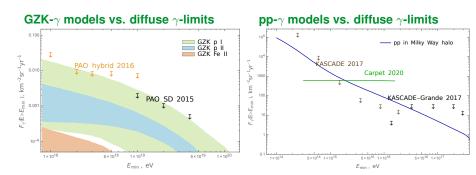

Search for ultra-high energy photons with the Telescope Array surface detector

Mikhail Kuznetsov INR RAS, Moscow for the Telescope Array collaboration

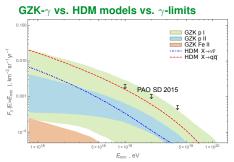
Quarks-2018, Valday, May 31, 2018


Techniques of photon detection

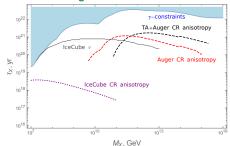
UHE photon search motivation: astrophysics

Ultra-high energy photons is a convenient tool to study astroparticle & cosmic ray physics: multimessenger approach

- Models of UHE cosmic-ray sources: accompanying γ signal
- ▶ Models of cosmic-ray propagation & mass composition: GZK γ production
- Models of high-energy neutrino production: accompanying γ signal



UHE photon search motivation: dark matter signal

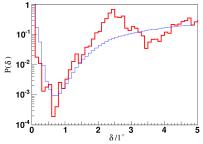

Almost all heavy dark matter models produce γ -rays in decay/annihilation

- \blacktriangleright Opportunity to search HDM $\gamma\text{-signal}$ from Milky Way and its dwarf satellites
- Recent γ-ray flux limits constrain HDM stronger than any other messenger
 O. Kalashev & MK JETP Lett. 106, 73 (2017)
- ▶ It is possible to test HDM decay interpretation of IceCube events

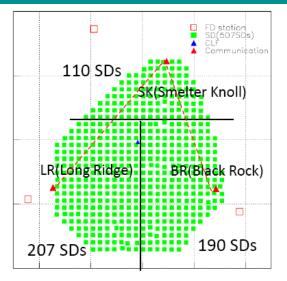
M.Kachelriess, O. Kalashev & MK arxiv:1805.04500

Multimessenger constraints for HDM

UHE photon search motivation: anomalous Universe transparency


Indications for the anomalous high attenuation length of HE γ in the Universe

- Suspicious upward breaks in the de-absorbed γ -spectra of distant TeV-blazars (the break position depends on the distance to blazar): 12.4 σ
 - G. Rubtsov & S. Troitsky JETP Lett. 100, 355 (2014)
- HiRes experiment had observed correlation of 10^{19} eV cosmic–rays with distant BL Lacertae: 3.5σ D. Gorbunov et. al JETP Lett. 80, 145 (2004)
- Both results are inconsistent with the attenuation length of γ -rays in the cosmic medium: non-standard propagation is needed
 - $\gamma \to a x ion \to \gamma$ conversion in the source and in the Milky Way magn. field
 - Generation of additional γ -rays by GZK-effect of the same-source protons


Breaks in the spectra of TeV-blazars

10⁻⁹ 29 10⁻¹⁰ Es 10⁻¹¹ 10⁻¹² 10⁻¹² 0.01 0.1 1

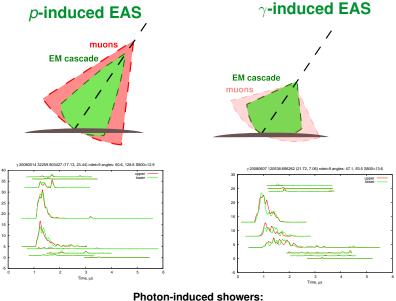
HiRes comis-rays — BL Lacs correlation

Telescope Array experiment: surface detector

- ▶ 507 SD's, 3 m² each
- 680 km² area
- 10 years of operation

Largest UHECR statistics in the Northern Hemisphere

Data and Monte-Carlo sets


- ▶ Data collected by TA surface detector for the 9 years: 2008-05-11 — 2017-05-10
- ightharpoonup p and γ Monte-Carlo sets with CORSIKA and dethinning

