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Light Scalars as Four-quark states
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Introduction

Emerged 58 years ago from the linear sigma model (LSM)
(M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960)), the
problem of the light scalar mesons became central in the
nonperturbative QCD for LSM could be its low energy realization.

The scalar channels in the region up to 1 GeV is a stumbling block
of QCD. The point is that not only perturbation theory fails here, but
sum rules as well in view of the fact that isolated resonances are
absent in this region.
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QCD, Chiral Limit, Confinement, σ-models

L = −(1/2)Tr (Gµν(x)G
µν(x)) + q̄(x)(iD̂ −M)q(x).

Mmixes Left and Right Spaces qL(x) and qR(x). But in chiral
limitM → 0 these spaces separate realizingUL(3) × UR(3)
symmetry accurate within violation through gluonic anomaly.

As Experiment suggests, Confinement forms colourless observable
hadronic fields and spontaneous breaking of chiral symmetry with
massless pseudoscalar fields.

There are two possible scenarios for QCD at low energy.

1. UL(3) × UR(3) non-linear σ-model.

2. UL(3) × UR(3) linear σ-model.
The experimental nonet of the light scalar mesons suggests
UL(3) × UR(3) linear σ-model.
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History of Light Scalar Mesons

Hunting the light σ and κ mesons had begun in the sixties already.
But long-standing unsuccessful attempts to prove their existence
in a conclusive way entailed general disappointment and a
preliminary information on these states disappeared from Particle
Data Group (PDG) Reviews. One of principal reasons against the σ
and κ mesons was the fact that both ππ and πK scattering phase
shifts do not pass over 900 at putative resonance masses. a

aMeanwhile, there were discovered the narrow light scalar resonances, the

isovector a0(980) and isoscalar f0(980).
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SUL(2) × SUR(2) linear σ model

Situation changes when we showed that in the linear σ-model

L =
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(
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there is a negative background phase which hides the σ meson
(N.N. Achasov and G.N. Shestakov, Phys. Rev. D 49, 5779 (1994)). It
has been made clear that shielding wide lightest scalar mesons in
chiral dynamics is very natural. This idea was picked up and
triggered new wave of theoretical and experimental searches for the
σ and κ mesons.
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Our approximation
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Chiral Shielding in ππ → ππ
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Chiral shielding in γγ → π+π−

N.N. Achasov and G.N. Shestakov, Phys. Rev. Lett. 99, 072001 (2007)

TS(γγ → π+π−) = TBornS (γγ → π+π−)
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Chiral shielding in γγ → π0π0
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Chiral Shielding in γγ → ππ
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includes the higher waves from TBorn(γγ → π+π−).
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Troubles and Expectancies

In theory the principal problem is impossibility to use the linear
σ-model in the tree level approximation inserting widths into σ
meson propagators because such an approach breaks the both
unitarity and Adler self-consistency conditions. The comparison
with the experiment requires the non-perturbative calculation of the
process amplitudes. Nevertheless, now there are the possibilities
to estimate odds of theUL(3) × UR(3) linear σ-model to
underlie physics of light scalar mesons in phenomenology, taking
into account the idea of chiral shielding, our treatment of
σ(600)-f0(980) mixing based on quantum field theory ideas, and
Adler’s conditions
( N.N. Achasov and A.V. Kiselev, Phys. Rev. D 83, 054008 (2011);
Phys. Rev. D 85, 094016 (2012) ) .
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Phenomenological Treatment, δ00 = δππB + δres
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Four-quark Model

The nontrivial nature of the well-established light scalar resonances
f0(980) and a0(980) is no longer denied practically anybody. As
for the nonet as a whole, even a cursory look at PDG Review gives
an idea of the four-quark structure of the light scalar meson nonet,
σ(600), κ(800), f0(980), and a0(980), inverted in comparison
with the classical P -wave qq̄ tensor meson nonet, f2(1270),
a2(1320),K∗

2(1420), φ′
2(1525). Really, while the scalar nonet

cannot be treated as the P -wave qq̄ nonet in the naive quark
model, it can be easy understood as the q2q̄2 nonet, where σ has
no strange quarks, κ has the s quark, f0 and a0 have the ss̄-pair.

