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Drowning by numbers

The fact is that

GF ~2

GNc2
∼ 1033, where GF — Fermi constant, GN — Newton constant

Two aspects of the hierarchy problem (G. F. Giudice’08):

“classical”

“quantum”:

Let MX be some heavy mass scale. Then one expects

δm2
H,X ∼ M2

X .

Even if one assumes that there are no heavy thresholds beyond the EW scale,
then, naively,

δm2
H,grav. ∼ M2

P .
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EFT approach and beyond

A common approach to the hierarchy problem lies within the effective field theory
framework:

Low energy description of Nature, provided by the SM, can be affected by an unknown
UV physics only though a finite set of parameters

This “naturalness principle” is questioned now in light of the absence of signatures of
new physics at the TeV scale. (G. F. Giudice’13)

What if one goes beyond the EFT approach? Many examples of non-perturbative
phenomena are suggested:

Multiple Point Criticality Principle (D. L. Bennett, H. B. Nielsen’94; C. D. Froggatt,
H. B. Nielsen’96):

Asymptotic safety of gravity (S. Weinberg’09; M. Shaposhnikov, C. Wetterich’09)

EW vacuum decay (V. Branchina, E. Messina, M. Sher’14; F. Bezrukov, M.
Shaposhnikov’14)

One can attempt to resolve the hierarchy problem (the“classical” part of it) by looking
for some non-perturbative effect relating the EW and the Planck-scale physics.
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Framework

The absence of an explicit UV completed theory encompassing the SM and GR makes
our analysis ambiguous. To narrow the window of possibilities, one adopts the
conjectures:

Scale Invariance

The idea of reducing an amount of dimensionfull parameters as a way towards the
fundamental theory seems fruitful (J. Garcia-Bellido, J. Rubio, M. Shaposhnikov, D.
Zenhausern’11)

No degrees of freedom with mass scales above the EW scale

Experimental data?

Dynamical gravity

We believe gravity plays a crucial role in the effect we look for

We are interested in simple models comprising the scalar fields and gravity, on which
one can test the non-perturbative mechanism. We do not argue that these models can
indeed be embedded into the complete theory. However, the successful mechanism
can be viewed as an argument in favour of those properties of the theory which
support its existence.
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Outline of the idea

Consider a theory containing the scalar field ϕ of a unit mass dimension, the metric
field gµν and, possibly, other fields denoted collectively by A.

Time-independent, spatially homogeneous vev of ϕ

〈ϕ〉 = Z−1
∫
DϕDgµνDA ϕ(0)e−S , where Z =

∫
DϕDgµνDA e−S ,

and S is the euclidean action of the theory.

Let us reorganize the numerator in the expression for 〈ϕ〉 by making

Change of the field variable

ϕ→ ϕ0eϕ̄ at ϕ & ϕ0,

where ϕ0 is an appropriate scale of the theory. Then,∫
ϕ&ϕ0

Dϕ ϕ(0)e−S → ϕ0

∫
ϕ̄&0Dϕ̄Je

−W ,

where W = −ϕ̄(0) + S and J is a Jacobian of the transformation.
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Outline of the idea

Suppose that the functional W admits appropriate saddle points through which the
modified path integral can be evaluated. Then, in the leading order saddle-point
approximation (SPA),

Vev of ϕ computed via W

〈ϕ〉 ∼ ϕ0e−W̄+S0 ,

where W̄ is the value of W computed at a saddle and S0 is the value of S computed
at the ground state.

For this to work, it is necessary to find

Appropriate saddle points of the functional W ,

Semiclassical parameter that would justify the SPA,

Physical argumentation that would justify the change of the field variable.

In case if the vacuum geometry is not flat, boundary terms must also be included into
consideration.

The quantity W̄ − S0 can be viewed as a rate of suppression of the classical scale ϕ0.
If this rate is large and positive, the hierarchy of scales emerges.
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The Dilaton model

Later we will make use of a special type of instanton configurations, which appear in
(asymptotically) SI theories with non-minimal couplings of scalar fields to gravity. Let
us first discuss the properties of these instantons using a simple toy model.

Ingredients of the model: Gravity, one scalar dof non-minimally coupled to gravity.