Stokes et al, Astropart. Phys. 35:759,2012

Cuts for both data and MC:

- 7 or more detectors triggered
- core distance to array boundary is larger than 1200m
- $\sim \chi^2/\text{d.o.f.} < 5$
- θ < 60°
- ▶ $E_{\gamma} > 10^{18}$ eV (E_{γ} is estimated with photon Monte-Carlo)
- remove events coincident with lightnings (lightning events mimics γ-induced events)

52362 events after cuts

- arrive younger
- contain less muons
- multiple SD observables affected: front curvature, Area-over-peak, $\chi^2/d.o.f.$, etc.

Photon search: list of relevant SD observables

- 1. Linsley front curvature parameter, a;
- 2. Area-over-peak (AoP) of the signal at 1200 m;

Pierre Auger Collaboration, Phys.Rev.Lett. 100 (2008) 211101

- AoP LDF slope parameter;
- Number of detectors hit;
- 5. N. of detectors excluded from the fit of the shower front;
- 6. $\chi^2/d.o.f.$;
- 7. $S_b = \sum S_i \times r^b$ parameter for b = 3 and b = 4.5;

Ros, Supanitsky, Medina-Tanco et al. Astropart. Phys. 47 (2013) 10

- The sum of signals of all detectors of the event;
- Asymmetry of signal at upper and lower layers of detectors;
- 10. Total n. of peaks within all FADC traces;
- N. of peaks for the detector with the largest signal;
- 12. N. of peaks present in the upper layer and not in lower;
- 13. N. of peaks present in the lower layer and not in upper;

How to deal with this large amount of observables?

Multivariate analysis (MVA) & machine learning!

The Boosted Decision Trees (BDT) technique is used to build p-γ classifier based on multiple observables.

Pierre Auger Collaboration, ApJ, 789, 160 (2014)

root::TMVA is used as a stable implementation.

PoS ACAT 040 (2007), arXiv:physics/0703039

- BDT is trained with Monte-Carlo sets:
 γ (signal) and p
 (background)*
- BDT classifier is used to convert the set of observables for an event to a number $\xi \in [-1:1]$:
 - 1 pure signal (γ) , -1 pure background (p).
- \triangleright ξ is available for one-dimensional analysis.

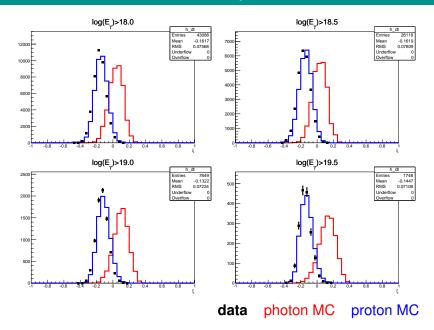
^{*} MC set is split into 3 equal parts: (I) for training the classifier, (II) for cut optimization, (III) for exposure estimate.

How to deal with this large amount of observables?

Multivariate analysis (MVA) & machine learning!

The Boosted Decision Trees (BDT) technique is used to build p-γ classifier based on multiple observables.

Pierre Auger Collaboration, ApJ, 789, 160 (2014)

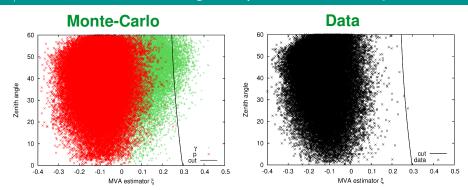

root::TMVA is used as a stable implementation.

PoS ACAT 040 (2007), arXiv:physics/0703039

- BDT is trained with Monte-Carlo sets: γ (signal) and ρ (background)*
- ▶ BDT classifier is used to convert the set of observables for an event to a number $\xi \in [-1:1]$:
 - 1 pure signal (γ) , -1 pure background (p).
- \triangleright ξ is available for one-dimensional analysis.

^{*} MC set is split into 3 equal parts: (I) for training the classifier, (II) for cut optimization, (III) for exposure estimate.

