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Abstract

I Overview

I Method: Multivariate analysis based on
Boosted decision trees

I Data set and results
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UHECR & 1018 eV composition measurements

Experiment detector Observable

HiRes fluorescence stereo XMAX
Pierre Auger fluorescence + SD XMAX

(hybrid)
Telescope Array stereo XMAX
Telescope Array hybrid XMAX

Yakutsk muon ρµ
Pierre Auger SD Xµ

MAX
Pierre Auger SD risetime asymmetry

SD – surface detector
XMAX – depth of the shower maximum
Xµ

MAX – muon production depth
risetime – time from 10% to 50% for the total integrated signal
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Telescope Array Observatory

Largest UHECR statistics
in the Northern

Hemisphere

I Utah, 2 hrs drive
from Salt Lake City,

I 507 surface
detectors, S = 3m2,
spacing 1.2 km

I 3 fluorescence
detectors

I 10 years of
operation



Method outline

1. Reconstruct every event, get the values of
composition-sensitive observables.

2. Multivariate analysis: (a, AoP, . . . )→ ξi . A set of
observables is transformed into a single variable. The
latter is used for composition analysis.

3. Compare distribution of ξ with Monte-Carlo modelling.

4. Result: average atomic mass < log A > as a function of
energy.



List of relevant observables

1. Linsley front curvature parameter, a;
2. Area-over-peak (AoP) of the signal at 1200 m;

Pierre Auger Collaboration, Phys.Rev.Lett. 100 (2008) 211101

3. AoP slope parameter;
4. Number of detectors hit;
5. N. of detectors excluded from the fit of the shower front;
6. χ2/d .o.f . of the LDF fit;
7. Sb =

∑
Si × rb parameter for b = 3 and b = 4.5;

Ros, Supanitsky, Medina-Tanco et al. Astropart.Phys. 47 (2013) 10

8. The sum of signals of all detectors of the event;
9. Asymmetry of signal at upper and lower layers of detectors;

10. Total n. of peaks within all FADC traces;
11. N. of peaks for the detector with the largest signal;
12. N. of peaks present in the upper layer and not in lower;
13. N. of peaks present in the lower layer and not in upper;



Linsley front curvature parameter

Deeper shower
maximum leads to
more curved front.

Shower front is fit using the following function:

t0(r) = t0 + tplane+

+ a× 0.67 (1 + r/RL)
1.5LDF (r)−0.5

LDF (r) = f (r)/f (800 m)

f (r) =
(

r
Rm

)−1.2(
1 +

r
Rm

)−(η−1.2)(
1 +

r2

R2
1

)−0.6

Rm = 90.0 m, R1 = 1000 m, RL = 30 m
η = 3.97− 1.79(sec(θ)− 1)

tplane – shower plane delay
a – Linsley front curvature parameter
LDF – lateral distribution function



Area-over-peak (AoP) and area-over-peak slope

I Consider a surface station time-resolved signal

I Both peak and area are well-measured and not much
affected by fluctuations

I AoP(r) is fitted with a linear fit:
I AoP(r) = α− β(r/r0 − 1.0)
I r0 = 1200 m, α - value at 1200 m, β - slope
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Boosted decision trees

Y. Coadou, ESIPAP’16

I For each variable, find splitting value with best separation
between two branches: mostly signal in one branch,
mostly background in another;

I Repeat algorithm recursively on each branch: take a new
variable or reuse the former;

I Iterate until stopping criterion is reached (e.g. number of
events in a branch). Terminal node = leaf;

I Boosting: create a good classifier using a number of weak
ones (building a forest).



MVA BDT analysis

I The Boosted Decision Trees (BDT) technique is used to
build p-Fe classifier based on multiple observables.

Pierre Auger Collaboration, ApJ, 789, 160 (2014)

I BDT is trained with Monte-Carlo sets: Fe (Signal) and p
(Background)

I BDT classifier is used to convert the set of observables for
an event to a number ξ ∈ [−1 : 1]: 1 - pure signal (Fe), -1 -
pure background (p).

I ξ is available for one-dimensional analysis.
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Data and Monte-Carlo sets

I 9-year data collected by the TA surface detector:
2008-05-11 — 2017-05-11

Cuts:
1. Events with 7 or more triggered counters
2. Events with zenith angle θ < 45◦.
3. Events with reconstructed core position of at least 1200 m

away from the edge of the array.
4. Events with χ2

G/d .o.f . < 4 and χ2
LDF/d .o.f . < 4.

5. Events with geometry reconstructed with accuracy less
than 5◦.

6. Events with the fractional uncertainty of the S800 less than
25 %.

7. Events with E > 1018 eV.

18077 events after cuts
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Data and Monte-Carlo sets

p and Fe Monte-Carlo sets with QGSJETII-03

Note: MC sets are split into 3 equal parts: (I) for training the
classifier, (II) for MVA estimator calculation, (III) for
determination of systematical uncertanties.
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Distribution of MVA estimator ξ
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Distribution of MVA estimator ξ
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ξ parameter conversion to 〈ln A〉

1. After applying the BDT method, ξ parameter distribution is
derived for proton and iron MC and for the data in each
energy bin.

2. The range between ln A = 0 (proton) and ln A = 4.02 (iron)
is divided into 40 equal parts. At every point a “mixture” of
protons and iron (e.g. 5 % p and 95 % Fe) is produced.

3. KS-distance between ξ parameter distribution of the each
“mixture” and data is performed, and the case with the
smallest KS-distance is chosen.

4. First approximation of average ln A is estimated as
〈ln A(1)〉 = εp × ln (1) + (1− εp)× ln (56), where εp is a
fraction of protons in the mixture.



Results: TA SD (MVA) composition
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Results comparison: TA SD (MVA) vs TA hybrid
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MVA result compared to other experiments
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Conclusion

I The composition is qualitatively consistent with the TA
hybrid results.

I It is also qualitatively consistent with the Auger SD results.
I The average atomic mass of primary particles corresponds

to 〈ln A〉 = 1.52± 0.08(stat .)± 0.1(syst .).
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Backup slides



Method verification

I The source of systematic uncertainties is the
two-component assumption.

I The method is tested with He and N Monte-Carlo sets.



Method verification
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Boosting (AdaBoost)

I Given a weak learner, run it multiple times on (reweighted)
training data.

I On each iteration t: weight each training example by how
incorrectly it was classified.

I New tree with reweighted events is built and optimized.
I Average over all trees to create a better classifier.



Bias corrections

Since now proton and iron MC points don’t perfectly fit the
straight lines ln A = 0 and ln A = 4.02, the data can be
corrected assuming the MC points to be the endpoints of the
segment ln A ∈ [0;4.02] with the following linear function:

ycor =
y − yp (x)

yFe (x)− yp (x)
× ln (56) ,

where yp (x) and yFe (x) are linear approximations for the MC
〈ln A〉 distributions.



The Sb parameter

Sb =
N∑

i=1

[
Si ×

(
ri

r0

)b]

Si – signal of i-th detector
ri – distance from the shower core to this station in meters

r0 = 1000 m – reference distance
Best separation is for b = 3 & b = 4.5.

Ros, Supanitsky, Medina-Tanco et al. Astropart.Phys. 47 (2013) 10



Why primary composition is important?

I understand the acceleration mechanisms

I predict the flux of cosmogenic photons and neutrino

I probe the interaction cross-section at the highest
energies

I precision tests of Lorentz-invariance


