Exotic tetraquark mesons in large – N_c QCD

Dmitri Melikhov

D. V. Skobeltsyn Institute of Nuclear Physics, M. V. Lomonosov Moscow State University

- 1. Observations of exotic tetra- and pentaquark candidates
- 2. Non-resonant explanations of the observed distributions
- 3. Phenomenologocal models for polyquark resonances
- 4. Exotic bound states in QCD (lattice QCD, Green functions at large- N_c , QCD sum rules)
- **5. Conclusions**

• For many decades only hadron states with quantum numbers of the $\bar{q}q$ and qqq systems have been observed, although one can construct many other color singlets.

Why not $\bar{q}qqqq$ or $\bar{q}q\bar{q}q$? [Large- N_c QCD no such states at the leading $1/N_c$]

In fact we know many multiquark states (deuteron, nuclei) but these are of a bit different nature.

- First attempt the strange narrow pentaquark $\theta^+(1540)$ predicted in 1997 and "temporarily" observed in several experiments with large significance was finally unsuccessful.
- In the 21th century many exotic candidates have been reported in the experiments:

New charmonium states which do not fall in the usual $\bar{c}c$ picture, e.g.:

$$Z^{+}(4430)$$
 $J^{P}=1^{+}$ seen in $B^{+}\to K(\psi'\pi+)$ with $\Gamma\sim 40^{+18+30}_{-13-13}~{
m MeV}$ $\bar{c}c\bar{d}u$ $Z^{+}(3900)$ $J^{P}=1^{+}$ seen in $\Upsilon(4260)\to\pi^{-}(J/\psi\pi+)$ with $\Gamma\sim 30~{
m MeV}$ $\bar{c}c\bar{d}u$

Similar charged states $\bar{b}b$ states $Z_b(10610)$ and $Z_b(10650)$.

Also many neutral states $\bar{c}c\bar{q}q$: e.g. X(3872) a $J^{PC}=1^{++}$ resonance $M=3871.69\pm0.17$ MeV observed in $B^+\to K^+(J/\psi\pi^+\pi^-)$ with the width $\Gamma<1.2$ MeV very close to $D^0\bar{D}^{*0}$ threshold $M_{D^0}+M_{D^{*0}}-M_X=0.11^{+0.6+0.1}_{-0.4-0.3}$ MeV.

Recently, also pentaquark candidates from LHCb in $\Lambda_b^0 \to K^-(J/\psi p)$

 P_c (4380) (Γ ~ **200 MeV**)

 P_c (4450) (Γ ~ **30 MeV**)

The only flavour-exotic candidate is X(5568)

D0 vs CDF, LHCb, CMS, ATLAS (have no signals)

What are these structures — many scenarios.

Are they real resonances or just structures in the cross-section (anomalous thresholds, cusps etc)?

Nonresonant nature of observed distributions

Amplitudes involving hadron rescatterings (triangle diagrams + two-point functions) may lead to the resonance structures in the distributions similar to the observed ones

Phenomenological approaches to exotic states

Exotic hadrons as quark – diquark confined bound states

Naive constituent-quark model:

Constituent quarks $[m_q = 250 \text{ MeV } (q = u, d), m_s = 350 \text{ MeV}]$ interacting via potential (confining at large distances + OGE at short distances) are building blocks of ordinary hadrons: quark-antiquark mesons and three-quark baryons.

Color-triplet-antitriplet interation via multigluon exchanges is confining at large distances

Concept of DIQUARKS: color-antitriplet $\bar{D}^a = \epsilon^{abc}q_bq_c$ made of two quarks.

Ordinary mesons: $\bar{q}^a q^a (\bar{q}q)$

Ordinary baryons: $\epsilon_{abc}q^aq^bq^c = \bar{D}^aq^a (qqq)$

Tetraquarks: $\bar{D}^a D^a (\bar{q}q\bar{q}q)$

Pentaquarks: $\epsilon_{abc}\bar{D}^a\bar{D}^b\bar{q}^c$ $(\bar{q}qqqq)$

- Why not $\epsilon_{abc}\bar{D}^a\bar{D}^b\bar{D}^c$ (confined 6-quark state)?
- Hierarchy of sizes: diquarks are not really compact objects, size similar to meson size
- Not easy to obtain narrow exotic states

Exotic hadrons as molecular bound states

meson-meson long-distance interactions may produce a bound state (similar to the deuteron). Mass below threshold; if relatively wide, may see the tail.

• How to obtain from QCD the potential?

How to systematically understand exotic states in QCD?

