different from their $\overline{\mathrm{MS}}$ versions but the simplest 1 -loop p-integral is just identically equal $\frac{1}{\epsilon}$:

$$
\frac{1}{i(2 \pi)^{D}} \int \frac{d^{D} l}{\left(-l^{2}\right)\left(-(q-l)^{2}\right)}=\frac{1}{(4 \pi)^{2}\left(-q^{2}\right)^{\epsilon}} \frac{1}{\epsilon}
$$

for finite renormalized quantities: $\left(\ln \frac{\mu^{2}}{Q^{2}}\right)_{G} \rightarrow\left(\ln \frac{\mu^{2}}{Q^{2}}\right)_{\overline{\mathrm{MS}}}+2$

2017: BIG PUZZLE

What is special in the C-scheme ${ }^{\star}$?

$$
a=\bar{a}\left(1+c_{1} \bar{a}+c_{2} \bar{a}^{2}+c_{3} \bar{a}^{3}+c_{4} \bar{a}^{4}\right)
$$

with c_{1}, c_{2} and c_{3} are made from $\beta_{1}-\beta_{4}$ (all free from even zetas) and with

$$
c_{4}=\frac{1}{3} \frac{\beta_{5}}{\beta_{1}}
$$

any SI $\mathcal{O}\left(\alpha_{s}^{5}\right)$ correlator $F(\bar{a})$ as well the very β-function $\overline{\boldsymbol{\beta}}(\overline{\boldsymbol{a}})$ loose any dependence on even zetas. We will call the class of renormalization schemes for which

$$
\bar{\beta}(\bar{a}) \stackrel{\pi}{=} 0
$$

as π-independent schemes

[^2]To really appreciate the mystery behind these cancellations induced by the C-scheme, please, look on the following simple facts:

1. a bare physical (massless!) quantity depends on the bare coupling constant, say, α_{s}^{B};
2. its renormalization is done with the replacement $\alpha_{s}^{B}=Z_{a} \alpha_{s}$;
3. the charge renormalization constant Z_{a} depends on the five-loop coefficient in the β-function- β_{5}-starting from the fifth order, α_{s}^{5};
4. as a result the renormalized physical quantity starts to "feel" β_{5} only at astonishingly large sixth order in α_{s};
5. for the case of the scalar correlator the contribution of order α_{s}^{6} corresponds to the fabulously large 7-loop level

Explanation of the mystery: the ζ_{4} term in the β_{5} is, in fact, not independent and not genuinely 5-loop but meets a simple factorization formula $\left(F^{\zeta_{i}}=\lim _{\zeta_{i} \rightarrow 0} \frac{\partial}{\partial \zeta_{i}} F\right)$:

$$
\beta_{5}^{\zeta_{4}}=\frac{9}{8} \beta_{1} \beta_{4}^{\zeta_{3}}
$$

The factorization is not trivial at all:

$$
\begin{aligned}
\frac{\beta_{1}}{\partial \zeta_{4}} \beta_{5}= & \frac{9}{8}\left(\frac{4}{3} n_{f} T_{F}-\frac{11}{3} C_{A}\right)\left(\frac{44}{9} C_{A}^{4}-\frac{136}{3} C_{A}^{3} n_{f} T_{F}\right. \\
& +\frac{656}{9} C_{A}^{2} C_{F} n_{f} T_{F}-\frac{224}{9} C_{A}^{2} n_{f}^{2} T_{F}^{2}-\frac{352}{9} C_{A} C_{F}^{2} n_{f} T_{F} \\
& -\frac{448}{9} C_{A} C_{F} n_{f}^{2} T_{F}^{2}+\frac{704}{9} C_{F}^{2} n_{f}^{2} T_{F}^{2}-\frac{704}{3} \frac{d_{A}^{a b c d} d_{A}^{a b c d}}{N_{A}} \\
& \left.+\frac{1664}{3} \frac{d_{F}^{a b c d} d_{A}^{a b c d}}{N_{A}} n_{f}-\frac{512}{3} \frac{d_{F}^{a b c d} d_{F}^{a b c d}}{N_{A}} n_{f}^{2}\right)
\end{aligned}
$$

π-structure of the master p-integrals

We will call a (bare) L-loop p-integral $F\left(Q^{2}, \epsilon\right) \pi$-safe if the π-dependence of its pole in ϵ and constant part can be completely absorbed into the properly defined "hatted" odd zetas.