Similar states were predicted by Jaffe in 1977 in the MIT bag
(R.L. Jaffe, Phys. Rev. D 15, 267, 281 (1977)).
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Four-quark Model
i) Normal 2++ and inverted 0++ mass spectra
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The mass spectrum of the light scalars
σ (600), κ (800), a0 (980), f0 (980)

gives an idea of their q2q̄2 structure.
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Radiative Decays of φ-Meson
Ten years later we showed that φ → γa0 → γπη and
φ → γf0 → γππ can shed light on the problem of a0(980) and
f0(980) mesons
(N.N. Achasov and V.N. Ivanchenko, Nucl. Phys. B 315, 465 (1989)).

The first measurements (1998, 2000) were reported by SND and
CMD-2. After (2002) they were studied by KLOE in agreement with
the Novosibirsk data but with a considerably smaller error.
Note that a0(980) is produced in the radiative φ meson decay as
intensively as η′(958) containing ≈ 66% of ss̄, responsible for
φ ≈ ss̄ → γss̄ → γη′(958). It is a clear qualitative argument
for the presence of the ss̄ pair in the isovector a0(980) state, i.e.,
for its four-quark nature.
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K+K−-Loop Model
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When basing the experimental investigations, we suggested
one-loop model φ → K+K− → γa0/f0
(N.N. Achasov and V.N. Ivanchenko, Nucl. Phys. B 315, 465 (1989);
N.N. Achasov and V.V. Gubin, Phys. Rev. D 56, 4084 (1997)).

This model is used in the data treatment and is ratified by experiment.

Gauge invariance gives the conclusive arguments in favor of the
K+K− - loop transition as the principal mechanism of a0(980)
and f0(980) meson production in the φ radiative decays.
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φ → γπ0η , KLOE
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φ → γπ0π0 , KLOE
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Spectra and Gauge Invariance

To describe the experimental spectra |gR(m)|2ω(m) should be
smooth atm ≤ 0.99 GeV (the photon energy ω(m) ≥ 29 MeV ).
But gauge invariance requires g(m) ∼ ω(m).

So stopping the impetuous increase of the ω(m)3 function at
ω(990 MeV) = 29 MeV is the crucial point in understanding the
mechanism of the production of a0(980) and f0(980) resonances
in the φ radiative decays.
TheK+K−-loop model φ → K+K− → γR solves this
problem in the elegant way with the help of the nontrivial threshold
phenomenon.
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Threshold Phenomenon
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K+K−-Loop Mechanism is established

In truth this means that a0(980) and f0(980) are seen in the

radiative decays of φ meson owing toK+K− intermediate state.

So, the mechanism of production of a0(980) and f0(980) mesons
in the φ radiative decays is established at a physical level of proof.

WE ARE DEALING WITH THE FOUR-QUARK TRANSITION.

A radiative four-quark transition between two qq̄ states requires
creation and annihilation of an additional qq̄ pair, i.e., such a
transition is forbidden according to the OZI rule, while a radiative
four-quark transition between qq̄ and q2q̄2 states requires only
creation of an additional qq̄ pair, i.e., such a transition is allowed
according to the OZI rule.
The largeNC expansion supports this conclusion
(N.N. Achasov, Nucl. Phys. A 728, 425 (2003)).
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About theKK̄ molecular model

We (N.N. Achasov, V.V. Gubin, and V.I. Shevchenko, Phys. Rev. D
56, 203 ( 1997); N.N. Achasov and A.V. Kiselev, Phys. Rev. D 76,
077501 (2007) and Phys. Rev. D 78, 058502 (2008)) showed that the
description of the φ → K+K− → γa0(980)/f0(980) decays

requires the virtual momenta of theK(K̄) more than 2 GeV. While
in the case of the loose molecules with the bounding energy about
20 MeV, they would have to be equal about 100 MeV.

