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From LO to NLO in the parton Reggeization approach.

Motivation

Parton Reggeization Approach (PRA) is a hybrid scheme of
kT -factorization which combines gauge-invariant matrix elements with
off-shell (Reggeized) partons in the initial state with the unintegrated PDFs
resumming doubly-logarithmic corrections ∼ log2(q2

T /Q
2)

(Kimber-Maritn-Ryskin unPDFs).
The aim of PRA is to improve the description of multi-scale
correlational observables at the energies accessible at the LHC in
comparison with the fixed-order NLO/NNLO calculations.
The wider task is to understand the role of transverse momentum in
Parton Showers (PS) and put the Recoiling Scheme ambiguity of PS
under theoretical control.
To provide predictions with controllable accuracy and understand our
formalism better we should go to NLO.
The LO/NLO calculation in PRA should describe single-scale
observables with the same accuracy as LO/NLO calculation in CPM.
⇒ We will use single-scale observables (DIS structure functions) to fix
the scheme of calculations at NLO in PRA.
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From LO to NLO in the parton Reggeization approach.

LO framework
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From LO to NLO in the parton Reggeization approach.

Derivation of the LO factorization formula

See [A. V. Karpishkov, M. A. Nefedov, V. A. Saleev, Phys.Rev. D96
096019 (2017)] for details.

Inclusive process (µ2 – hard scale of Y):

p(P1) + p(P2)→ Y(PA) +X,

auxiliary hard (2→ 3) subprocess:

g(p1) + g(p2)→ g(k1) + Y(PA) + g(k2),

Sudakov (Light-cone) decomposition:
nµ− = Pµ1 /

√
S, nµ+ = Pµ2 /

√
S:

kµ =
1

2

(
k+nµ− + k−nµ+

)
+ kµT ,

where k± = (n±k) = k0 ± k3, n±kT = 0 and

kq =
1

2
(k+q− + k−q+)− kTqT .
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From LO to NLO in the parton Reggeization approach.

Derivation of the LO factorization formula

See [A. V. Karpishkov, M. A. Nefedov, V. A. Saleev, Phys.Rev. D96
096019 (2017)] for details.

Auxiliary hard CPM subprocess:

g(p1) + g(p2)→ g(k1) + Y(PA) + g(k2),

where p2
1 = 0, p−1 = 0, p2

2 = 0, p+
2 = 0.

Kinematic variables (0 < z1,2 < 1):

z1 =
p+

1 − k+
1

p+
1

, z2 =
p−2 − k−2
p−2

,

Two limits where |M|2 factorizes:

1 Collinear limit: k2
T1,2 � µ2, z1,2 –

arbitrary,
2 Multi-Regge limit: z1,2 � 1, k2

T1,2 –
arbitrary.
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From LO to NLO in the parton Reggeization approach.

Derivation of the LO factorization formula

See [A. V. Karpishkov, M. A. Nefedov, V. A. Saleev, Phys.Rev. D96
096019 (2017)] for details.

Auxiliary hard CPM subprocess:

g(p1) + g(p2)→ g(k1) + Y(PA) + g(k2),

1 Collinear limit: k2
T1,2 � µ2, z1,2 –

arbitrary:

|M|2CL '
4g4
s

k2
T1k

2
T2

Pgg(z1)Pgg(z2)
|ACPM |2
z1z2

,

where |ACPM |2 – amplitude g + g → Y
with on-shell initial-state partons,
Pgg(z) – DGLAP g → g splitting
function.
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From LO to NLO in the parton Reggeization approach.

Derivation of the LO factorization formula

See [A. V. Karpishkov, M. A. Nefedov, V. A. Saleev, Phys.Rev. D96
096019 (2017)] for details.

Auxiliary hard CPM subprocess:

g(p1) + g(p2)→ g(k1) + Y(PA) + g(k2),

2 Multi-Regge limit: z1,2 � 1
(⇔ ∆y1,2 � 1), k2

T1,2 – arbitrary:

|M|2MRK '
4g4
s

k2
T1k

2
T2

P̃gg(z1)P̃gg(z2)
|APRA|2
z1z2

,

where P̃gg(z) = 2CA/z and |APRA|2 is
the gauge-invariant amplitude
R+(q1) +R−(q2)→ Y with Reggeized
(off-shell) partons in the initial state.
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From LO to NLO in the parton Reggeization approach.