The first observation of a non-trivial class of π-safe p-integrals - all 3-loop ones — was made in /Broadhurst (1999)/ An extension of the observation on the class of all 4-loop p-integrals was performed in /Baikov, K.Ch. (2010)/ Here it was shown that, given an arbitrary 4-loop p-integral, its pole in ϵ and constant part depend on even zetas only via the following combinations:

$$
\hat{\zeta}_{3}:=\zeta_{3}+\frac{3 \epsilon}{2} \zeta_{4}-\frac{5 \epsilon^{3}}{2} \zeta_{6}, \hat{\zeta}_{5}:=\zeta_{5}+\frac{5 \epsilon}{2} \zeta_{6} \quad \text { and } \quad \hat{\zeta}_{7}:=\zeta_{7}
$$

Exact meaning for a 4-loop p-integral F_{4} :

$$
F_{4}\left(\zeta_{3}, \zeta_{4}, \zeta_{5}, \zeta_{6}, \zeta_{7}\right)=F_{4}\left(\hat{\zeta_{3}}, 0, \hat{\zeta}_{5}, 0, \hat{\zeta_{7}}\right)+\mathcal{O}(\epsilon)
$$

A generalization of the ${ }^{\star}$ for $L=5$ has been recently constructed in /Georgoudis, Goncalves, Panzer, Pereira, [1802.00803]/

\hat{G}-scheme

Let us define the $\widehat{\mathrm{G}}$-scheme by pretending that hatted zetas do not depend on ϵ. This means that all p -integrals are assumed to be expressed in term of the hatted zetas and that the extraction of the pole part of a p-integral is defined as:

$$
\hat{K}\left(\mathcal{P}(\epsilon) \prod_{j} \hat{\zeta}_{j}\right):=\left(\sum_{i<0} \mathcal{P}_{i} \epsilon^{j}\right) \prod_{j} \hat{\zeta}_{j},
$$

with $\mathcal{P}(\epsilon)=\sum_{i} \epsilon^{i} \mathcal{P}_{i}$ being a polynomial in ϵ with rational coefficients. The corresponding coupling constant will be denoted as \hat{a}.

The \hat{G}-scheme has some remarkable features. Indeed, one can see just from its definition that the corresponding "hatted" Green function, ADs and Z-factors can be obtained from the normal (that is computed with the G-scheme) by very simple rules.

- As a first step we make a formal replacement of the coupling constant a by \hat{a} in every G-renormalized Green function, AD and Z-factor we want to transform to the \hat{G}-scheme.
- Renormalized Green function $\hat{F}(\hat{a})$ is obtained from $F(\hat{a})$ by setting to zero all even zetas in the latter (both are assumed as taken at $\epsilon=0$).
- The same rule works for ADs and β-functions.
- If Z is a (G-scheme) renormalization constant then one should not only nullify all even zetas in $Z(\hat{a})$ but also replace every odd zeta term in it with its "hatted" counterpart.

\hat{G}-scheme: useful properties and benefits

1. All 2-point (masless, but not necessarily SI) correlators (at least to 5 loops), β functions and ADs (at least to 6 loops) are π-free in \hat{G}-scheme
2. It is more or less obvious that a change of scheme from \hat{G} one to any other π-free(!) scheme will not induce any π-dependence in correlators. Thus, with the help of the \hat{G}-scheme the no- π-conjecture is upgraded to a

BIG No- π Theorem

Let F be any L-loop massless correlator and all L-loop p-integrals form a π-safe class. Then F is π-free in any (massless) renormalization scheme for which corresponding β-function and AD γ are both π-free at least at the level of $L+1$ loops.