(Euclidean) Lagrangian

L
√
g

= −
1

2
ξϕ2R +

1

2
(∂ϕ)2 +

λ

4
ϕ4 with ξ > 0

Boundary term

I = −
∫
d3x
√
γKξϕ2

The classical ground state of the model, ϕ = ϕ0 , R =
λϕ2

0

ξ
, breaks SI

spontaneously.
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The Dilaton model

To analyze classical configurations, it is convenient to rewrite the model in the form in
which the non-minimal coupling is absent. To this end, one performs the Weyl
transformation,

ϕ = ϕ0Ω , g̃µν = Ω2gµν , Ω = e
ϕ̄√
ξϕ0 .

Then,

Lagrangian in the Einstein frame

L̃
√
g̃

= −
1

2
ξϕ2

0R̃ +
1

2a
(∂̃ϕ̄)2 +

λ

4
ϕ4

0 , a =
1

6 + 1/ξ

Boundary term in the Einstein frame

IGH = −ξϕ2
0

∫
d3x
√
γ̃K̃

We identify the SI breaking scale with the Planck mass: MP ≡
√
ξϕ0.
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Classical configurations in the Dilaton model

We consider the O(4)-symmetric case.

Metric ansatz

ds̃2 = f (r)2dr2 + r2dΩ2
3

Equations of motion

∂r

(
r3ϕ̄′

af

)
= 0 ,

1

f 2
= 1 +

a

6M2
P

r2

f 2
ϕ̄′2 ± b2r2 , b2 =

|λ|M2
P

12ξ2

where the plus (minus) sign in the second expression holds for negative (positive) λ.

Thanks to the form of the metric ansatz, the 00-component of the Einstein equations
reduces to an algebraic equation for f .

An obvious solution of EoM: ϕ̄ = 0 , f 2 =
1

1± b2r2
— the ground state.

10 / 39



Motivation Setup Warm-up: Dilaton+Gravity One example: Higgs+Gravity Further Examples: Higgs+Dilaton+Gravity Discussion and Outlook Backups

Classical configurations in the Dilaton model

Consider now configurations obeying the equation
r3ϕ̄′

af
= C with C some non-zero

constant. Let they approach the ground state at large distances.

The short-distance asymptotics of such configurations is

ϕ̄ ∼ −γMP log(MP r) , R̃ ∼ aM−4
P r−6 , γ =

√
6a , r → 0.

One observes the physical singularity at r = 0. Hence, we need the source of the field
ϕ̄ at that point:

S → W = S −
∫
d4xj(x)ϕ̄(x).

Let j(x) = M−1
P δ(4)(x). Then C = −M−1

P , and the configuration obeys

ϕ̄′ = −
af

r3MP
,

1

f 2
= 1 +

a

6M4
P r

4
± b2r2

We will refer to such configurations as “singular instantons”.

The configurations of this type were studied before in the context of the cosmological initial value
problem, (S. W. Hawking, N. Turok’98)
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Singular instanton in the Dilaton model

Figure: The profile of the singular instanton at different values of a. We choose the Anti-de Sitter
asymptotic geometry with b = 0.01.

We see that gravity softens the divergence of the scalar field as compared to the flat
space limit.

The characteristic size of the instanton (the size of its “core”) is r∗ = a1/4M−1
P . We

will assume the good separation between r∗ and the “cosmological” length b−1. It
holds provided that

bM−1
P � 1.
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Instanton action in the Dilaton model

Let us evaluate the euclidean action S̄ and the boundary term ĪGH of the instanton,
relative to the euclidean action S0 and the boundary term IGH,0 of the ground state.

Net action

S̄ − S0 ∼ ab2M−2
P � 1

Net boundary term

ĪGH − IGH,0 ∼


0 , λ > 0

a−1M−2
P r−2

s → 0 , rs →∞ , λ = 0

a−1b−1M−2
P r−3

s → 0 , rs →∞ , λ < 0

We conclude that the nontrivial background geometry does not lead to a significant
contribution to the net instanton action. Hence, in proceeding with the classical
analysis in more complicated models, we can focus solely on the core region of the
instanton.
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One Example: Higgs+Gravity

Let us study the case when gravity breaks explicitly the SI of the theory, and we
demand the Planck mass to be the only classical dimensional parameter in the theory.

For example, take the following Lagrangian describing the dynamics of the Higgs and
the metric fields

General Lagrangian

Lφ,g√
g

= G4(|φ|)R + G2(|φ|, |∂φ|2)

where the functions G4, G2 are chosen so that to reproduce the SM Higgs kinetic
term, the Higgs field potential with mH = 0, and GR in the low-energy limit.