Lattice QCD

- Put QCD on the lattice in a box (discrete spectrum of bound states)
- Consider two-point functions of a set of interpolating currents $\langle TJ(x)j(0)\rangle$ in Eucledian space
- Identify those discrete states which yield meson-meson continuum states in the continuum limit
- By modifying the operator set identify the discrete continuum state and determine its properties

Example of lattice study of $X(3872 \text{ [Prelovsek et al, 2015: } \bar{c}c, \text{ meson-meson, four-quark operators]}$

"A lattice candidate for X(3872) with I=0 is observed very close to the experimental state only if both $\bar{c}c$ and $\bar{D}D$ interpolators are included; the candidate is not found if diquark-antidiquark and $\bar{D}D$ are used in the absence of $\bar{c}c$. No candidate for neutral or charged X(3872), or any other exotic candidates are found in the I=1 channel. We also do not find signatures of exotic $\bar{c}c\bar{s}s$ candidates below 4.2 GeV". No convincing signatures of tetraquark bound states.

QCD at large No

 $SU(N_c)$ gauge theory with $N_c \to \infty$ and $\alpha_s \sim 1/N_c$. At leading order, QCD Green functions have only non-interacting mesons as intermediate states; tetraquark bound states may emerge only in N_c -subleading diagrams. This fact was believed to provide the theoretical explanation of the non-existence of exotic tetraquarks.

However, even if the exotic tetraquark bound states appear only in subleading diagrams, the crucial question is their width: if narrow, they might be well observed in nature.

[W.Lucha, D.M., H.Sazdjian, "Narrow exotic tetraquark mesons in large-Nc QCD", PRD96, 014002 (2017); "Tetraquarks and two-meson states at large-Nc", EPJC77, 866 (2017).]

We discuss four-point Green functions of bilinear quark currents, depend on 6 variables p_1^2 , p_2^2 , $p_1'^2$, $p_2'^2$, $p_2 = p_1 + p_2 = p_1' + p_2'$, and the two Mandelstam variables $s = p^2$ and $t = (p_1 - p_1')^2$.

Criteria for selecting diagrams which potentially contribute to the tetraquark pole at $s = M_T^2$:

- 1. The diagram should have a nontrivial (i.e., non-polynomial) dependence on the variable s.
- 2. The diagram should have a four-particle cut (i.e. threshold at $s = (m_1 + m_2 + m_3 + m_4)^2$), where m_i are the masses of the quarks forming the tetraquark bound state. The presence or absence of this cut is established by solving the Landau equations for the corresponding diagram.

Flavour-exotic tetraquarks

Bilinear quark currents $j_{ij} = \bar{q}_i q_j$ producing M_{ij} from the vacuum, $\langle 0|j_{ij}|M_{ij}\rangle = f_{M_{ij}}$, $f_M \sim \sqrt{N_c}$.

"Direct" 4-point functions $\Gamma_{\rm I}^{({
m dir})}=\langle j_{12}^\dagger j_{34}^\dagger j_{12} j_{34} \rangle$ and $\Gamma_{\rm II}^{({
m dir})}=\langle j_{14}^\dagger j_{32}^\dagger j_{14} j_{32} \rangle$:

"Recombination" functions $\Gamma^{(\text{rec})} = \langle j_{12}^{\dagger} j_{34}^{\dagger} j_{14} j_{32} \rangle$ and $\Gamma^{(\text{rec})\dagger}$:

$$\sim N_c^2 \alpha_s$$
 (b)

$$\Gamma_{\mathrm{I},T}^{(\mathrm{dir})} = \langle j_{12}^{\dagger} j_{34}^{\dagger} j_{12} j_{34} \rangle = O(N_c^0), \quad \Gamma_{\mathrm{II},T}^{(\mathrm{dir})} = \langle j_{14}^{\dagger} j_{32}^{\dagger} j_{14} j_{32} \rangle = O(N_c^0), \quad \Gamma_T^{(\mathrm{rec})} = \langle j_{12}^{\dagger} j_{34}^{\dagger} j_{14} j_{32} \rangle = O(N_c^{-1}).$$

The fact that "dir" and "rec" amplitudes have different behaviors in N_c requires at least two exotic poles:

 T_A couples stronger to $M_{12}M_{34}$ channel, T_B couples stronger to $M_{14}M_{32}$ channel.

