Ultra-high-energy cosmic rays mass composition studies with the Telescope Array Surface Detector data

M. Kuznetsov, M. Piskunov, G. Rubtsov, **Y. Zhezher** and S. Troitsky for the Telescope Array collaboration

Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

May 31, 2018

Abstract

Overview

- Method: Multivariate analysis based on Boosted decision trees
- Data set and results

UHECR ≥ 10¹⁸ eV composition measurements

Experiment	detector	Observable
HiRes	fluorescence stereo	X _{MAX}
Pierre Auger	fluorescence + SD	X_{MAX}
	(hybrid)	
Telescope Array	stereo	X_{MAX}
Telescope Array	hybrid	X_{MAX}
Yakutsk	muon	$ ho_{\mu}$
Pierre Auger	SD	X_{MAX}^{μ}
Pierre Auger	SD	risetime asymmetry

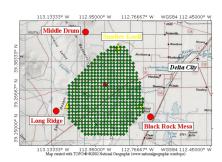
SD - surface detector

 X_{MAX} – depth of the shower maximum

 X_{MAX}^{μ} – muon production depth

risetime - time from 10% to 50% for the total integrated signal

Telescope Array Observatory



Largest UHECR statistics in the Northern Hemisphere

- Utah, 2 hrs drive from Salt Lake City,
- ▶ 507 surface detectors, S = 3m², spacing 1.2 km
- 3 fluorescence detectors
- 10 years of operation

Method outline

- Reconstruct every event, get the values of composition-sensitive observables.
- 2. Multivariate analysis: $(a, AoP, ...) \rightarrow \xi^i$. A set of observables is transformed into a single variable. The latter is used for composition analysis.
- 3. Compare distribution of ξ with Monte-Carlo modelling.
- 4. Result: average atomic mass < log A > as a function of energy.

List of relevant observables

- 1. Linsley front curvature parameter, a;
- 2. Area-over-peak (AoP) of the signal at 1200 m;

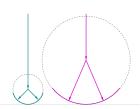
Pierre Auger Collaboration, Phys.Rev.Lett. 100 (2008) 211101

- 3. AoP slope parameter;
- Number of detectors hit;
- 5. N. of detectors excluded from the fit of the shower front;
- 6. $\chi^2/d.o.f.$ of the LDF fit;
- 7. $S_b = \sum S_i \times r^b$ parameter for b = 3 and b = 4.5;

Ros, Supanitsky, Medina-Tanco et al. Astropart. Phys. 47 (2013) 10

- 8. The sum of signals of all detectors of the event;
- 9. Asymmetry of signal at upper and lower layers of detectors;
- 10. Total n. of peaks within all FADC traces;
- 11. N. of peaks for the detector with the largest signal;
- 12. N. of peaks present in the upper layer and not in lower;
- 13. N. of peaks present in the lower layer and not in upper;

Linsley front curvature parameter



Deeper shower maximum leads to more curved front.

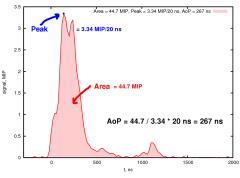
Shower front is fit using the following function:

$$t_0(r) = t_0 + t_{plane} +$$
 $+ a \times 0.67 (1 + r/R_L)^{1.5} LDF(r)^{-0.5}$
 $LDF(r) = f(r)/f(800 \text{ m})$
 $f(r) = \left(\frac{r}{R_m}\right)^{-1.2} \left(1 + \frac{r}{R_m}\right)^{-(\eta - 1.2)} \left(1 + \frac{r^2}{R_1^2}\right)^{-0.6}$
 $R_m = 90.0 \text{ m}, \ R_1 = 1000 \text{ m}, \ R_L = 30 \text{ m}$
 $\eta = 3.97 - 1.79(\sec(\theta) - 1)$

 t_{plane} – shower plane delay a – Linsley front curvature parameter LDF – lateral distribution function

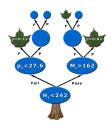
Area-over-peak (AoP) and area-over-peak slope

Consider a surface station time-resolved signal



- Both peak and area are well-measured and not much affected by fluctuations
- ▶ AoP(r) is fitted with a linear fit:
 - $AoP(r) = \alpha \beta(r/r_0 1.0)$
 - ho $r_0 = 1200 \,\mathrm{m}$, α value at 1200 m, β slope

Boosted decision trees



Y. Coadou, ESIPAP'16

- For each variable, find splitting value with best separation between two branches: mostly signal in one branch, mostly background in another;
- Repeat algorithm recursively on each branch: take a new variable or reuse the former;
- Iterate until stopping criterion is reached (e.g. number of events in a branch). Terminal node = leaf;
- Boosting: create a good classifier using a number of weak ones (building a forest).

MVA BDT analysis

► The Boosted Decision Trees (BDT) technique is used to build *p-Fe* classifier based on multiple observables.

Pierre Auger Collaboration, ApJ, 789, 160 (2014)

- ▶ BDT is trained with Monte-Carlo sets: Fe (Signal) and p (Background)
- ▶ BDT classifier is used to convert the set of observables for an event to a number $\xi \in [-1:1]$: 1 pure signal (*Fe*), -1 pure background (p).
- ξ is available for one-dimensional analysis.