After all, this must be supplemented with the rest of the SM content. The latter is
not important for the analysis of classical configurations made of the Higgs and the
metric fields.
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The “probe” Lagrangian

To start with, take the model resembling the Dilaton theory:

Jordan frame Lagrangian

Lϕ,g
√
g

= −
1

2
(M2

P + ξϕ2)R +
1

2
(∂ϕ)2 + V (ϕ), where V (ϕ) =

λ

4
ϕ4 and ξ > 0

The Weyl rescaling g̃µν = Ω2gµν , Ω2 = M−2
P (M2

P + ξϕ2) gives

Einstein frame Lagrangian

Lϕ,g√
g̃

= −
1

2
M2

P R̃ +
1

2a(ϕ)
(∂̃ϕ)2 + Ṽ (ϕ),

where a(ϕ) =
Ω4

Ω2 + 6ξ2ϕ2/M2
P

and Ṽ (ϕ) = V (ϕ)Ω−4.
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Mechanism: step 1

According to the discussion above, the first step in the course of evaluating the vev
〈ϕ〉 is to

Change the field variable:
ϕ→ MPe

ϕ̄/MP

in the SI regime ϕ� MP/
√
ξ. Motivation: it is ϕ̄ which carries the valid dof in

this regime.

To find 〈ϕ〉, one should search for saddles of the functional W = −ϕ̄(0) + S ,
where S is the euclidean action of the theory. They are singular instantons of the
kind studied above.

Equation of motion for the variable ϕ̄ in the SI regime

r3ϕ̄′

aSI f
= −

1

MP
, aSI = a(ϕ� MP/

√
ξ) =

1

6 + 1/ξ

Asymptotics of the instanton at short distances

ϕ̄ ∼ −MP
√

6aSI log rMP , r → 0
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Mechanism: problems

In trying to compute the instanton value of W , one encounters difficulties:

ϕ̄(0) =∞. How to treat this divergence?

Where is the semiclassical parameter?

The instanton action turns out to be small (in agreement with the discussion
above). How to make it large?

To overcome these issues, we switch on a high-energy large-field content of the model.
Motivation: one can think of the “probe” Lagrangian as describing an effective theory
with the cutoff Λ ∼ MP/ξ. This justifies the usage of the Planck-suppressed in the
low-ϕ̄ limit operators which are composed of the scalar and metric fields.
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Mechanism: problems

Figure: The blue line represents the configuration obeying the boundary condition imposed by the
source. Hence, it is a valid singular instanton. The configuration painted green is the one with the
large euclidean action; for illustration, we choose for it S̄E = 40. The potential is taken as in the
SM with the central values of the parameters. For illustrative purposes, the bounce is also plotted
in red.
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Mechanism: step 2

To shape the behaviour of the instanton in the large-field limit, one makes use of
the operators respecting the (asymptotic) shift symmetry of the theory.

For example, consider the effect of the following

Derivative operator

On =
√
g δn

(∂ϕ)2n

(MPΩ)4n−4
and let n = 2 for simplicity

Then,

Modified equation of motion for the variable ϕ̄ in the SI regime

4δ

M4
P

r3ϕ̄′3

f 3
+

1

aSI

r3ϕ̄′

f
= −

1

MP
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Mechanism: step 2

Let r̄ be the size of the region where the quartic derivative term dominates,

r̄ ∼ M−1
P δ1/6a

1/2
SI .

We assume that r̄ is smaller than the characteristic length at which a(ϕ) varies.

At r . r̄ , the asymptotics of the instanton changes as

Modified asymptotics of the instanton at short distances

ϕ̄′ ∼ M2
Pδ
−1/6 , f ∼ rMPδ

1/6 , r . r̄

Thus, the scalar field is not divergent any more.1 Its magnitude at the center of the
instanton is

ϕ̄(0)/MP ∼ a
1/2
SI (log δ − 3 log aSI +O(1)) .

The first issue is, therefore, cured. The other two remain.

1This holds regardless the particular derivative structure modifying the “probe” Lagrangian in the high-energy
limit.
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Mechanism: step 3

The strength aSI of the scalar field source must be enhanced in the region probed
by the core of the singular instanton:

aSI → aHE =
1

κ/ξ + 6
, r → 0 , ϕ̄ & MP , κ > −1/ξ

This implies the blow-up of the curvature of the field space.