Distribution of MVA estimator ξ for data and MC

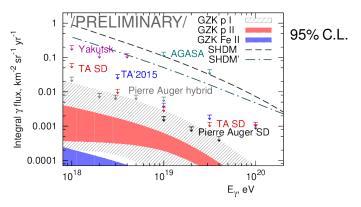


Diffuse photon search: cut optimization & effective exposure

- ▶ The γ candidates are selected using the MVA-cut: $\xi > \xi_{cut}(\theta)$
- ▶ The cut is approximated as a quadratic function of θ
- Cut is optimized using proton and photon Monte-Carlo in assumption of zero photon flux (null hypothesis)
- ▶ Geometric exposure for $\theta \in (0^{\circ}, 60^{\circ})$: 12060 km² sr yr
- Effective photon exposure $A_{\gamma}^{\rm eff}$ is estimated in each pixel separately assuming E^{-2} primary spectrum

E_{γ} , eV	quality. cuts	ξ -cut	$A_{\gamma}^{\rm eff}$, km ² sr yr
10 ^{18.0}	6.5%	9.8%	77
10 ^{18.5}	19.9%	10.6%	255
10 ^{19.0}	43.6%	16.2%	852
10 ^{19.5}	52.0%	37.2%	2351
10 ^{20.0}	64.2%	52.3%	4055

$E_{\gamma} > 10^{18}$ eV, zenith angle dependent cut on ξ



Optimisation of MVA-cut for γ flux upper-limit

- Assume the flux consists of protons only (null hypothesis): $F_{\text{total}} = F_{\text{p}}$
- Poptimize the ξ -cut position using MC p and MC γ to obtain the minimum upper-limit: $F_{\gamma}^{UL} = \frac{\mu_{\text{Poisson}}^{\text{UL}}(N_{p}^{\xi})}{A^{\text{eff}}}$, where $N_{p}^{\xi} = \{\text{number of MC } p \text{ events passing the } \xi\text{-cut}\}$

Results: diffuse photon flux upper-limits

E ₀ , eV	10 ^{18.0}	10 ^{18.5}	10 ^{19.0}	10 ^{19.5}	10 ^{20.0}
γ candidates	1	0	0	0	1
$\bar{n} <$	5.14	3.09	3.09	3.09	5.14
A _{eff} , km ² sr yr	77	255	852	2351	4055
F_{γ} , km $^{-2}$ sr $^{-1}$ yr $^{-1}$	0.067	0.012	0.0036	0.0013	0.0013

models from J. Alvarez-Muniz et al. EPJ Web Conf. 53, 01009 (2013)

Search for point sources of photons: motivation

The way to improve the photon search sensitivity:

Hadron background is highly isotropic

 \downarrow

Assume that photons are emitted by point source

 \downarrow

In vicinity of the source on the skymap the **photon/hadron ratio** would be larger than in full TA field of view

 \Downarrow

It is easier to separate photons from hadrons!

Bonus!

Specific photon source hypotheses could be tested by search in certain classes of directions

- ▶ BL Lacertae objects (photon-axion conversion hypothesis)
- Dwarf spheroidal galaxies (heavy DM decay hypothesis)
- Sources of GZK photons (astrophysical cosmic-ray generation models)

Search for point sources of photons: motivation

The way to improve the photon search sensitivity:

Hadron background is highly isotropic

1

Assume that photons are emitted by point source

 \downarrow

In vicinity of the source on the skymap the **photon/hadron ratio** would be larger than in full TA field of view

 \Downarrow

It is easier to separate photons from hadrons!

Bonus!

Specific photon source hypotheses could be tested by search in certain classes of directions

- BL Lacertae objects (photon-axion conversion hypothesis)
- Dwarf spheroidal galaxies (heavy DM decay hypothesis)
- Sources of GZK photons (astrophysical cosmic-ray generation models)

Monte-Carlo: photon angular resolution

The geometry reconstruction of events is critical for point source search.