Derivation of the LO factorization formula

See [A. V. Karpishkov, M. A. Nefedov, V. A. Saleev, Phys.Rev. D96
096019 (2017)] for details.

Auxiliary hard CPM subprocess:

g(p1) + g(p2)→ g(k1) + Y(PA) + g(k2),

Modified MRK approximation: z1,2 and
k2
T1,2 – arbitrary:

|M|2mMRK '
4g4
s

q2
1q

2
2

Pgg(z1)Pgg(z2)
|APRA|2
z1z2

,

where q2
1,2 = q2

T1,2/(1− z1,2), has correct
collinear and Multi-Regge limits!

Conjecture: mMRK approximation is
reasonable zero-approxiamtion for exact
|M|2 away from collinear limit.
At least, it is better than collinear limit itself.
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From LO to NLO in the parton Reggeization approach.

Numerical test

Ratio σmMRK/σexact of cross sections of the subprocess

g + g → g(y1 < y2) + g(y2, pTL) + g(y3 > y2),

in the mMRK approximation vs. exact result in CPM.

R
at

io

pTL , GeV
 1

 1.1

 1.2

 1.3

 1.4

 1.5

20 30 40 50 60 70 80 90 100

pp-collisions,√
S = 7000 GeV.

Jet-cone radius
R = 0.5,
pT1,2,3 > 10 GeV.

Curves from top to bottom: no constraint on ∆y; min(∆y12,∆y23) > 1.5;
> 3.5. The ratio is almost flat vs. pTL !
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From LO to NLO in the parton Reggeization approach.

Factorization formula

Substituting the |M|2mMRK to the factorization formula of CPM and
changing the variables we get:

dσ =

1∫

0

dx1

x1

∫
d2qT1

π
Φ̃g(x1, t1, µ

2)

1∫

0

dx2

x2

∫
d2qT2

π
Φ̃g(x2, t2, µ

2) · dσ̂PRA,

where x1 = q+
1 /P1+, x2 = q−2 /P

−
2 , Φ̃(x, t, µ2) – “tree-level” unintegrated

PDFs, the partonic cross-section in PRA is:

dσ̂PRA =
|APRA|2
2Sx1x2

· (2π)4δ

(
1

2

(
q+
1 n− + q−2 n+

)
+ qT1 + qT2 − PA

)
dΦA.

Note the usual flux-factor Sx1x2 for off-shell initial-state partons.
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From LO to NLO in the parton Reggeization approach.

LO unintegrated PDF

The “tree-level” unPDF:

Φ̃g(x, t, µ
2) =

1

t

αs
2π

1∫

x

dz Pgg(z) · x
z
fg
(x
z
, µ2
)
.

contains collinear divergence at t→ 0 and IR divergence at z → 1.
In the “dressed” unPDF collinear divergence is regulated by Sudakov
formfactor T (t, µ2):

Φi(x, t, µ
2) =

Ti(t, µ
2, x)

t
× αs(t)

2π

1∫

x

dz θcut
z Pij(z)

x

z
fj
(x
z
, t
)

where: θcut
z = θ

(
(1−∆KMR(t, µ2))− z

)
, and the

Kimber-Martin-Ryskin(KMR) cut condition [KMR, 2001]:

∆KMR(t, µ2) =

√
t√

µ2 +
√
t
,

follows from the rapidity ordering between the last emission and the
hard subprocess.
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From LO to NLO in the parton Reggeization approach.

LO unintegrated PDF

Φi(x, t, µ
2) =

Ti(t, µ
2, x)

t
× αs(t)

2π

1∫

x

dz θcut
z Pij(z)

x

z
fj
(x
z
, t
)

=
∂

∂t

[
Ti(t, µ

2, x) · xfi(x, t)
]
← derivative form of unPDF

⇒ LO normalization condition:

∫ µ2

0

dt Φi(x, t, µ
2) = xfi(x, µ

2) ← Holds exactly!

Because T (0, µ2, x) = 0 and T (µ2, µ2, x) = 1.
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From LO to NLO in the parton Reggeization approach.

