A HINT OF PERCOLATION THRESHOLD IN HEAVY ION COLLISIONS AT SPS ENERGIES

Andrey Seryakov for the NA61/SHINE collaboration

Laboratory of Ultra-High Energy Physics
St. Petersburg State University

QUARKS - 2018 1/06/18

Motivation

NA61/SHINE heavy ion program:

· Search for the critical point

Search for non-monotonic behavior of CP signatures: fluctuations of N, average p_T , etc., intermittency, when system freezes out close to CP

• Study of the properties of the onset of deconfinement

Search for the onset of the horn/kink/step/dale in collisions of light nuclei; additional analysis of fluctuations and correlations (azimuthal, particle ratios, etc.)

NA61/SHINE experiment

3

Comprehensive scan with light and intermediate mass nuclei in momentum range 13A-158A GeV/c

beam momentum [A GeV/c]

Data taking schedule:

- Taken data (green)
- Approved (red)
- Proposed extensions (gray)

NA61/SHINE experiment

Multiplicity fluctuations

How to estimate the strength of multiplicity fluctuations?

$$\omega[N] = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle}$$

For the models with independent particle sources (wounded nucleons model):

$$\omega[N] = \omega[n] + \bar{n}\omega[N_s]$$

where n is a multiplicity from a single source (wounded nucleon). Consequently $\omega[N]$ depends on the number of sources N_s fluctuations

NA61/SHINE experiment

NA61/SHINE in virtual reality: http://shine3d.web.cern.ch/shine3d/

- Large acceptance hadron spectrometer coverage of the full forward hemisphere, down to $p_T=0~{\rm GeV}/c$
- Performs measurements on hadron production in h+p, h+A, A+A at 13A – 150(8)A GeV/c
- Event selection in A+A collisions by measurements of forward energy with PSD
- Recent upgrades:
 - Vertex detector (open charm measurements)

6

• FTPC-1/2/3

Events selection

Event selection is based only on the forward energy related to projectile spectators

The forward energy consists of two components:

- spectators
- produced particles

Events selection

- One needs to choose set of modules with dominating contribution of spectators and minimal contribution from the produced particles
- The proposed selection is data-driven and is based on correlations between energy and track multiplicity in TPCs - negative correlation implies dominance of spectators in a specific module

Centrality selection

- Due to the differences in magnetic field and PSD position for various energies, different set of modules is chosen to calculate forward energy
- Unexpectedly, for the same collision energy but for different colliding systems same modules show different behavior

Centrality selection

10

- Due to the differences in magnetic field and PSD position for various energies,
 different set of modules is chosen to calculate forward energy
- Unexpectedly, for the same collision energy but for different colliding systems same modules show different behavior

PSD kinematic regions are different for different energies and systems

Events selection

The measured energy allows selection of the "centrality classes"

Ar+Sc

Analysis

Analysed data:

- centrality selected in 40 Ar + 45 Sc and 7 Be + 9 Be at beam momentum 19A, 30A, 40A, 75A, 150A GeV/c or at $\sqrt{s_{NN}}$ = 6.12, 7.62, 8.76, 11.94, 16.83 GeV
- Event and track selection criteria were chosen to select only inelastic (centrality selected) interactions and particles produced in strong and EM processes
- centrality selected by forward energy
 (In simulations selections is based on energy of all particles hitting the selected PSD modules)
- Track selection criteria:
 - the NA61/SHINE acceptance
 https://edms.cern.ch/document/1549298/1
 - o not electron or positron
 - \circ p_T < 1.5 GeV/c
 - \circ **0** < y_{π} < y_{beam}

Analysis

- Currently results are not corrected for experimental biases
- To estimate magnitude of these biases pure and reconstructed MC data sets were analyzed.
 The differences between results are less than 5%
- Statistical uncertainties were calculated using the sub-sample method

EPOS1.99 - Werner, et al., PRC 74:044902

NOTE!

All results (p + p, $^{7}\text{Be} + ^{9}\text{Be}, ^{40}\text{Ar} + ^{45}\text{Sc}$) will be shown in NA61/SHINE acceptance with 0 < y_{π} < y_{beam} and without systematic uncertainties

Andrey Seryakov NA61/SHINE CERN LUHEP SPbSU

Multiplicity fluctuations: centrality dependence

 $\omega[h^-]$ is larger for broader centrality intervals both in data and in model \Longrightarrow volume fluctuations?