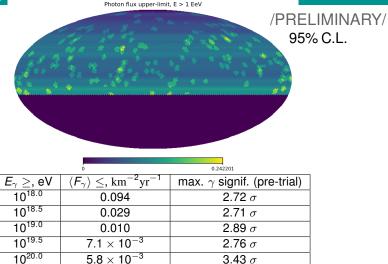
We correct all data and MC events for the mean value of the zenith angle θ reconstruction bias.

Angular reconstruction for photons (used in present search)

E_{γ} , eV	$\langle heta_{ m rec.} - heta_{ m true} angle$	ang. resolution
10 ^{18.0}	−2.25°	3.00°
10 ^{18.5}	−2.24°	2.92°
10 ^{19.0}	−2.16°	2.64°
10 ^{19.5}	−2.06°	2.21°
10 ^{20.0}	−1.72°	2.06°

Angular reconstruction for protons (for comparison)

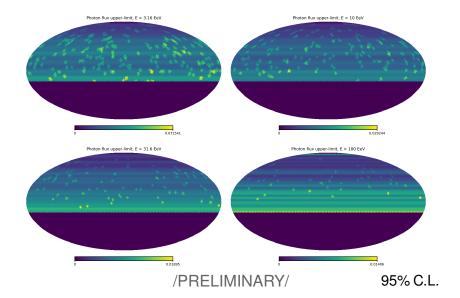
E_p , eV	$\langle heta_{ m rec.} - heta_{ m true} angle$	ang. resolution
10 ^{18.0}	−0.94°	2.43°
10 ^{18.5}	−0.93°	2.18°
10 ^{19.0}	−0.84°	1.68°
10 ^{19.5}	−0.72°	1.26°
10 ^{20.0}	−0.62°	1.16°


Features of γ point sources search: blind search

- Independent search for γ in each skymap pixel
- ▶ The size of the pixel is equal to the γ angular resolution
- ► The skymap is pixelized into 12288 directions with HEALpix

Optimisation of MVA-cut for γ flux upper-limit is the same as for diffuse γ limit:

- Assume the flux consists of protons only (null hypothesis):
 F_{total} = F_p
- ▶ Optimize the *ξ*-cut position using MC *p* and MC *γ* to obtain the minimum upper-limit: $F_{\gamma}^{\text{UL}} = \frac{\mu_{\text{Poisson}}^{\text{UL}}(N_{p}^{\xi})}{A_{\gamma}^{\text{eff}}}$, where $N_{p}^{\xi} = \{\text{number of MC } p \text{ events passing the } \xi\text{-cut}\}$


Results: point-source photon flux upper-limits

Pierre Auger: $\langle F_{\gamma} \rangle \leq 0.035~\rm{km^{-2}yr^{-1}}~(1^{\circ}$ ang.res., $10^{17.3} \leq E \leq 10^{18.5}~eV)$

A. Aab et al. ApJ 789, 160 (2014)

Results: point-source photon flux upper-limits

Features of γ point sources search: target search

- ightharpoonup Search for γ in stacked skymap pixels of certain sources class
- ▶ The size of each pixel is equal to the γ angular resolution

Optimisation of MVA-cut for γ search is different as for γ limit:

- Assume the flux consists of p and γ (first hypothesis): $F_{\text{total}} = F_{\text{p}} + F_{\gamma}$
- Optimize the ξ -cut position using MC p and MC γ to obtain the 3σ excess of $N_{\gamma} = F_{\gamma} A_{\gamma}^{\text{eff}}$ over N_{p} background with the minimum statistics

Target source class search I: dwarf galaxies

Probe for the possible decay of heavy dark matter (HDM)

HDM decay produce significant amount of photons in any model*

```
At high DM masses annihilation is practically unobservable since \sigma_{\mathrm{ann.}} < \frac{1}{M_{DM}^2}
```

- DM is abundant in dwarf galaxies (Galactic center is outside the TA field of view)
- Target source set: 21 dwarf galaxies satellites of Milky Way
 V. Bonnivard et al., MNRAS 453 (2015), 849

- MVA-cut optimisation for γ detection: no evidence for photon signal $(N_{\gamma}^{\text{cand.}} = 0 \text{ at all energies})$
- MVA-cut optimisation for flux limit