Sudakov formfactor

Ti(t, µ
2, x) = exp


−

µ2∫

t

dt′

t′
αs(t

′)

2π
(τi + ∆τi)


 ,

τi =
∑

j

1∫

0

dz θcut
z · zPji(z),

∆τi =
∑

j

1∫

0

dz
(
1− θcut

z

)
·


zPji(z)−

x
z
fj
(
x
z
, t′
)

xfi(x, t′)︸ ︷︷ ︸
Pij(z) · θ(z − x)


 .

similar structure in
the non− emission probability

in ISR PS
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From LO to NLO in the parton Reggeization approach.

Gauge-invariant off-shell amplitudes

|APRA|2 is obtained from Lipatov’s gauge-invariant effective theory for
MRK processes in QCD [Lipatov 1995; Lipatov, Vyazovsky, 2001].
Some Feynman rules for Reggeized gluons:

= −iδab

2q2 = (−iq2)n∓µ δab

gsfaa1a2
(
n∓µ n

∓
ν

)
q2

k∓1

ig2s
(
n∓µ1

n∓µ2
n∓µ3

)
q2

k∓3

[
faba1

fba2a3

k∓1
+

faba2
fba1a3

k∓2

]
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From LO to NLO in the parton Reggeization approach.

Gauge-invariant off-shell amplitudes

Some Feynman rules for Reggeized quarks:

← k

q −
igsT

a
(
γµ + q̂

n+
µ

k+

) q1 +← k

q2 −
igsT

a
(
γµ + q̂2

n+
µ

k+ + q̂1
n−
µ

k−

)

q − 1

2

ig2s(n
+
µ1
n+
µ2
)q̂

[
Ta1Ta2

k+
1 (k1+k2)+

+ Ta2Ta1

k+
2 (k1+k2)+

] q1 +

q2 − 1

2 ig2s

[
q̂2(n

+
µ1
n+
µ2
)

(
T a1T a2

k+1 (k1 + k2)+
+

T a2T a1

k+2 (k1 + k2)+

)
−

q̂1(n
−
µ1
n−
µ2
)

(
T a2T a1

k−1 (k1 + k2)−
+

T a1T a2

k−2 (k1 + k2)−

)]

q − 1

2

3

ig3s q̂(n
+
µ1
n+
µ2
n+
µ3
)

[
T a1T a2T a3

k+1 (k1 + k2)+(k1 + k2 + k3)+
+ (1↔ 2↔ 3)

]

q1 +

q2 − 1

2

3 ig3s

[
q̂2(n

+
µ1
n+
µ2
n+
µ3
)

(
T a1T a2T a3

k+1 (k1 + k2)+(k1 + k2 + k3)+
+ (1↔ 2↔ 3)

)
+

q̂1(n
−
µ1
n−
µ2
n−
µ3
)

(
T a3T a2T a1

k−1 (k1 + k2)−(k1 + k2 + k3)−
+ (1↔ 2↔ 3)

)]
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From LO to NLO in the parton Reggeization approach.

Implementation in FeynArts.

The Feynman rules of Lipatov’s EFT, up to the order O(g3
s , eg

2
s , e

2gs, e
3)

are implemented in our model-file ReggeQCD for the package FeynArts.
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From LO to NLO in the parton Reggeization approach.

BCFW recursion and Lipatov’s EFT

The approach to derive gauge-invariant scattering amplitudes with off-shell
initial-state partons, using the spinor-helicity techniques and
Britto-Cachazo- Feng-Witten-like recursion relations for such amplitudes,
was introduced in Refs.:
1) A. van Hameren and M. Serino, BCFW recursion for TMD parton
scattering, J. High Energy Phys. 07 (2015) 010; K. Kutak, A. Hameren, and
M. Serino, QCD amplitudes with 2 initial spacelike legs via generalised
BCFW recursion, J. High Energy Phys. 02 (2017) 009.
2) A. van Hameren, KaTie: For parton-level event generation with kT
-dependent initial states, arXiv:1611.00680.
This formalism is equivalent to Lipatov’s EFT at the tree level, but for
some observables, e.g., related with heavy quarkonia, or for the
generalization of the formalism to NLO, the explicit Feynman rules and the
structure of EFT are more convenient.
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From LO to NLO in the parton Reggeization approach.

Azimuthal decorrelations of dijets,
diphotons and B-mesons
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From LO to NLO in the parton Reggeization approach.