Besides, it should be noted that the production of scalar mesons in
the pion-nucleon collisions with large momentum transfers also
points to their compactness ( N.N. Achasov and G.N. Shestakov,
Phys. Rev. D 58, 054011 (1998)).
So, there are no physical signals that confirm the molecule model !
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a0(980)/f0(980) → γγ & q2q̄2-Model

Thirty six years ago we predicted the suppression of
a0(980) → γγ and f0(980) → γγ in the q2q̄2 MIT model,
Γ(a0(980) → γγ) ∼ Γ(f0(980) → γγ) ∼ 0.27 keV
( N.N. Achasov, S.A. Devyanin, and G.N. Shestakov,
Phys. Lett. 108B, 34 (1982); Z. Phys. C 16, 55 (1982)).

Experiment supported this prediction

Γ(f0(980) → γγ) ≈ 0.31 keV and Γ(a0(980) → γγ) ≈ 0.3 keV
C. Patrignani et al.(Particle Data Group),
Chin. Phys. C 40, 100001 (2016) and 2017 update.

When in the qq̄ model it was anticipated

Γ(a0 → γγ) ≈ (1.5 − 5.9)Γ(a2 → γγ) ≈ (1.5 − 5.9) · 1 keV.

Γ(f0 → γγ) ≈ (1.7 − 5.5)Γ(f2 → γγ) ≈ (1.7 − 5.5) · 2.8 keV.
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Scalar Nature and Production Mechanisms in γγ collisions

Recently the experimental investigations have made great
qualitative advance. The Belle Collaboration published data on
γγ → π+π− (2007), γγ → π0π0 (2008), and γγ → π0η
(2009), whose statistics are huge. They not only proved the
theoretical expectations based on the four-quark nature of the light
scalar mesons, but also have allowed to elucidate the principal
mechanisms of these processes.
(N.N. Achasov and G.N. Shestakov, Phys. Rev. D 77, 074020 (2008);
Phys. Rev. D 81, 094029 (2010); Usp. Fiz. Nauk 181, 827 (2011)).
Specifically, the direct coupling constants of the σ(600), f0(980),
and a0(980)resonances with the γγ system are small with the
result that their decays in the two photon are the four-quark
transitions caused by the rescatterings σ→π+π−→γγ,
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Scalar Nature and Production Mechanisms in γγ collisions

f0(980)→K+K−→γγ, and a0(980)→K+K−→γγ in
contrast to the two-photon decays of the classic P wave tensor qq̄
mesons a2(1320), f2(1270) and f ′

2(1525), which are caused by
the direct two-quark transitions qq̄→γγ in the main.
As a result the practically model-independent prediction of the qq̄
model g2f2γγ : g2a2γγ

= 25 : 9 agrees with experiment rather well.

The two-photon light scalar widths averaged over resonance mass
distributions 〈Γf0→γγ〉ππ≈0.19 keV, 〈Γa0→γγ〉πη≈0.3 keV and

〈Γσ→γγ〉ππ≈0.45 keV.

As to the ideal qq̄ model prediction g2f0γγ : g2a0γγ
= 25 : 9, it is

excluded by experiment.
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Dynamics of γγ → π+π−
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The π± andK± Born contributions
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Dynamics of γγ → π0π0
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The Belle data on γγ → π+π−
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The Belle data on γγ → π0π0
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Dynamics of γγ → π0η
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The V Born contributions
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The Belle data on γγ → π0η
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TheD+
s → (σ/f0) e

+ν andD+
s → (η/η′) e+ν decays

The semi-leptonic decays are of prime interest because they have
the clear mechanisms ( N.N. Achasov and A.V. Kiselev, Phys. Rev. D
86, 114010 (2012); Int. J. Mod. Phys. A 35, 1460447 (2014) ).
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16:00, May 31, QUARKS-2018, INR RAN and JINR, Valday – p. 36/58



TheD+
s → (σ/f0) e

+ν andD+
s → (η/η′) e+ν decays

We study the mechanism of production of the light scalar mesons
in theD+

s → π+π− e+ν decays:

D+
s → ss̄ e+ν → [σ(600) + f0(980)] e

+ν → π+π− e+ν,
and compare it with the mechanism of production of the light
pseudoscalar mesons in theD+

s → (η/η′) e+ν decays:

D+
s → ss̄ e+ν → (η/η′) e+ν, in the chirally symmetric model

of the Nambu-Jona-Lasinio type.