\hat{G}-scheme: constraints on even zetas

Suppose we know a result for an $\mathrm{AD} \hat{\gamma}:=(\gamma)_{\hat{G}}$-scheme as well as the precise way how hatted zetas are related to the normal ones. The infromation should be enough to construct the result in normal, say, $\overline{\mathrm{MS}}$-scheme Thus, all terms proportional to even zetas in γ should be possible to recover. To do this let us consider the relation between \hat{a} and a :

$$
\hat{a}=a\left(1+\sum_{1 \leq i \leq L} c_{i} a^{i}\right)
$$

As the bare charge must not depend on the choice of the renormalization scheme the coefficients c_{i} are fixed by requiring that

$$
Z_{a} a=\hat{Z}_{a}(\hat{a}) \hat{a}
$$

For simplicity we start from the case of 4 loops. On general grounds we can write

$$
\beta=\beta_{1} a+\beta_{2} a^{2}+\left(r_{3}+\beta_{3}^{\zeta_{3}} \zeta_{3}\right) a^{3}+\left(r_{4}+\beta_{4}^{\zeta_{3}} \zeta_{3}+\beta_{4}^{\zeta_{4}} \zeta_{4}+\beta_{4}^{\zeta_{5}} \zeta_{5}\right) a^{4}
$$

where r_{i} is β_{i} with all zetas set to zero

The corresponding RCs Z_{a} and \hat{Z}_{a} read:

$$
\begin{align*}
Z_{a}= & 1+\frac{a \beta_{1}}{\epsilon}+a^{2}\left(\frac{1}{2 \epsilon} \beta_{2}+\frac{1}{\epsilon^{2}} \beta_{1}^{2}\right)+a^{3}\left(\frac{1}{3 \epsilon}\left(r_{3}+\beta_{3}^{\zeta_{3}} \zeta_{3}\right)+\frac{7}{6 \epsilon^{2}} \beta_{1} \beta_{2}+\frac{1}{\epsilon^{3}} \beta_{1}^{3}\right) \\
& +a^{4}\left(\frac{1}{4 \epsilon}\left(r_{4}+\beta_{4}^{\zeta_{3}} \zeta_{3}+\beta_{4}^{\zeta_{4}} \zeta_{4}+\beta_{4}^{\zeta_{5}} \zeta_{5}\right)+\frac{1}{\epsilon^{2}}\left(\frac{5}{6} \beta_{1} r_{3}+\frac{5}{6} \beta_{1} \beta_{3}^{\zeta_{3}} \zeta_{3}+\frac{3}{8} \beta_{2}^{2}\right)\right. \\
& \left.+\frac{23}{12 \epsilon^{3}} \beta_{1}^{2} \beta_{2}+\frac{1}{\epsilon^{4}} \beta_{1}^{4}\right) \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
\hat{Z}_{a}= & 1+\frac{\hat{a}}{\epsilon} \beta_{1}+\hat{a}^{2}\left(\frac{1}{2 \epsilon} \beta_{2}+\frac{1}{\epsilon^{2}} \beta_{1}^{2}\right)+\hat{a}^{3}\left(\frac{1}{3 \epsilon}\left(r_{3}+\beta_{3}^{\zeta_{3}} \hat{\zeta}_{3}\right)+\frac{7}{6 \epsilon^{2}} \beta_{1} \beta_{2}+\frac{1}{\epsilon^{3}} \beta_{1}^{3}\right) \\
& +\hat{a}^{4}\left(\frac{1}{4 \epsilon}\left(r_{4}+\beta_{4}^{\zeta_{3}} \hat{\zeta}_{3}+\beta_{4}^{\zeta_{5}} \hat{\zeta}_{5}\right)+\frac{1}{\epsilon^{2}}\left(\frac{5}{6} \beta_{1} r_{3}+\frac{5}{6} \beta_{1} \beta_{3}^{\zeta_{3}} \hat{\zeta}_{3}+\frac{3}{8} \beta_{2}^{2}\right)\right. \\
& \left.+\frac{23}{12 \epsilon^{3}} \beta_{1}^{2} \beta_{2}+\frac{1}{\epsilon^{4}} \beta_{1}^{4}\right) \tag{2}
\end{align*}
$$