E_{γ} , eV	F_{UL}^{γ} , km ⁻² yr ⁻¹
10 ^{18.0}	0.15
10 ^{18.5}	0.057
10 ^{19.0}	0.014
10 ^{19.5}	7.6×10^{-3}
10 ^{20.0}	5.2×10^{-3}

Target source class search I: dwarf galaxies

Probe for the possible decay of heavy dark matter (HDM)

HDM decay produce significant amount of photons in any model*

```
At high DM masses annihilation is practically unobservable since \sigma_{
m ann.} < \frac{1}{M_{DM}^2}
```

- DM is abundant in dwarf galaxies (Galactic center is outside the TA field of view)
- Target source set: 21 dwarf galaxies satellites of Milky Way
 V. Bonnivard et al., MNRAS 453 (2015), 849

- MVA-cut optimisation for γ detection: no evidence for photon signal $(N_{\gamma}^{\mathrm{cand.}} = 0 \text{ at all energies})$
- MVA-cut optimisation for flux limit:

E_{γ} , eV	F_{UL}^{γ} , km ⁻² yr ⁻¹
10 ^{18.0}	0.15
10 ^{18.5}	0.057
10 ^{19.0}	0.014
10 ^{19.5}	7.6×10^{-3}
10 ^{20.0}	5.2×10^{-3}

Target source class search II: BL Lacertae

Test of the cosmic-rays — BL Lacs correlation observed by HiRes experiment D. Gorbunov et al., JETP Lett. 80 (2004) 145

- HiRes result implies that small fraction of CRs is emitted by BL Lacs and is not deflected by galactic magn.field.
- ► The most reasonable hypothesis is the emittance of UHE γ and $\gamma \to axion \to \gamma$ conversion in magn. field.
- Target source set: 156 BL Lac objects from Veron catalog

- MVA-cut optimisation for γ detection: no evidence for photon signal $(N_{\gamma}^{\text{cand.}} = 0 \text{ at all energies})$
- MVA-cut optimisation for flux limit: meaningless there is no precise model to constrain

Target source class search II: BL Lacertae

Test of the cosmic-rays — BL Lacs correlation observed by HiRes experiment D. Gorbunov et al., JETP Lett. 80 (2004) 145

- HiRes result implies that small fraction of CRs is emitted by BL Lacs and is not deflected by galactic magn.field.
- ► The most reasonable hypothesis is the emittance of UHE γ and $\gamma \to axion \to \gamma$ conversion in magn. field.
- Target source set: 156 BL Lac objects from Veron catalog

- MVA-cut optimisation for γ detection: no evidence for photon signal $(N_{\gamma}^{\text{cand.}} = 0 \text{ at all energies})$
- MVA-cut optimisation for flux limit: meaningless there is no precise model to constrain

Future prospects for photon search

Blind search

Improvement of the photon/hadron separation of MVA analysis

Target photon search

Zero result of photon search from BL Lacs does not falsify the HiRes result: the improve of the sensitivity is possibly needed

- Improvement of the photon/hadron separation of MVA analysis
- ▶ Reduction of the angular resolution for γ (isotropic hadron background grows as a square of ang.resolution)

Conclusions

Blind photon search

- The diffuse and directional upper-limits for photons with E > 10¹⁸ eV are set
- ▶ The directional upper-limits for $E > 10^{18.5}$ eV are set for the first time
- ▶ No significant evidence for photon signal was found in blind search

Target photon search

- BL Lacertae and dwarf galaxies were searched for photons: no excess over background was found
- ► The flux upper-limits were set for dwarf galaxies it could be used to constrain heavy dark matter models

Thank you!

Conclusions

Blind photon search

- The diffuse and directional upper-limits for photons with E > 10¹⁸ eV are set
- ▶ The directional upper-limits for $E > 10^{18.5}$ eV are set for the first time
- ▶ No significant evidence for photon signal was found in blind search

Target photon search

- BL Lacertae and dwarf galaxies were searched for photons: no excess over background was found
- The flux upper-limits were set for dwarf galaxies it could be used to constrain heavy dark matter models

Thank you!