We find the direct evidence of decoupling of σ(600) with the ss̄
pair. As far as we know, this is truly a new result, which agrees well
with the decoupling of σ(600) with theKK̄ states, that we
obtained in N.N. Achasov and A.V. Kiselev, PRD 85, 094016 (2012)

g2σK+K−
/g2σπ+π−

. 0.04 .
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TheD+
s → (σ/f0) e

+ν andD+
s → (η/η′) e+ν decays

The decoupling of σ(600) with theKK̄ states means also the

decoupling of σ(600) with σq = (uū+ dd̄)/
√
2 because σq

results in g2σK+K−
/g2σπ+π−

= 1/4.

So,the CLEO experiment gives new support in favour of the
four-quark, udūd̄, structure of the σ(600) meson.

Besides, we find that the f0s = ss̄ and f0q = (uū+ dd̄)/
√
2

parts in the f0(980) wave function is suppressed also.

So, the CLEO experiment gives new support in favour of the

four-quark, (sds̄d̄ + sds̄d̄)/
√
2, structure of the f0(980) meson,

too.
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Outlook
Certainly, there is an extreme need in experiment on the
D+
s → ss̄ e+ν → π+π− e+ν decay with high statistics.

Of great interest is the experimental search for the decays

D0 → dū e+ν → a−0 (980) e+ν → π−η e+ν and

D+ → dd̄ e+ν → a00(980) e
+ν → π0η e+ν (or the charge

conjugate ones), which will give the information about the

a−q = dū (or a+q = ud̄ ) component in the a−0 (980)

(or a+0 (980)) wave function and a0q = (uū− dd̄)/
√
2

component in the a00 wave function.

Now it is known that
BR(D0 → dū e+ν → π− e+ν) = (2.89 ± 0.08) × 10−3

and
BR(D+ → dd̄ e+ν → π0 e+ν) = (4.05 ± 0.18) × 10−3.
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Outlook

No less interesting is also search for the decays
D+ → dd̄ e+ν → [σ(600) + f0(980)] e

+ν → π+π− e+ν
(or the charge conjugate ones), which will give the information

about the σq = (uū+ dd̄)/
√
2 and f0q = (uū+ dd̄)/

√
2

components in the σ(600) and f0(980) wave functions
respectively.

Now it is known that
BR(D+ → dd̄ e+ν → η e+ν) = (1.14 ± 0.10) × 10−3,

BR(D+ → dd̄ e+ν → η′ e+ν) = (2.2 ± 0.5) × 10−4.
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Outlook

Comparative research of light scalar and pseudoscalar mesons in
semileptonic decays of B quarkonia at super B-factories is very
tempting. Now it is known that

BR(B0 → dū e+ν → π− e+ν) = (1.44 ± 0.05) × 10−4,

BR(B+ → uū e+ν → π0 e+ν) = (7.79 ± 0.26) × 10−5,

BR(B+ → uū e+ν → η e+ν) = (3.8 ± 0.6) × 10−5,

BR(B+ → uū e+ν → η′ e+ν) = (2.3 ± 0.8) × 10−5.
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NEW

We just have analyzed the new experiment from BESIII,
”Observation of Semileptonic Decay

D0 → a−0 (980) e+νe → π−η e+νe and Evidence for

D+ → a00(980) e
+νe → π0η e+νe”,

M. Ablikim et. al., arXiv: 1803.02166v1 [hep-ex].

The BESIII experiment is the first step in experimental study of
these decays. We present a possible variant of the ηπ invariant
mass distribution when
a0 has no constituent qq̄ pair at all,
N.N. Achasov and A.V. Kiselev, arXiv: 1805......v1 [hep-ph].

The higher statistics could check this prediction.
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NEW
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NEW
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Isotensor Tensor E(1500 − 1600) state

Thirty six years ago we predicted the striking interference picture
in the γγ → ρ0ρ0 and γγ → ρ+ρ− reactions in the q2q̄2 MIT
model,
N.N. Achasov, S.A. Devyanin, and G.N. Shestakov,
Phys. Lett. 108B, 34 (1982); Z. Phys. C 16, 55 (1982).
We explained the stong boost near the threshold in the
γγ → ρ0ρ0 reaction by the production of the isotensor tensor and
isoscalar tensor resonances, then the destructive interference of
their contributions follows from isotopic symmetry!

