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Creation of the fundamental quantum theory of gravitation remains one of
the most important tasks, if not he most important task, of mofern
theoretical physics.
In 1977 Stelle has proved renormalizability of the Lorentz invariant
gravitational actions which include besides the Einstein-Hilbert term also
terms with fourth derivatives of the metric, which we will call also
quadratic quantum gravity.
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But Stelle also made the statement that quantum gravity with fourth
derivatves is unphysical because it violates either unitarity or causality.
Since then this model is considered as having severe problems with physical
interpretation.
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Wye derive new expressions for the Lagrangian and for the graviton
propagator of quadratic quantum gravity within dimensional regularization.
We argue also that fourth derivative gravity is a good candidate for the
fundamental quantun theory of gravitation.
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Let us consider the invariant under the gauge transformations action with
all possible terms quadratic in the curvature tensor

Ssym =

∫
dDxµ−2ε√−g

(
−M2

PlR + αRµνR
µν + βR2 + δRµνρσR

µνρσ
)
,

(1)
where the �rst term is the Einstein-Hilbert action. Here M2

Pl = 1/(16πG ) is
the squared Planck mass, Rµνρσ is the Riemann tensor, Rµν is the Ricci
tensor, R is the Ricci scalar, α, β and δ are the dimensionless coupling
constants of the Lagrangian, D = 4− 2ε is the space time dimension within
dimensional regularization, µ is the parameter of dimensional regularization.
Usually the last term in the action (1) is missed in the literature because of
the Gauss-Bonnet topological identity∫

d4x
√
−g
(
RµνρσR

µνρσ − 4RµνR
µν + R2

)
= 0, (2)

which is valid for space-times topologically equivalent to �at space only in
four dimensions. Within dimensional regularization the term quadratic in
the Riemann tensor should be added to the ation.
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We work in the linearized theory around the �at space metric

gµν = ηµν + hµν , (3)

where we choose the convention ηµν = diag(+1,−1,−1,−1) in four
dimensions. In D dimensions ηµνη

µν = D. Further it is understood that
indices are raised and lowered with the Minkowski metric ηµν .
Gauge transformation are generated by di�eomorphisms xµ → xµ + ζµ(x)
and have the form

hµν → hµν + ∂µζν + ∂νζµ + (hλµ∂ν + hλν∂µ + (∂λhµν)) ζλ, (4)

here ζµ(x) are arbitrary functions.
According to Faddeev-Popov quantization one should add to the action the
gauge �xing term which we choose in the form

Sgf = − 1

2ξ

∫
dDxFµ∂ν∂

νFµ, (5)

where Fµ = ∂νh
νµ, ξ is the gauge parameter.
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One should also add the ghost term

Sghost =

∫
dDxdDyCµ(x)

δFµ(x)

δζν(y)
Cν(y) = (6)

∫
dDx∂νCµ

[
∂νCµ + ∂µCν + hλµ∂νC

λ + hλν∂µC
λ + (∂λhµν)Cλ

]
,

where C and C are ghost �elds. Thus one gets the following generating
functional for Green functions of gravitons

Z (J) = N

∫
dhµνdCλdCρ exp

[
i
(
Ssym + Sgf + Sghost + dDxµ−2εJµνh

µν
)]
,

(7)
where as usual in the functional integral, N is the normalization factor and
Jµν is the source of the gravitational �eld.
We work within perturbation theory, so we make the shift of the �elds

hµν → MPlµ
−εhµν . (8)
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To derive the graviton propagator we make the Fourier transfom to the
momentum space and write the quadratic in hµν form

Qµνρσ =
1

4

∫
dDk hµν(−k)

[(
k2 + M−2

Pl k
4(α + 4δ)

)
P(2)
µνρσ

+ k2
(
−2 + 4M−2

Pl k
2(α + 3β + δ)

)
P(0−s)
µνρσ (9)

+
1

ξ
M−2

Pl k
4
(
P(1)
µνρσ + 2P(0−w)

µνρσ

)]
hρσ(k),

where P
(i)
µνρσ are projectors to the spin-2, spin-1 and spin-0 components of

the �eld correspondingly:

P(2)
µνρσ =

1

2
(ΘµρΘνσ + ΘµσΘνρ)− 1

3
ΘµνΘρσ, (10)

P(1)
µνρσ =

1

2
(Θµρωνσ + Θµσωνρ + Θνρωµσ + Θνσωµρ) , (11)

P(0−s)
µνρσ =

1

3
ΘµνΘρσ, P(0−w)