As an example, consider the following

Lagrangian

Lϕ,g
√
g

= −
M2

P

2
F (ϕ/MP)R +

1

2
G(ϕ/MP)(∂ϕ)2 + δξ2 (∂ϕ)4

(MPΩ)4
+
λ

4
ϕ4

F = 1 + ξϕ2/M2
P , G =

1 + κϕ2/M2
P

1 + ϕ2/M2
P

and κ a constant

Then, the coefficient aSI becomes field-dependent,

Field-dependent source strength

aSI =
1

α/ξ + 6
where α =

1

2
(1− tanh(ϕ̄/MP)) +

κ
2

(1 + tanh(ϕ̄/MP))
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Mechanism: step 3

If aHE � 1, then

W̄ ∼ √aHE , 〈ϕ〉 ∼ MPe
−W̄

Figure: The relevant combinations of fields in the core region of the instanton. One observes that
by enhancing the source (dashed line), one can make equation of motion satisfied in the large-ϕ̄
limit.
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Implications for the Hierarchy problem

The real scalar field ϕ is identified with the Higgs field degree of freedom in the
unitary gauge,

φ = 1/
√

2 (0, ϕ)T .

The Higgs-gravity Lagrangian is supplemented with the rest of the low-energy
content of the theory. Fluctuations of the fields affect the prefactor in the
leading-order formula

v = MPe
−W̄ .

The validity of the SPA enables us to believe that the higher-order corrections do
not change drastically the leading-order calculation.

One should modify the Higgs coupling to the gauge fields in order to prevent
them from becoming tachyonic at large fields.
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Further examples: Higgs+Dilaton+Gravity

One can as well study the SI theory of two scalar fields coupled to gravity in a
non-minimal way.

The Planck scale appears as a result of a spontaneous breaking of the SI by one
of the fields.

By studying singular instantons similar to those appeared before, one can
evaluate their contribution to the vev of the second field.

In choosing a particular model for investigation, one demands it to be convertible
into a phenomenologically viable theory upon identifying one of its scalar fields
with the Higgs field dof and supplementing it with the rest of the SM content.
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Discussion

The mechanism allows to generate an exponentially small ratio of scales without
a fine-tuning among the parameters of the theory, but it does not explain a
particular value of this ratio.

The mechanism works in a broad class of scalar-tensor theories.

It seems that in many cases the properties of the theory at low energies are
irrelevant for the mechanism, since it operates essentially in the Planck region.
But it is possible to construct a counterexample.

Approximate asymptotic Weyl invariance is needed for the successful
implementation of the mechanism.

25 / 39



Motivation Setup Warm-up: Dilaton+Gravity One example: Higgs+Gravity Further Examples: Higgs+Dilaton+Gravity Discussion and Outlook Backups

Outlook

Meaning of W ?

Self-consistency

Fluctuations above the instanton

Correlation functions in the scalar sector via many-instanton configurations

26 / 39



Motivation Setup Warm-up: Dilaton+Gravity One example: Higgs+Gravity Further Examples: Higgs+Dilaton+Gravity Discussion and Outlook Backups

Thank you!
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Model setup

We are looking for the model which

is convertible into a phenomenologically viable theory upon identifying one of its
scalar fields with the Higgs field dof and supplementing it with the rest of the SM
content,

enjoys global SI,

allows for desirable instantons studied earlier.

This motivates us to introduce the following

Lagrangian

L
√
g

= −
1

2
G(~ϕ)R +

1

2
γ

(2)
ij (~ϕ)gµν∂µϕ

i∂νϕ
j

+
∞∑
n=2

γ
(2n)
i1,...,i2n

(~ϕ)gµν∂µϕ
i1∂νϕ

i2 ...gρσ∂ρϕ
i2n−1∂σϕ

i2n + V (~ϕ) ,

where ~ϕ = (ϕ1, ϕ2)T .