Experiment backed up this prediction, JADE 1983, ARGUS 1991,
see,
N.N. Achasov and G.N. Shestakov, Z. Phys. C 27, 99 (1985); Sov.
Phys. Usp. 34 (6), 471 (1991).
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γγ → ρ0ρ0 and γγ → ρ+ρ−

(a) (b)

a) TASSO 1982, JADE 1983, CELLO 1984 b) ARGUS 1991
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γγ → ρ0ρ0 and γγ → ρ+ρ−

We believe that the Belle data will support the above picture, but
the urgent task is the search for the charged components of the
isotensor state:

E± in the mass spectra of the ρ±ρ0 states in the reactions
γN → ρ±ρ0N(∆) in JEFLAB,
N.N. Achasov and G.N. Shestakov, Phys. Rev. D 60, 114021 (1999),

E±± in the mass spectra of the ρ±ρ± states in the reactions
πN → πρ±ρ±N(∆) andNN → N(∆)ρ±ρ±N(∆) in
Protvino in IHEP,
N.N. Achasov and G.N. Shestakov, Sov. Phys. Usp. 34 (6), 471
(1991); International Journ al of Modern Physics A, Vol. 7, No. 18
(1992) 4313-4333.
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X(3872) State as Charmonium χc1(2P )

The two dramatic discoveries have generated a stream of the
D∗0D̄0 +D0D̄∗0 molecular interpretations of theX(3872)
resonance.

The mass of theX(3872) resonance is 50 MeV lower than
predictions of the most lucky naive potential models for the mass
of the χc1(2P ) resonance,

mX −mχc1(2P ) = −∆ ≈ −50 MeV,

and the relation between the branching ratios

BR(X → π+π−π0J/ψ(1S)) ∼ BR(X → π+π−J/ψ(1S)) ,

that is interpreted as a strong violation of isotopic symmetry.
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X(3872) State as Charmonium χc1(2P )

But, the bounding energy is small, εB . 1 MeV. That is, the radius
of the molecule is large,
rX(3872) & 5 fermi= 5 · 10−13 cm. As for the charmonium, its
radius is less one fermi,
rχc1(2P ) . fermi = 10−13 cm.
That is, the molecule volume is 125 ÷ 1000 times as large as the
charmonium volume, VX(3872)/Vχc1(2P ) & 125 ÷ 1000.

This means a probability of production of a giant molecule in hard
processes, at small distances, is suppressed in comparison with a
probability of production of heavy a charmomium by a factor
∼ Vχc1(2P )/VX(3872).
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X(3872) State as Charmonium χc1(2P )

But, in reality

0.74 <
σ(pp → X(3872) + anything)

σ(pp → ψ(2S) + anything)
< 2.1.

with rapidity in the range 2,5 - 4,5 and transverse momentum in the
range 5-20 GeV.

In addition,

0.2 <
BR(B0 → X(3872)K+π−)

BR(B0 → ψ(2S)K+π−)
< 0.6.

The extended molecule is produced in hard processes as
intensively as the compact charmonium. It’s miracle!
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X(3872) State as Charmonium χc1(2P )

We explain the shift of the mass of theX(3872) resonance with
respect to the prediction of a potential model for the mass of the
χc1(2P ) charmonium by the contribution of the virtual

D∗D̄ + c.c. intermediate states into the self energy of the
X(3872) resonance.

This allows us to estimate the coupling constant of theX(7872)

resonance with theD∗0D̄0 channel, the branching ratio of the
X(3872) → D∗0D̄0 + c.c. decay, and the branching ratio of the

X(3872) decay into all non-D∗0D̄0 + c.c. states.
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X(3872) State as Charmonium χc1(2P )

We predict that the hadron channels of the decays of χc1(2P ) via
two gluon (X(3872) → gluon gluon→ hadrons)
should be the same as in the χc1(1P ) case, that is, there should
be a few tens of such channels.

As for the ρJ/ψ state, it is produced both via the one photon,
X → cc̄ → γ∗ cc̄ → ρJ/ψ , and via the three gluons (via the
contribution ∼ mu −md ),X → cc̄ → ggg cc̄ → ρJ/ψ.
Close to our scenario is an example of the J/ψ → ρη′ and
J/ψ → ωη′ decays.