Dijet azimuthal decorrelations at the LHC

[M.A.Nefedov, V.A.Saleev, A.V.Shipilova, Phys. Rev. D87, 094030 (2013)].

1.6 2 2.4 2.8 3.21.4 1.8 2.2 2.6 3
Df, rad

10
-4

10
-3

10
-2

10
-1

10
0

10
1

1/
s
d
s
/d
D
f
,1
/r
a
d

ATLAS pT
max > 110 GeV

2jets at |y|<0.8

2 jets at |y|<0.8

Dijet production at the LHC (
√
S = 7

TeV). Open points – only 2 jets with
pT > 30 GeV at |y| < 0.8, Closed
points – inclusive data.

The description in PRA is given by
2→ 2 subprocesses and is dominated
by:

R+ +R− → g + g.

To reject the jets from the last
stage of unPDF evolution, the cut
max(|qT1|, |qT2|) < psubleading jet

T is
necessary.
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From LO to NLO in the parton Reggeization approach.

D-meson pair production @ LHC

[A. V. Karpishkov, V. A. Saleev, A. V. Shipilova, Phys. Rev. D 94, 114012
(2016)]
Production of charge-conjugated states: mostly through

R+ +R− → c+ c̄.
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From LO to NLO in the parton Reggeization approach.

D-meson pair production @ LHC

[A. V. Karpishkov, V. A. Saleev, A. V. Shipilova, Phys. Rev. D 94, 114012
(2016)]
Production of same-sign pairs: through gluon fragmentation

R+ +R− → g + g.

22 / 50



From LO to NLO in the parton Reggeization approach.

Diphoton production at Tevatron and the LHC

[M.A.Nefedov, V.A.Saleev, Phys. Rev. D92, 094033 (2015)].
The PRA calculation is at the NLO? level. 2→ 2 subprocesses:

Q+ + Q̄− → γ + γ, (1)

R+ +R− → γ + γ, (2)

the subprocess (2) goes through quark box, and t1,2-dependence of this
amplitude has been calculated.
The NLO 2→ 3 subprocesses:

Q+ +Q− → γ + γ + g, (3)

Q± +R∓ → γ + γ + q, (4)

+mMRK double-counting subtraction, which practcally removes the
contribution of the subprocess (3) and greatly reduces the contribution of
the subprocess (4).
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From LO to NLO in the parton Reggeization approach.

Diphoton production at Tevatron and the LHC

[M.A.Nefedov, V.A.Saleev, Phys. Rev. D92, 094033 (2015)].
Comparison with CDF data:
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From LO to NLO in the parton Reggeization approach.

BB̄-production with a jet @ LHC

[A.V.Karpishkov, M. A. Nefedov, V.A.Saleev, Phys. Rev. D 96, 096019
(2017) ].

Complementarity of 2→ 2 and
2→ 3 contributions in the
Phase-space:

p
b�jet
T

= max�j�T3j� j�T4j)

p
m
in

T
L

p
n
o
n
�
b

je
t

T

0 pmin
TL

� ! �

� ! 3
p
non�b jet
T

= j�T5j

j�T5j > max�j�T�j� j�T2j)

p
non�b jet
T

= max�j�T�j� j�T2j)

pmin
T�

Complicated kinematical situation!
The BB̄-pair is searched in the events
with a hard jet.
Our solution – “merging” of two
contributions:

1 The hard jet = b-jet:

R+(q1) +R−(q2)→ b(q3)�

B

+ b̄(q4)�

B̄

,

2 The hard jet 6= b-jet:

R+(q1) +R−(q2)→ b(q3)�

B

+ b̄(q4)�

B̄

+g(q5),

25 / 50



From LO to NLO in the parton Reggeization approach.

Comparison with CMS data
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Green line – 2→ 2, blue line – 2→ 3, orange line – sum. The dependence of
normalization and shape of the BB̄ azimuthal decorrelation spectrum
on pT of the leading hard jet is described!
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From LO to NLO in the parton Reggeization approach.

Towards NLO calculations
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From LO to NLO in the parton Reggeization approach.