$$\Gamma_{\mathrm{I},T}^{(\mathrm{dir})} = O(N_c^0) = f_M^4 \left(\frac{|A(M_{12}M_{34} \to T_A)|^2}{p^2 - M_{T_A}^2} + \frac{|A(M_{12}M_{34} \to T_B)|^2}{p^2 - M_{T_B}^2} \right) + \cdots,
\Gamma_{\mathrm{II},T}^{(\mathrm{dir})} = O(N_c^0) = f_M^4 \left(\frac{|A(M_{14}M_{32} \to T_A)|^2}{p^2 - M_{T_A}^2} + \frac{|A(M_{14}M_{32} \to T_B)|^2}{p^2 - M_{T_B}^2} \right) + \cdots,
\Gamma_T^{(\mathrm{rec})} = O(N_c^{-1}) = f_M^4 \left(\frac{A(M_{12}M_{34} \to T_A)A(T_A \to M_{14}M_{32})}{p^2 - M_{T_A}^2} + \frac{A(M_{12}M_{34} \to T_B)A(T_B \to M_{14}M_{32})}{p^2 - M_{T_B}^2} \right) + \cdots.$$

We seek tetraquarks with finite mass at large N_c :

$$A(T_A \to M_{12}M_{34}) = O(N_c^{-1}), \qquad A(T_A \to M_{14}M_{32}) = O(N_c^{-2}),$$

 $A(T_B \to M_{12}M_{34}) = O(N_c^{-2}), \qquad A(T_B \to M_{14}M_{32}) = O(N_c^{-1}).$

The widths $\Gamma(T_{A,B}) = O(N_c^{-2})$.

Mixing between T_A and T_B :

Introducing mixing parameter g_{AB} , we get additional contributions to the Green functions. Most restrictive for g_{AB} is the recombination function, for which mixing provides the additional contribution

$$\Gamma_T^{(\text{rec})} = O(N_c^{-1}) = f_M^4 \left(\frac{A(M_{12}M_{34} \to T_A)}{p^2 - M_{T_A}^2} g_{AB} \frac{A(T_B \to M_{14}M_{32})}{p^2 - M_{T_B}^2} \right) + \cdots$$

The mixing parameter $g_{AB} \leq O(N_c^{-1})$: the two flavor-exotic tetraquarks of the same flavor content do not mix at large N_c .

Cryptoexotic tetraquarks

(a)

Diagrams of new topologies emerge.

For direct functions $\Gamma_{(I,II),T}^{(dir)}$, new diagrams do not change leading large- N_c behavior:

For recombination functions, the new diagram modifies leading large- N_c behavior

(b)

The new diagram modifies the leading large- N_c behavior:

$$\Gamma_{\mathrm{I},T}^{(\mathrm{dir})} = \langle j_{12}^{\dagger} j_{23}^{\dagger} j_{12} j_{23} \rangle = O(N_c^0), \quad \Gamma_{\mathrm{II},T}^{(\mathrm{dir})} = \langle j_{13}^{\dagger} j_{22}^{\dagger} j_{13} j_{22} \rangle = O(N_c^0), \quad \Gamma_T^{(\mathrm{rec})} = \langle j_{12}^{\dagger} j_{23}^{\dagger} j_{13} j_{22} \rangle = O(N_c^0).$$

"dir" and "rec" functions have the same behavior, and one exotic state T is enough:

$$A(T \to M_{12}M_{23}) = O(N_c^{-1}), \qquad A(T \to M_{13}M_{22}) = O(N_c^{-1}).$$

Its width is $\Gamma(T) = O(N_c^{-2})$.

T can mix with the ordinary meson M_{13} . The restriction on the mixing parameter $g_{TM_{13}}$:

$$\Gamma_{I,T}^{(dir)} = O(N_c^0) = f_M^4 \left(\frac{A(M_{12}M_{23} \to T)}{p^2 - M_T^2} g_{TM_{13}} \frac{A(M_{13} \to M_{12}M_{23})}{p^2 - M_{M_{13}}^2} \right) + \cdots$$

$$A(M_{13} \to M_{12}M_{23}) \sim 1/\sqrt{N_c}$$
, so $g_{TM_{13}} \leq O(1/\sqrt{N_c})$.

The analysis of Green functions in large- N_c QCD allows one to restrict some properties of the possible exotic states.

QCD sum rules for exotic states

Strong decays from 3 – point vertex functions

• The basic object:

$$\Gamma(p, p', q) = \int \langle \Omega | T(J(x)j(0)j'(x')|\Omega \rangle \exp(ipx - ip'x')dxdx'$$

This correlator contains the triple-pole in the Minkowski region: namely

$$\Gamma(p, p', q) = \frac{ff'}{(p^2 - M^2)(p'^2 - M'^2)} F(q^2) + \cdots$$

where the form factor $F(q^2)$ contains pole at $q^2 = M_q^2$:

$$F(q^2) = \frac{f_q g_{MM'M_q}}{(q^2 - M_q^2)} + \cdots$$

 $g_{MM'M_q}$ describes the $M \to M_1M_2$ strong transition; f, f', and f_{M_q} are the decay constants of the mesons $\langle 0|j(0)|M\rangle = f_M$.