BR(J/ψ → ρη′) = (1.05 ± 0.18) · 10−4 and

BR(J/ψ → ωη′) = (1.82 ± 0.21) · 10−4.

Note that in theX(3872) case the ω meson is produced on its tail,
while the ρmeson is produced on a half. mX −mJ/ψ = 775 MeV
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X(3872) State as Charmonium χc1(2P )

We predict:
1. If the one-photon mechanism dominates in the
X(3872) → ρJ/ψ decay then one should expect

BR(χb1(2P ) → ρΥ(1S)) ∼ (eb/ec)
2 · 1.6%

= (1/4) · 1.6% ≈ 0.4% !!!
Where ec and eb are the charges of the c and b quarks,

respectively.

2. If the three-gluon mechanism via the contribution ∼ mu −md

dominates in theX(3872) → ρJ/ψ decay then one should
expectBR(χb1(2P ) → ρΥ(1S)) ∼ 1.6% !!!
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The direct indication that X(3872) ≡ χc1(2P )

The LHCb Collaboration published a landmark result
R. Aaij et al. (LHCb Collaboration), Nucl. Phys. B 886, 665 (2014).

BR(X → γψ(2S))

BR(X → γJ/ψ)
= CX

(

ωψ(2S)

ωJ/ψ

)3

= 2.46 ± 0.7

On the other hand

BR(χb1(2P ) → γΥ(2S))

BR(χb1(2P ) → γΥ(1S))
= Cχb1(2P )

(

ωΥ(2S)

ωΥ(1S)

)3

= 2.16±0.28

CX = Cχc1(2P ) = 136.78 ± 38.89

Cχb1(2P ) = 80 ± 10.37

Note that all versions of the potential model predict
Cχc1(2P ) � 1 andCχb1(2P ) � 1.
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X(3872) State as Charmonium χc1(2P )

Once more, we discuss the scenario where the χc1(2P )

charmonium sits on theD∗0D̄0 threshold but not a mixing of the
giantD∗D̄ molecule and the compact χc1(2P ) charmonium. The

point is such a mixing ∼
√

Vχc1(2P )/VX(3872) and a branching

ratio of a decay via such a mixing ∼ Vχc1(2P )/VX(3872)

N.N. Achasov and E.V. Rogozina, JETP Lettrs. 2014. V. 100. P. 227;
Mod. Phys. Lett. A. 2015. V. 30. P. 1550181; Journal of University of
Science and Technology of China, 2016,Vol. 46, No 7, PP. 574-579.
Nikolay Achasov, EPJ Web of Conference 125 (2016) 04002- 1-9.
N.N. Achasov, Physics of Particles and Nuclei, 2017, Vol. 48, No. 6,
pp.839-840.
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Two-gluon Annihilation of Charmonium χc2(2P )

We (N.N. Achasov and Kang Xian-Wei, Chinese Physics C, Vol. 41,
No. 12 (2017)123102 ) expect that

BR(χc2(2P ) → gluon gluon) & 2%

if the Particle Data Group as well as the BaBar and Belle
collaborations have correctly identified the state.

In reality, this branching ratio corresponds to the one for χc2(2P )
decaying into light hadrons. The hadron channels of the two-gluon
decays of χc2(2P ) should be the same as in the χc2(1P ) case,
that is, there should be a few tens of such channels.

16:00, May 31, QUARKS-2018, INR RAN and JINR, Valday – p. 56/58



Two-gluon Annihilation of Charmonium χc2(2P )

The ratio of the two-photon and two-gluon widths of the
charmonium decays does not depend on the wave function in the
nonrelativistic potential model of charmonium. It allows to find the
low limit ofBR(χc2(2P ) → gluon gluon). The comparison
with the well-known data about χc2(1P ) allows us to conclude that

BR(χc2(2P ) → 2g) ≈ (6.5 ± 2.0)%

is very likely.

The confirmation of the χc2(2P ) state can be tested by BESIII, for

example, through the process e+e− → ψ(4040) → γχc2(2P ).
The search for two-gluon decays of the χc2(2P ) state is feasible
for BESIII as well as other super factories such as BaBar and Belle.
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