Equation for c_{i} can be now easily solved with the result

$$
\begin{aligned}
c_{1}= & c_{2}=0 \\
c_{3}= & -\frac{1}{2} \beta_{3}^{\zeta_{3}} \zeta_{4}+\frac{5 \epsilon^{2}}{6} \beta_{3}^{\zeta_{3}} \zeta_{6}-\frac{7 \epsilon^{4}}{2} \beta_{3}^{\zeta_{3}} \zeta_{8}, \\
c_{4}= & \frac{1}{4 \epsilon}\left(\beta_{4}^{\zeta_{4}}-\beta_{1} \beta_{3}^{\zeta_{3}}\right) \zeta_{4}-\frac{3}{8} \beta_{4}^{\zeta_{3}} \zeta_{4}-\frac{5}{8} \beta_{4}^{\zeta_{5}} \zeta_{6} \\
& +\frac{5 \epsilon}{12} \beta_{1} \beta_{3}^{\zeta_{3}} \zeta_{6}+\epsilon^{2}\left(\frac{5}{8} \beta_{4}^{\zeta_{3}} \zeta_{6}+\frac{35}{16} \beta_{4}^{\zeta_{5}} \zeta_{8}\right)-\frac{7 \epsilon^{3}}{4} \beta_{1} \beta_{3}^{\zeta_{3}} \zeta_{8}-\frac{21 \epsilon^{4}}{8} \beta_{4}^{\zeta_{3}} \zeta_{8}
\end{aligned}
$$

As the coefficients c_{i} have to be finite at $\epsilon \rightarrow 0$ we arrive at the exact connection

$$
\boldsymbol{\beta}_{4}^{\zeta_{4}}=\boldsymbol{\beta}_{1} \boldsymbol{\beta}_{3}^{\zeta_{3}}
$$

Repeating the same reasoning for $\mathrm{L}=5$ and 6 (and similar one for the case of an AD) we arrive at a host of new exact identities for even zetas terms