Differences with NLO of CPM

Real NLO corrections: No collinear divergences when integrating
over kT of additional emitted parton down to 0, unlike in CPM.
Initial-state collinear divergences are regularized by transverse
momentum of initial-state partons.
Instead, the double-counting of region kT → 0 or ∆y →∞ should be
subtracted from NLO contribution to the hard-scattering coefficient.
Vertices of Lipatov’s theory are nonlocal: contain eikonal
denominators – 1/k± ⇒ Rapidity divergences in real and virtual
corrections!
Rapidity divergences are related with BFKL resummation of
contributions ∼ log 1/x. So some elements of BFKL resummation
necessarily enter at NLO.
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From LO to NLO in the parton Reggeization approach.

Physical normalization condition

Motivation for PRA is the multi-scale correlational observables. ⇒
NLO CPM accuracy for single-scale observables is enough.
We DO NOT want to do our own fit of unPDFs ⇒ using (MS) PDFs
of CPM as collinear input. But NLO PDFs are scheme-dependent!
For the single-scale observables (e.g. F2/L(x,Q2)) collinear
factorization is a theorem (up to corrections ∼ (Λ2

QCD/Q
2)#).

⇒ Physical normalization condition at NLO:

fMS
i (x, µ2)

↙ ↘
F

(NLO PRA)
2q (x,Q2) = F

(NLO CPM)
2q (x,Q2)

+O(α2
s(Q

2)) + Higher twist,

Basic idea: Collect all terms in PRA, contributing O(αs) to the
normalization condition and match them to the NLO CPM result.
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From LO to NLO in the parton Reggeization approach.

Simplest example: gluon contribution to F2 @ NLO of PRA

[M. A. Nefedov, V. A. Saleev, hep-ph/1709.06378 ]
The F2 structure function at LO (xB = Q2

2qP
, q+

1 = x1P
+):

F2(xB , Q
2) =

∑

j

1∫

0

dx1

x1

∫
dt1 Φj(x1, t1, Q

2)× C(LO)
2j

(
z =

xB
x1
,
t1
Q2

)

where C
(LO)
2q

(
z,
t1
Q2

)
= e2

q · zδ
(

(Q2 + t1)z

Q2
− 1

)
is calculated with the

use of gauge-invariant Fadin-Sherman γQq-vertex [Fadin, Sherman, 1977]:

Γµ(q1, k) = γµ + q̂1
nµ−
k−

.

The O(αs) contributions comes from:
1 t1-dependence of LO contribution,
2 NLO subprocess

R+(q1) + γ∗(q)→ q + q̄,

3 Double-counting subtraction term
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From LO to NLO in the parton Reggeization approach.

Role of the qT1-dependence

[M. A. Nefedov, V. A. Saleev, hep-ph/1709.06378 ]

F
(LO)
2 (xB , Q2) = (e2

qxB)

fq(xB , Q2)︸ ︷︷ ︸
LO CPM

+ ∆F
(T )
2 (xB , Q2) + ∆F

(f)
2 (xB , Q2)︸ ︷︷ ︸

O(αs)

+pow. suppr.

 ,

where:

∆F
(T )
2 (xB , Q2) =

1∫
0

dx1 fj(x1, Q
2)

Q2∫
0

dt1
[
1 − Tj(t1, Q

2, x1)
]︸ ︷︷ ︸

O(αs)

∂

∂t1
C

(LO)
j

(
xB

x1
,
t1

Q2

)

∆F
(f)
2 (xB , Q2) =

1∫
0

dx1

Q2∫
0

dt1 Tj(t1, Q
2, x1)

[
fj(x1, Q

2) − fj(x1, t1)
]︸ ︷︷ ︸

O(αs)

∂

∂t1
C

(LO)
j

(
xB

x1
,
t1

Q2

)
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From LO to NLO in the parton Reggeization approach.

O(αs)-term from qT -dependence

[M. A. Nefedov, V. A. Saleev, hep-ph/1709.06378 ]
One obtains:

∆F
(fg)
2 =

(
αs(Q

2)

2π

) 1∫

0

dx1

x1
fg(x1, Q

2) ·∆C(fg)
qg

(
xB
x1

)

where:

∆C
(fg)
qg (z) = TR

[
ξz ((4 + ξ)z − 2) +

(
1− 2z + 2z2) log ξ

]
,

where TR = 1/2 and ξ = min (1, (1− z)/z).
Other corrections:

∆F
(fq)
2 , ∆F

(T )
2

contain only fq(x1, Q
2), and will be important for the γ? +Q→ q + g

subprocess and one-loop correction.
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From LO to NLO in the parton Reggeization approach.