The classical ground state ~ϕvac. = (ϕ0, 0)T .
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Model setup

The functions introduced in the Lagrangian are taken as follows,

G = ξ1ϕ
2
1 + ξ2ϕ

2
2 ,

γ
(2)
ij = δij + κGFJ−4(1 + 6ξi )(1 + 6ξj )ϕiϕj ,

γ
(4)
ijkl = δJ−8(1 + 6ξi )(1 + 6ξj )(1 + 6ξk )(1 + 6ξl )ϕiϕjϕkϕl ,

γ
(2n)
i1...i2n

= 0 , n > 2 .

Here

J 2 = (1 + 6ξ1)ϕ2
1 + (1 + 6ξ2)ϕ2

2 ,

F =
(1 + 6ξ1)ϕ2

2

(1 + 6ξ2)ϕ2
1 + (1 + 6ξ1)ϕ2

2

,

and we take ξ2 > ξ1 > 0, δ > 0. The potential for the scalar fields is chosen as

V =
λ

4
ϕ4

2 .

On the classical ground state G(~ϕvac.) = ξ1ϕ
2
0 ≡ M2

P .

29 / 39



Motivation Setup Warm-up: Dilaton+Gravity One example: Higgs+Gravity Further Examples: Higgs+Dilaton+Gravity Discussion and Outlook Backups

Polar field variables (κ = 0)

The change of variables ρ =
MP

2
log
J 2

M2
P

, θ = arctan

(√
1 + 6ξ1

1 + 6ξ2

ϕ2

ϕ1

)
results in

Lagrangian in terms of the fields ρ and θ

L̃
√
g̃

= −
1

2
M2

P R̃ +
1

2a(θ)
(∂̃ρ)2 +

b(θ)

2
(∂̃θ)2 + δ

(∂̃ρ)4

M4
P

+ Ṽ (θ)

where a(θ) = a0(sin2 θ + ζ cos2 θ) , b(θ) =
M2

Pζ

ξ1

tan2 θ + ξ1/ξ2

cos2 θ(tan2 θ + ζ)2
,

Ṽ (θ) =
λM4

P

4ξ2
2

1

(1 + ζ cot2 θ)2
, ζ =

(1 + 6ξ2)ξ1

(1 + 6ξ1)ξ2
, a0 =

1

6 + 1/ξ2
.

The inverse formulas

ϕ1 =
MP cos θ
√

1 + 6ξ1
eρ/MP , ϕ2 =

MP sin θ
√

1 + 6ξ2
eρ/MP .
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Singular instanton with δ = κ = 0

The vacuum solution reads as follows,

Classical ground state

ρvac. =
MP

2
log

1 + 6ξ1

ξ1
, θvac. = 0.

Now we look for the saddle points of the functional W = S −
∫
d4xδ(4)(x)ρ(x)/MP .

Then, the equation for the radial field is
ρ′r3

f
= −

a(θ)

MP
.

Large-distance asymptotics

ρ− ρvac. ∼ r−2 , θ ∼ r−2 , r →∞.

Short-distance asymptotics

ρ ∼ −γMP log MP r , R̃ ∼ r−6 ,
π

2
− θ ∼ rη r → 0,

where γ =
√

6a0, η =
√

6a0(1− ξ1/ξ2), a0 = a(π/2). We will call the configuration
obeying these boundary conditions the “singular instanton”.
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Singular instanton with δ = κ = 0

Figure: The singular instanton in the model with two scalar fields (the solid blue line). The
parameters of the model are ξ1 = 1, ξ2 = 1.1 and λ = 0. Dashed lines are examples of
configurations with no definite limit of θ at r → 0.

The asymptotics in terms of the original fields are ϕ1 ∼ r−γ+η , ϕ2 ∼ r−γ . For κ = 0,
we have η < γ.

It is important to note that the divergence of ϕ1, ϕ2 originates fully from the
divergence of the radial field ρ.
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Regularization of the instanton with δ 6= 0, κ = 0

Let us switch on the quartic derivative operator. Then, the equation for the radial

field becomes
4δ

M4
P

ρ′3r3

f 3
+

ρ′r3

a(θ)f
= −

1

MP
.

We assume that the size r̄ of the region where the quartic derivative term dominates is
smaller than the characteristic length at which a(θ) varies. In this case,

r̄ ∼ M−1
P δ1/6a

1/2
0 .

Inside this region,

Modified short-distance asymptotics

ρ′ ∼ −M2
Pδ
−1/6 , f ∼ MP rδ

1/6 , R̃ ∼ r−2.