Model independent predictions for β and γ for any 1-charge theory

$$
\begin{array}{rlrl}
\beta_{4}^{\zeta_{4}} & =\beta_{1} \beta_{3}^{\zeta_{3}} & \gamma_{4}^{\zeta_{4}} & =-\frac{1}{2} \beta_{3}^{\zeta_{3}} \gamma_{1}+\frac{3}{2} \beta_{1} \gamma_{3}^{\zeta_{3}} \\
\beta_{5}^{\zeta_{4}} & =\frac{1}{2} \beta_{3}^{\zeta_{3}} \beta_{2}+\frac{9}{8} \beta_{1} \beta_{4}^{\zeta_{3}} & \gamma_{5}^{\zeta_{4}} & =-\frac{3}{8} \beta_{4}^{\zeta_{3}} \gamma_{1}+\frac{3}{2} \beta_{2} \gamma_{3}^{\zeta_{3}}-\beta_{3}^{\zeta_{3}} \gamma_{2}+\frac{3}{2} \beta_{1} \gamma_{4}^{\zeta_{3}} \\
\beta_{5}^{\zeta_{6}} & =\frac{15}{8} \beta_{1} \beta_{4}^{\zeta_{5}} & \gamma_{5}^{\zeta_{6}} & =-\frac{5}{8} \beta_{4}^{\zeta_{5}} \gamma_{1}+\frac{5}{2} \beta_{1} \gamma_{4}^{\zeta_{5}} \\
\beta_{5}^{\zeta_{3} \zeta_{4}} & =0 & \gamma_{5}^{\zeta_{3} \zeta_{4}} & =0 \\
\beta_{6}^{\zeta_{4}} & =\frac{3}{4} \beta_{2} \beta_{4}^{\zeta_{3}}+\frac{6}{5} \beta_{1} \beta_{5}^{\zeta_{3}} & \gamma_{6}^{\zeta_{4}} & =\frac{3}{2} \beta_{3}^{(1)} \gamma_{3}^{\zeta_{3}}-\frac{3}{10} \beta_{5}^{\zeta_{3}} \gamma_{1}-\frac{3}{4} \beta_{4}^{\zeta_{3}} \gamma_{2} \\
& +\frac{3}{2} \beta_{2} \gamma_{4}^{\zeta_{3}}-\frac{3}{2} \beta_{3}^{\zeta_{3}} \gamma_{3}^{(1)}+\frac{3}{2} \beta_{1} \gamma_{5}^{\zeta_{3}} \\
\beta_{6}^{\zeta_{6}}=\frac{5}{4} \beta_{2} \beta_{4}^{\zeta_{5}}+2 \beta_{1} \beta_{5}^{\zeta_{5}}-\beta_{1}^{3} \beta_{3}^{\zeta_{3}} & \gamma_{6}^{\zeta_{6}} & =-\frac{1}{2} \beta_{5}^{\zeta_{5}} \gamma_{1}-\frac{5}{4} \beta_{4}^{\zeta_{5}} \gamma_{2}+\frac{5}{2} \beta_{2} \gamma_{4}^{\zeta_{5}} \\
& & +\frac{5}{2} \beta_{1} \gamma_{5}^{\zeta_{5}}+\frac{3}{2} \beta_{1}^{2} \beta_{3}^{\zeta_{3}} \gamma_{1}-\frac{5}{2} \beta_{1}^{3} \gamma_{3}^{\zeta_{3}} \\
\beta_{6}^{\zeta_{3} \zeta_{4}} & =\frac{12}{5} \beta_{1} \beta_{5}^{\zeta_{3}^{2}} & \gamma_{6}^{\zeta_{3} \zeta_{4}} & =-\frac{3}{5} \beta_{5}^{\zeta_{3}^{2}} \gamma_{1}+3 \beta_{1} \gamma_{5}^{\zeta_{3}^{2}}
\end{array}
$$

$$
\begin{aligned}
\beta_{6}^{\zeta_{8}} & =\frac{14}{5} \beta_{1} \beta_{5}^{\zeta_{7}} \\
\beta_{6}^{\zeta_{3} \zeta_{6}} & =0 \\
\beta_{6}^{\zeta_{4} \zeta_{5}} & =0
\end{aligned}
$$

$$
\begin{aligned}
\gamma_{6}^{\zeta_{8}} & =-\frac{7}{10} \beta_{5}^{\zeta_{7}} \gamma_{1}+\frac{7}{2} \beta_{1} \gamma_{5}^{\zeta_{7}} \\
\gamma_{6}^{\zeta_{3} \zeta_{6}} & =0 \\
\gamma_{6}^{\zeta_{4} \zeta_{5}} & =0
\end{aligned}
$$

The above constraints have been sucessfully checked on the following examples:
$\mathrm{L}=4$ and 5: numerous QCD RG functions (including gauge-dependent ones taken in the Landau gauge) recently computed in
/K.Ch, Falcioni, Herzog and J Vermaseren [1709.08541] .
$\mathrm{L}=4,5$ and 6 : β-function and ADs of $O(n) \phi^{4}$ model recently computed in Batkovich, K. Ch. and Kompaniets, [1601.01960] (γ_{2} only) Schnetz, [1606.08598] ($\beta, \gamma_{2}, \gamma_{m}$)
Kompaniets and Panzer, [1705.06483] ($\left.\beta, \gamma_{2}, \gamma_{m}\right)$