NLO subprocess γ? +R→ q + q̄.

[M. A. Nefedov, V. A. Saleev, hep-ph/1709.06378 ]

t1; q+1

qT2

z̃
q+3

Kinematics (z̃ = (q+
1 − q+

3 )/q+
1 ,

ψ – azimuthal angle of kT ):

qT2 = kT + qT1
z̃ − z
1− z ,

k2
T =

(z̃ − z)(1− z̃)
1− z

[
Q2

z
− t1

1− z

]
,

F
(NLO,g)
2 = e2

q ·
αs
2π

∫
dx1

x1

∫
dt1 Φg(x1, t1, µ

2)

×
1∫

z

z · dz̃
(1− z)

2π∫

0

dψ

2π
C(NLO,g)

2

︸ ︷︷ ︸
C

(NLO,g)
2

(
z=

xB
x1

,
t1
Q2

)
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From LO to NLO in the parton Reggeization approach.

Double-counting subtraction

[M. A. Nefedov, V. A. Saleev, hep-ph/1709.06378 ]
LO contains (horizontal blue line denotes mMRK approximation):

P ր

q ց k1 →

p1 ↑
k2 →

q1 ↑

+ +

− −

+ +

−−

⇒
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q ց

q1 ↑

k1 →

qt ↑
k2 →
+

+
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

−
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

−
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2
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From LO to NLO in the parton Reggeization approach.

Physical normalization condition

[M. A. Nefedov, V. A. Saleev, hep-ph/1709.06378 ]
Physical normalization, O(αs) gluon contribution only:

FNLO CPM
2q (xB , Q

2) = (e2
qxB)

[
fMS
q (xB , Q

2) +

(
αs(Q

2)

2π

)
fMS
g ⊗ CMS

2g + c.c.

]

‖

FNLO PRA
2q (xB , Q

2) = (e2
qxB)

[
fPRAq (xB , Q

2) +

(
αs(Q

2)

2π

)
fPRAg ⊗∆C

(fg)
qg

+

(
αs(Q

2)

2π

)
ΦPRAg ⊗

(
C

(NLO,g)
2 −∆C

(t+u,g)
2

)

︸ ︷︷ ︸
fPRA
g ⊗

(
CMS

2g −∆Cqg

)
+O(α2

s)+Higher twist

+c.c.] .

PDFs in the PRA scheme:

fPRAg = fMS
g +O(α2

s), fPRAq = fMS
q +

(αs
2π

)
fMS
g ⊗

(
∆Cqg −∆C

(fg)
qg

)
+O(α2

s),

where matching coefficient ∆Cqg can be computed analytically ⇒
unPDFs in PRA scheme:

µ2∫

0

dt ΦPRAi (x, t, µ2) = xfPRAi (x, µ2),
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From LO to NLO in the parton Reggeization approach.

Numerical test of Physical Normalization Condition

[M. A. Nefedov, V. A. Saleev, hep-ph/1709.06378 ]
Plot of the ratio – FNLO PRA

2q (xB , Q
2)/FNLO CPM

2q (xB , Q
2) :

Q2
� 104 GeV2

103

102

101

10-5 10-4 0.001 0.01 0.1 1
xB0.90

0.95

1.00

1.05

1.10
Ratio
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From LO to NLO in the parton Reggeization approach.

Numerical test of Physical Normalization Condition

[M. A. Nefedov, V. A. Saleev, hep-ph/1709.06378 ]
Plot of the ratio – FNLO PRA

2q (xB , Q
2)/FNLO CPM

2q (xB , Q
2) :

Q2
� 10

4
GeV

2

MS & NO DCS

MS

PRA
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-4 0.001 0.01 0.1 1
xB0.9
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Magenta lines = 1± α2
s(Q

2)
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From LO to NLO in the parton Reggeization approach.

Virtual corrections in PRA
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From LO to NLO in the parton Reggeization approach.

What such EFTs as SCET or Lipatov’s theory are (needed for)?

Picture is taken from
[hep-ph/1410.1892].