µνρσ = ωµνωρσ. (12)

Here Θµν = ηµν − kµkν/k
2 and ωµν = kµkν/k

2
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To obtain the graviton propagator Dµνρσ one inverts the matrix in the
square brackets of (9):

[Q]µνκλD
κλρσ =

1

2
(δρµδ

σ
ν + δσµδ

ρ
ν). (13)

Thus we get for the propagator

Dµνρσ =
1

i(2π)D

[
4

k2

(
1

1 + M−2
Pl k

2(α + 4δ)

)
P(2)
µνρσ (14)

− 2

k2

 1 + 2ε
1−M−2

Pl k2(α+4β)

1+M−2
Pl k2(α+4δ)

1− ε−M−2
Pl k

2 ((2α + 6β + 2δ)− ε(α + 4β))

P(0−s)
µνρσ

+4ξ
1

M−2
Pl k

4

(
P(1)
µνρσ +

1

2
P(0−w)
µνρσ

)]
.
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Let us perform partial fractioning. Then the graviton propagatr takes the
form

Dµνρσ =
1

i(2π)D

[
4P(2)

µνρσ

(
1

k2
− 1

k2 −M2
Pl/(−α− 4δ)

)
(15)

−2
P
(0−s)
µνρσ

1− ε

(
1 + 2ε

1−M−2
Pl k

2(α + 4β)

1 + M−2
Pl k

2(α + 4δ)

)
(

1

k2
− 1

k2 −M2
Pl(1− ε)/(2α + 6β + 2δ − ε(α + 4β))

)

+
4ξ

M−2
Pl k

4

(
P(1)
µνρσ +

1

2
P(0−w)
µνρσ

)]
.

It is interesting to note that the position of one of the poles in the term

with P
(0−s)
µνρσ depends on the regularization parameter ε. The residues of

both poles in this term also depend on ε. Thus it is clear that poles and
residues of the tree level propagator do not have direct physical meaning.
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In the limit of four dimensions we get for the graviton propagator

Dµνρσ =
4

i(2π)D

[
P
(2)
µνρσ − 1

2P
(0−s)
µνρσ

k2
− P

(2)
µνρσ

k2 −M2
Pl/(−α− 4δ)

(16)

+

(
1

2

)
P
(0−s)
µνρσ

k2 −M2
Pl/(2α + 6β + 2δ)

+
ξ

M−2
Pl k

4

(
P(1)
µνρσ +

1

2
P(0−w)
µνρσ

)]
,

Within classical four-derivative gravity for a point particle with the
energy-momentum tensor Tµν = δ0µδ

0
νMδ3(x) the gravitational �eld is

V (r) =
M

2πM2
Pl

(
− 1

4r
+

e−m2r

3r
− e−m0r

12r

)
, (17)

where in our notations m2
2 = M2

Pl/(−α− 4δ) and
m2

0 = M2
Pl/(2α + 6β + 2δ) are the squared masses of the massive spin-2

and spin-0 gravitons. The propagator (16) reproduces eq. (17) after the
calculation of the corresponding tree level Feynman diagram describing
interaction of two point-like particles.
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The second term in the graviton propagator (16) has the unusial minus
sign and that is why it is interpreted as the massive spin-2 ghost. To
preserve renormalizability of the quantum theory one should shift all poles
in propagators in Feynman integrals in the same manner k2 → k2 + i0,
hence the ghost state should be considered as the state with the negative
metric. This was the reason to make the statement about violation either
unitarity or causality in the model.
But this massive spin-2 state is unstable since it can decay into massless
gravitons. Thus it does not appear as the asymptotic state of the S-matix.
Correspondingly only particles with the positive metric participate in the
scattering processes as external particles and unitarity is preserved in the
theory.
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It should be also mentioned that the tree level propagator will be essentially
modi�ed after the summation of one-loop corrections. Because of the
mignus sign in the second term of (16) the one-loop correction due to the
diagram with the massless graviton in the loop will shift the pole of the
ghost from the real value k2 = M2

Pl/(−α− 4δ) to the complex value
k2 = M2

Pl/(−α− 4δ)− iΓ, where Γ is the decay width of the massive
spin-2 graviton into the pare of massless gravitons. The complex pole is
located on the unphysical Riemann sheet. This is analogous to the known
virtual level in the neutron-proton system with antiparallel spins.
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We conclude that the considered quadratic quantum gravity is a good
candidate for fundamental quantum theory of gravitaion.
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