Data and Monte-Carlo sets

9-year data collected by the TA surface detector:

Cuts:

- 1. Events with 7 or more triggered counters
- 2. Events with zenith angle $\theta < 45^{\circ}$.
- Events with reconstructed core position of at least 1200 m away from the edge of the array.
- 4. Events with $\chi_G^2/d.o.f. < 4$ and $\chi_{LDF}^2/d.o.f. < 4$.
- 5. Events with geometry reconstructed with accuracy less than 5°.
- 6. Events with the fractional uncertainty of the S_{800} less than 25 %.
- 7. Events with $E > 10^{18}$ eV.

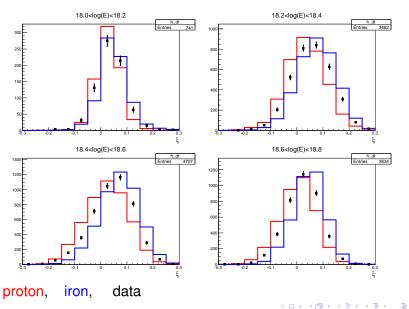
18077 events after cuts

Data and Monte-Carlo sets

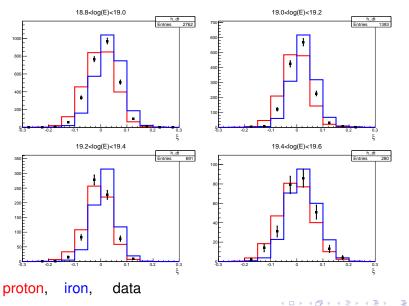
p and Fe Monte-Carlo sets with QGSJETII-03

Note: MC sets are split into 3 equal parts: (I) for training the classifier, (II) for MVA estimator calculation, (III) for determination of systematical uncertanties.

Distribution of MVA estimator ξ



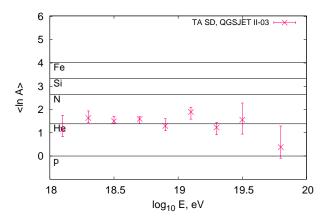
Distribution of MVA estimator ξ



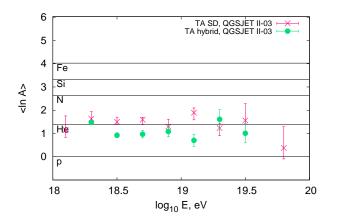
ξ parameter conversion to $\langle \ln A \rangle$

- 1. After applying the BDT method, ξ parameter distribution is derived for proton and iron MC and for the data in each energy bin.
- 2. The range between $\ln A = 0$ (proton) and $\ln A = 4.02$ (iron) is divided into 40 equal parts. At every point a "mixture" of protons and iron (e.g. 5 % p and 95 % Fe) is produced.
- 3. KS-distance between ξ parameter distribution of the each "mixture" and data is performed, and the case with the smallest KS-distance is chosen.
- 4. First approximation of average $\ln A$ is estimated as $\langle \ln A^{(1)} \rangle = \epsilon_p \times \ln{(1)} + (1 \epsilon_p) \times \ln{(56)}$, where ϵ_p is a fraction of protons in the mixture.

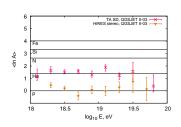
Results: TA SD (MVA) composition



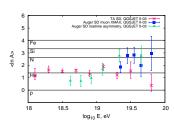
Results comparison: TA SD (MVA) vs TA hybrid



MVA result compared to other experiments



HiRes stereo, PRL, 2010



Pierre Auger Observatory X_{MAX}^{μ} and risetime asymmetry, ICRC'11

Yakutsk ho_{μ} JPhysG, 2012

Conclusion

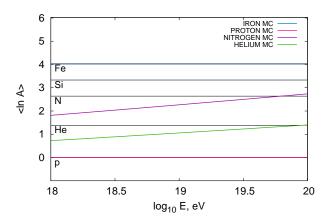
- The composition is qualitatively consistent with the TA hybrid results.
- It is also qualitatively consistent with the Auger SD results.
- ► The average atomic mass of primary particles corresponds to $\langle \ln A \rangle = 1.52 \pm 0.08 (stat.) \pm 0.1 (syst.)$.

Backup slides

Method verification

- ► The source of systematic uncertainties is the two-component assumption.
- ► The method is tested with He and N Monte-Carlo sets.

Method verification



Boosting (AdaBoost)

- Given a weak learner, run it multiple times on (reweighted) training data.
- On each iteration t: weight each training example by how incorrectly it was classified.
- New tree with reweighted events is built and optimized.
- Average over all trees to create a better classifier.

Bias corrections

Since now proton and iron MC points don't perfectly fit the straight lines $\ln A = 0$ and $\ln A = 4.02$, the data can be corrected assuming the MC points to be the endpoints of the segment $\ln A \in [0; 4.02]$ with the following linear function:

$$y_{cor} = \frac{y - y_{\rho}(x)}{y_{Fe}(x) - y_{\rho}(x)} \times \ln(56),$$

where $y_p(x)$ and $y_{Fe}(x)$ are linear approximations for the MC $\langle \ln A \rangle$ distributions.

The S_b parameter

$$S_b = \sum_{i=1}^{N} \left[S_i \times \left(\frac{r_i}{r_0} \right)^b \right]$$

 S_i – signal of i-th detector r_i – distance from the shower core to this station in meters $r_0 = 1000 \text{ m}$ – reference distance Best separation is for b = 3 & b = 4.5.

Ros, Supanitsky, Medina-Tanco et al. Astropart. Phys. 47 (2013) 10

Why primary composition is important?

- understand the acceleration mechanisms
- predict the flux of cosmogenic photons and neutrino
- probe the interaction cross-section at the highest energies
- precision tests of Lorentz-invariance