EFT = formalism which explicitly
implements certain factorization properties of
QCD amplitudes:

Factorization in the soft and collinear limits –
Soft-Collinear Effective Theory (SCET).
Factorization in the Multi-Regge limit –
Lipatov’s theory.

As a result of kinematic approximations,
artificial logarithmic divergences arise in
different factors, but they should cancel in
order-by-order in PT.
Factorization + cancellation of artificial
divergences ⇒ Renormalization group. The
latter allows to resum large logarithms of
scale ratios.
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From LO to NLO in the parton Reggeization approach.

Rapidity divergences and regularization.

Due to the presence of the 1/q±-factors in the induced vertices, the loop
integrals in EFT contain the light-cone (Rapidity) divergences:

Σ̂1 =

p ↓
q ↓ = g2sCF

∫
dDq

(2π)D

(
γµ − p̂

n+
µ

q+

)
p̂− q̂

q2(p− q)2

(
γµ − p̂

n−
µ

q−

)

The regularization by explicit cutoff in rapidity was proposed by Lipatov
[Lipatov, 1995] (q± =

√
q2 + q2

T e
±y):

∫
dq+dq−

q+q−
=

∫ y2

y1

dy

∫
dq2

q2 + q2
T

,

then

Σ̂1 = CF g
2
s p̂

∫
p2
T d

D−2qT
q2
T (pT − qT )2

(y2 − y1) + finite terms

The dependence on the regulators yi have to cancel between the
contributions of the neighbouring regions order-by-order in αs, building up
the 1

n!
(log(s)ω(t))n-terms.
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From LO to NLO in the parton Reggeization approach.

Covariant regularization.

The regularization and pole prescription was introduced in a series of
papers [Hentschinski, Vera, Chachamis et. al., 2012-2013].
The regularization of the light-cone divergences is achieved by the shifting
the n± vectors from the light-cone:

ñ± = n± + e−ρn∓, k̃± = k± + e−ρk∓, ρ→ +∞,

and for the lowest-order(Rgg, Qqg) induced vertices the PV prescription is
at work:

1

[k̃±]
=

1

2

(
1

k̃± + iε
+

1

k̃± − iε

)
.

For the higher-order induced vertices, there is the nontrivial interplay
between color and kinematics in the pole prescription.

Recently, this prescriptions has been tested at one loop for the case of
Reggeized quarks: [M. A. Nefedov, V. A. Saleev, Mod. Phys. Lett. A, 32
1750207 (2017)].
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From LO to NLO in the parton Reggeization approach.

The Reggeized quark self-energy.

[M. A. Nefedov, V. A. Saleev, Mod. Phys. Lett. A, 32 1750207 (2017)]
The self-energy graph is computed in the central kinematics (p+ = p− = 0):

Σ̂1 =

p ↓
q ↓ = g2sCF

∫
dDq

(2π)D

(
γµ − p̂

n+
µ

[q̃+]

)
p̂− q̂

q2(p− q)2

(
γµ − p̂

n−
µ

[q̃−]

)
,

the result is:

Σ̂1 = (ip̂)
CF ᾱs

4π

(
µ2

t1

)ε [−iπ + 2ρ

ε
+

(
1 + ε

1− 2ε

)
1

ε

]
,

where ᾱs = (4π)εrΓαs.
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From LO to NLO in the parton Reggeization approach.

The unsubtracted γQq-scattering vertex.

[M. A. Nefedov, V. A. Saleev, Mod. Phys. Lett. A, 32 1750207 (2017)]

CF ᾱsΓ̂
µ
1 =

p ↑

k+ →
αs

= + +

︸ ︷︷ ︸
GI subset

where k2 = 0, p2 = −t1, (k + q)2 = 0.
The eρ-divergences cancel in the sum of diagrams. The terms proportional
e−ερ → 0 for ε > 0⇒ only logarithmic singularities∼ ρ are left.
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From LO to NLO in the parton Reggeization approach.

The unsubtracted γQq-scattering vertex.