EPOS 1.99 underestimates $\omega[h^-]$

14

Multiplicity fluctuations: energy dependence

15

Different energy dependence for Be+Be and Ar+Sc collisions!

 $\omega[N]$ increases with collision energy in Be+Be but remains particularly constant in Ar+Sc

Multiplicity fluctuations: energy dependence

16

Different energy dependence for Be+Be and Ar+Sc collisions!

 $\omega[N]$ increases with collision energy in Be+Be but remains particularly constant in Ar+Sc

Is it a volume effect???

Strongly intensive quantities

A new strongly intensive quantity can be constructed:

$$\Omega[A, B] = \omega[A] - \frac{\langle AB \rangle - \langle A \rangle \langle B \rangle}{\langle B \rangle}$$

R. V. Poberezhnyuk, M. I. Gorenstein, M. Gazdzicki, arXiv:1509.06577v2 [hep-ph] 23 Sep 2015

and if A and B are uncorrelated from a single source ($\langle ab \rangle = \langle a \rangle \langle b \rangle$), then

$$\Omega[A, B] = \omega[a]$$

where $\omega[a]$ is scaled variance of A from a single source.

If
$$A = N$$
 and $B = E_{beam} - E_{PSD} = E_{P}$, then

$$\Omega[N, E_P] = \omega[n]$$

If a centrality interval is narrow enough, we can expect:

$$\Omega[N, E_P] \approx \omega[N]$$

18

 $\Omega[N, E_P]$ almost does not depend on centrality – strongly intensive!

 $\Omega[N, E_P]$ and $\omega[N]$ converges to a common limit for very central events

Is this common limit $\omega[n]$?

Multiplicity fluctuations: energy dependence

19

Different energy dependence for Be+Be and Ar+Sc collisions!

20

 $\Omega[N, E_P]$ and $\omega[N]$ converges to a common limit for very central events for both systems

 $\omega[N]$ is significantly larger for the central Be+Be collisions than for central Ar+Sc collisions!

Different magnitudes of $\omega[n]$ for different systems?

21

 $\omega[N]$ in the central Be+Be collisions behaves exactly like in p+p!

22

NA49 Pb+Pb:

- Smaller acceptance
- Worse centrality

 $\omega[N]$ in the central Ar+Sc collisions behaves like in Pb+Pb?!!

Multiplicity fluctuations: system size dependence

 $\omega[N]$ is significantly larger for inelastic p+p interactions and for the central Be+Be collisions than for central Ar+Sc collisions!

Onset of fireball

Why $\omega[N]$ in **central** Be+Be collisions is close to p+p value?

Why $\omega[N]$ is suppressed for central Ar+Sc (and Pb+Pb?) collisions in comparison to p+p and Be+Be?

Possible explanations:

percolation models

Baym, Physica **96A**: 131 Celik, Karsch, Satz PLB **97**: 128 Braun, Pajares, NPB **390**: 542 Armesto, *et al.*, PRL **77**: 3736 Cunqueiro, *et al.*, PRC **72**: 024907

23

AdS/CFT correspondence

E. Shuryak Prog. Part. Nucl. Phys. 62 (2009) 48–101, arXiv:0807.3033 [hep-ph] S. Lin and E. Shuryak Phys. Rev. D79 (2009) 124015, arXiv:0902.1508 [hep-th].

• Anything else?

Other interesting signals

24

Mean multiplicities ratio shows similar behavior

- p+p is close to central Be+Be
- central Ar+Sc is different

ONSET OF FIREBALL

25

Results on **onset of fireball** and **onset of deconfinement** suggest **four** domains in $A-\sqrt{s_{NN}}$ plane

Working hard to get Xe+La and Pb+Pb data soon

Thank you!

seryakov@yahoo.com

26

27

ω[N] is significantly larger for inelastic p+p interactions and for the central Be+Be collisions than for central Ar+Sc collisions!

EPOS 1.99 describes p+p & Ar+Sc but fails in Be+Be