Hence, the radial field is not divergent any more. Its magnitude at the center of the
instanton is

ρ(0)/MP ∼ a
1/2
0 (log δ − 3 log a0 +O(1)) .
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Regularization of the instanton with δ 6= 0, κ = 0

Figure: Regularization of the singular instanton by the higher-dimensional operator. The
parameters of the model are ξ1 = 1, ξ2 = 1.1 and λ = 0.

Note that the small values of δ are required in order to ensure the separation of the
region where a(θ) varies from the region where the regularization acts. This does not
bring in the model any new interaction scales below the Planck scale.
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Source enhancement with κ 6= 0

As before, we try to adjust the parameters of the model so that to permit the large
source values. This is achieved if we switch on κ. The Lagrangian in the polar field
variables remains the same but with a(θ) replaced by ã(θ) where

1

ã(θ)
=

1

a(θ)
+ κ sin2 θ .

Positive-defineteness requires κ > κcrit. = −
1

a0
.

Figure: Left: the function ã(θ). The critical value, κ = κcrit., corresponds to η = γ. The value
below the critical, κ < κcrit., is chosen so that ã(θ0) ≡ ã0 = 100. This value lies close to the
positivity bound. Right: the corresponding instanton solutions. At κ = 0, the instanton studied
before is reproduced. The parameters of the model are ξ1 = 1, ξ2 = 1.1 and λ = 0.
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New scale via the instanton

In the SPA 〈ϕ2〉 ∼ MPe
−W̄ . Contributions to W̄ come from the source term and the

instanton action S̄ :

W̄ = −
ρ(0)

MP
+

∫ ∞
0

dr(L̄δ − L̄V ) ,

where

L̄δ = 2π2r3f

(
ρ′

MP f

)4

, L̄V = 2π2r3f Ṽ (θ) .

One obtains that
The potential term, LV , contributes negligibly (cf. the Higgs-gravity model).
The total contribution from the short-distance part of the instanton can be of
either sign. For example, if we take κ = 0, then W̄ is positive for δ & 10−10.
However, in this case it is impossible to achieve W̄ � 1 (see figure).

Figure: The singular term ρ(0)/MP and the instanton action. Here κ = 0 and ξ1 = 1, ξ2 = 1.1.
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New scale via the instanton

The desired suppression rate is obtained if one takes large ã0 (corresponding to
the values of κ close to the positivity bound). In this case

W̄ ∼
√

ã0 . (1)

Figure: The suppression rate W̄ as a function of δ and ã0.
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Higgs-Dilaton theory

Higgs-Dilaton Lagrangian

Lχ,φ√
g

= −
1

2
(ξχχ2 + 2ξhφ

†φ)R +
1

2
(∂χ)2 +

1

2
(∂φ)2 + V (χ, φ†φ)

The Potential

V (χ, φ†φ) = λ
(
φ†φ−

α

2λ
χ2
)2

+ βχ4

The classical ground state: h2
0 =

α

λ
χ2

0 +
ξh

λ
R , R =

4βλχ2
0

λξχ + αξh
.

The Planck mass M2
P ≡ ξχχ

2
0 + ξhh

2
0.

The space of parameters of the theory is subject to phenomenological constraints.
Non-minimal couplings: ξχ � 1� ξh (from inflation)
Couplings in the potential:

m2
H ∼

αM2
P

ξχ
⇒ α ∼ 10−34ξχ

Λ ∼
βM4

P

ξ2
χ

⇒ β ∼ 10−56α2

(M. Shaposhnikov, D. Zenhausern’08; J. Garcia-Bellido, J. Rubio, M. Shaposhnikov, D.
Zenhausern’11) 38 / 39
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Higgs vev generation in the Higgs-Dilaton theory

If one puts α = 0 in the Higgs-Dilaton potential, then mH = 0 classically, and the
radiative corrections to the Higgs mass do not shift it towards the observed value.

In order for the mechanism to work, one must modify the theory in the limit of large
magnitudes and momenta of the Higgs field. This is done by introducing the
higher-dimensional operators of the form considered above. They do not spoil
phenomenological consequences of the theory.

Figure: The set of parameters (ã0, δ), for which W̄ = log(MP/v). Here we choose ξχ = 5 · 10−3,

ξh = 5 · 103 and λ coinciding with the SM running Higgs self-coupling at NNLO with the central
values of the top quark and Higgs masses.
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