[M. A. Nefedov, V. A. Saleev, Mod. Phys. Lett. A, 32 1750207 (2017)]
The one-loop result can be expressed in terms of two gauge-invariant
Lorentz structures:

Γ̂µ0 = eeqū(p+ k)

(
γµ + p̂

nµ+
k+

)
n̂+, ∆̂µ

0 = eeq

(
pµ − t1

2k+
nµ+

)(
ū(p+ k)k̂n̂+

)

The result:

Γ̂µ1 =
2

t1
∆̂µ

0 + Γ̂µ0


−

1

ε2
− L1

ε︸ ︷︷ ︸
IR part

+(ρ− iπ)

(
1

ε
+ L1

)
+

2L2

ε︸ ︷︷ ︸
High−Energy part

−

−
(

1

ε
+ L1 + 3

)

︸ ︷︷ ︸
UV part

+2L1L2 − L2
1

2
+
π2

2


+O(ε),

where L1 = log
(
µ2

t1

)
, L2 = log

(
k+√
t1

)
.
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From LO to NLO in the parton Reggeization approach.

Subtracted γQq-scattering vertex.

The subtracted result:

Γ̂µ1S = Γ̂µ1 − δΓ̂µ1 =
2

t1
∆̂µ

0 + Γ̂µ
[
− 1

ε2
− L1

ε
−ρ
(

1

ε
+ L1

)
+

2L2

ε
−

−2

(
1

ε
+ L1 + 3

)
+ 2L1L2 − L2

1

2
+
π2

2

]
+O(ε).

The subtraction term:

CF ᾱsδΓ̂
µ
1 = = Γ̂µ

0

[
(2ρ− iπ)

(
1

ǫ
+ L1

)
+

(
1

ǫ
+ L1 + 3

)]
+O(ǫ).

45 / 50



From LO to NLO in the parton Reggeization approach.

The cross-check.

[M. A. Nefedov, V. A. Saleev, Mod. Phys. Lett. A, 32 1750207 (2017)]
The terms ∼ ρ cancel in the sum of graphs (−ρ− ρ+ 2ρ), as it was for
gluons!

αs

+

αs

+

The result is the MRK asymptotics (s→∞, t-fixed) for the
γγ → qq̄-amplitude at O(αs). To compare the EFT prediction with QCD
result, let’s compute:

αs LO =
(
8Nc(eeq)

4
) CF ᾱs

4π

[
1

τ
C

(−1)
HE + C

(0)
HE +O(τ )

]
,

where τ = −t/s. The EFT predicts C
(−1)
HE .
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From LO to NLO in the parton Reggeization approach.
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From LO to NLO in the parton Reggeization approach.

The Regge limit of the γγ → qq̄- amplitude.

[M. A. Nefedov, V. A. Saleev, Mod. Phys. Lett. A, 32 1750207 (2017)]
Both QCD(FeynArts+FeynCalc) and EFT agree on the result for C(−1)

HE :

ReC(−1)
HE = − 2

ε2
− 2

ε
log

µ2

(−t) +

(
1 + 2 log

1

τ

)(
1

ε
+ log

µ2

(−t)

)

−
[
3− π2 + log2 µ2

(−t) + 4 log
1

τ

]
,

ImC
(−1)
HE = −π

(
1

ε
+ log

µ2

(−t) − 2

)
.
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From LO to NLO in the parton Reggeization approach.

Fermionic Glauber Operators and Quark Reggeization

Ian Moult, Mikhail P. Solon, Iain W. Stewart, and Gherardo Vita.
Fermionic Glauber Operators and Quark Reggeization, JHEP 1802
(2018) 134.
Note added: As this paper was being finalized, Ref. [Nefedov, Saleev, 2017]
appeared, which studies γγ → q + q̄ amplitudes at one-loop in the Regge
limit by constructing the quark Reggeization terms in the effective action
formalism of Lipatov [Lipatov, 1995]. In the SCET language this
corresponds to formulating an auxiliary field Lagrangian for the offshell
Glauber quarks, while using the full QCD Lagrangian for other fields
(without defining EFT fields for the n-collinear, soft and n−-collinear
sectors). Since having distinct fields for these sectors enables their
factorization properties to be easily determined and studied, such as in our
BFKL calculation, we believe there are certain advantages to our approach.
It would be interesting to make a more explicit comparison between these
formalisms.
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From LO to NLO in the parton Reggeization approach.

Conclusions

Parton Reggeization Approach has been shown to be a reliable
phenomenological tool at LO
The extension to NLO is possible and is under active development
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From LO to NLO in the parton Reggeization approach.

Thank you for your attention!
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