The three-point function satisfies the double spectral representation

$$\Gamma(p, p', q) = \int \frac{ds}{s - p^2} \frac{ds'}{s' - p'^2} \Delta(s, s', q^2)$$

Perform double Borel transform $p^2 \to \tau$, $p'^2 \to \tau'$ and applying duality we obtain

$$\exp(-M^2\tau)\exp(-M'^2\tau')ff'F(q^2) = \int ds \exp(-s\tau) \int ds' \exp(-s'\tau')\Delta_{\mathrm{OPE}}(s,s',q^2)$$

Normal hadrons:

$$\Gamma_{\text{OPE}}(p^2, p'^2, q^2) = \Gamma_0(p^2, p'^2, q^2) + \alpha_s \Gamma_1(p^2, p'^2, q^2) + \dots$$

Already one-loop zero-order diagram has a nonzero double-spectral density. And therefore provides a nonzero contribution to the form factor at small and intermediate momentum transfers (and to the coupling). Radiative corrections and are crucial for large q^2 and improve the result.

• Exotic hadrons: $\langle T(\theta(x)j_1(0)j_2(y))\rangle$.

Many possibilities to write interpolating current for X, $\langle 0|\theta|X\rangle=f_X, \qquad f_X\neq 0.$

$$\theta = M(x)M(x), \qquad M(x) = \bar{q}(x)O\bar{q}(x)$$

$$\theta = M^{A}(x)M^{A}(x), \qquad M^{A}(x) = \bar{q}(x)\lambda^{A}O\bar{q}(x) \quad [A = 1..., 8]$$

$$\theta = \bar{D}^{a}(x)D^{a}(x), \qquad D^{a}(x) = \epsilon^{abc}(q_{c}(x))^{T}COq_{b}(x), \quad [a, b, c = 1, ..., 3]$$

The choice of interpolating current does not infuence the presence / absence of a bound state; dynamics decides

Color Singlet - color singlet:

$$\Gamma_{\text{OPE}}(p^2, p'^2, q^2) = \Pi(p'^2)\Pi(q^2) + (\alpha_s)^2\Gamma_{\text{connected}}(p^2, p'^2, q^2)$$

After the Borel transform $p^2 \to \tau$, the disconnected leading-order contribution vanishes.

Thus the LO contribution is not related to the exotic-state decay. Clear from the factorization property $\Gamma(p,p',q) = \Pi(p'^2)\Pi(q^2)$ and from the large- N_c behaviour of the QCD diagrams.

2 – point function of exotic currents

Singlet-singlet:

How to write down the duality relation?

$$f_X^2 \exp(-M_X^2 \tau) + \Pi_{meson-meson}^{\text{cont}}(\tau) = \int ds \exp(-s\tau) \rho_{XX}(s) + \Pi_{\text{power}}(\tau)$$

The right prescription:

Do not include the LO (i.e. start with order $O(\alpha_s^2)$ in the singlet-singlet case: $f_X^{(1)} \sim O(\alpha_s)$.

Outlook

- Around 20 candidates for exotic resonances: $\bar{c}c\bar{q}q$ or $\bar{b}b\bar{q}q + \bar{c}cqqq$. X(5568) in $B_s\pi^\pm$ (?) is doubtful. No light-quark candidates $\bar{q}q\bar{q}q$. No convincing interpretation. Various possibilities.
- Non-resonance explanations: the observed structures are due to hadron low-energy diagrams (triangles and loops). The amplitudes contains many unknown couplings. Difficult to obtain a certain conclusion.
- Phenomenological models:
 Based on diquarks in a confining potential predict spectrum of exotic states
 Based on hadron-hadron potentials predict molecular states (depending on specific potentials)
- Lattice QCD: Very difficult setup; no convincing results for exotic states
- very unificult setup; no convincing results for exotic states

Two exotic $\bar{q}_1q_2\bar{q}_3q_4$ narrow states $\Gamma\sim O(1/N_c^2)$, each decaying into one meson-meson channel. One cryptoexotic state $\bar{q}_1q_2\bar{q}_2q_3$ $\Gamma\sim O(1/N_c^2)$ decaying into various meson-meson channels with similar probabilities.

• QCD sum rules

• OCD at large N_c :

Dozens of papers, many confirming the resonance interpretation of exotic states. However, not all conceptual issues of the method for exotic states have been fully settled.

• Dynamics of fall-apart decays of exotic resonances has fundamental difference from dynamics of ordinary-meson decays: the appropriate contributions to Green functions describing decays of exotic states emerge only at subleading α_s orders; the leading order disconnected diagrams are not related to strong decays of exotic hadrons. This makes the calculation of α_s -corrections mandatory. Many efforts for otaining reliable predictions are necessary!