Predictions for 6-loop QCD RG functions:

$$
\begin{aligned}
\beta_{6} \quad & \begin{array}{|l|}
\hline
\end{array} \\
& +n_{f}^{2}\left(\frac{687506}{405} n_{f}^{5} \zeta_{4}\right. \\
& \left.+n_{f}^{4}\left(\frac{164792}{1215} \zeta_{4}-\frac{1840}{27} \zeta_{6}\right)+\frac{13834700}{81} \zeta_{6}\right)+n_{f}^{3}\left(-\frac{4173428}{405} \zeta_{4}+\frac{1800280}{243} \zeta_{6}\right) \\
\gamma_{6}^{m} \quad \stackrel{\pi}{=} \quad & \frac{320}{243} n_{f}^{5} \zeta_{4}+n_{f}^{4}\left(-\frac{90368}{405} \zeta_{4}+\frac{22400}{81} \zeta_{6}\right) \\
& +n_{f}^{3}\left(-\frac{92800}{27} \zeta_{3} \zeta_{4}-\frac{2872156}{405} \zeta_{4}+\frac{503360}{243} \zeta_{6}\right) \\
& +n_{f}^{2}\left(\frac{661760}{9} \zeta_{3} \zeta_{4}+\frac{155801234}{405} \zeta_{4}-\frac{378577520}{729} \zeta_{6}+\frac{12740000}{81} \zeta_{8}\right) \\
& +n_{f}\left(-\frac{1413280}{3} \zeta_{3} \zeta_{4}-\frac{4187656168}{1215} \zeta_{4}+\frac{5912758120}{729} \zeta_{6}-\frac{96071360}{27} \zeta_{8}\right) \\
& +3194400 \zeta_{3} \zeta_{4}+\frac{272688530}{81} \zeta_{4}-\frac{6778602160}{243} \zeta_{6}+15889720 \zeta_{8}
\end{aligned}
$$

boxed terms are in FULL AGREEMENT with (about 20 years old) results by /Gracey (1996)/ and /Ciuchini, Derkachov, Gracey and Manashov (1999-2000)/
all other terms are new

Conclusions

- We have demonstrated that all π-dependent terms in a generic ($L+1$)-loop $\overline{\mathrm{MS}}$ (or, equivalently, G-) anomalous dimension γ are completely fixed by π-independent contributions to γ (and corresponding β) with loop number L or less provided the (all) L-loop p-master integrals are π-safe
- The π-safeness holds for $\mathrm{L}=4$ and $\mathrm{L}=5$ and, probably, for $\mathrm{L}=6$. It is known that for $\mathrm{L}=7$ the property (partially) stops to be valid ${ }^{\star}$ and, thus, our predictions should be modified (at astronomically large for QCD level of $L=8$ RG functions)
- All available results at 5 (QCD), and 6 loops (large $n_{f} \mathbf{Q C D}$ and the ϕ^{4}-model) do meet all the constraints we have obtained
- The no- π conjecture for all one-scale RG-invariant Euclidean correlators first suggested Jamin and Miravitllas less than a year ago has been proved and extended to a case of generic Euclidean correlators
* communicated to us by Oliver Schnetz
(the problem is an appearence of the ζ_{12} as indepenent term of some 7-loop finite p-integral, see works by (F.Brown, O.Schnetz, E.Panzer . . on Feynman periods)

[^0]: * we do not consider any powers of π which are routinely generated during the procedure of analytical continuation to the Minkowskian (negative) values of the momentum transfer Q^{2})

[^1]: * K. K. Ch. (1997).
 * \star Baikov, Kühn, K. Ch. (2006)

[^2]: ${ }^{\star}$ C-scheme has some interesting features and applications, not relevant in our context of π-hunting; see /Boito, Jamin and Miravitllas, [1606.06175]/

