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Bose gas at T = 0

Ideal Bose gas can be localized in the harmonic trap:

Ψ ∼ exp(−ω2x2)

This system can be studied both experimentally and theoretically,
as classical theory of the complex field Ψ with Lagrangian

iΨ∗
d

dt
Ψ− 1

2m
|∇Ψ|2 − U(x)|Ψ|2 + λ0|Ψ|4

Dimensionless combination λ = m2λ0 is not small! Nonlinear term is just
a correction to potential — dilute gas approximation.

Although Rb is a metall at usual temperature.
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Feild theory in semiclassical regime

In relativistic field theory one can obtain bag for the same field...
For the validity of semiclassical approximation one can use
potential of the form

V =
m4

g2
U(g |φ|/m),

then, after redifinition φ = gφ we obtain Lagrangian without small
parameters and overall factor 1/g2 before action.
In this case semiclassiclal method is a saddle point approximation
for path integral.
Soliton in classical theory is an analog of the bag — but
interaction is crucial.
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Choice of potential

Potential which admits analytical solution

V (|φ|) = m2|φ|2θ
(

1− |φ|
2

v2

)
+ m2v2θ

( |φ|2
v2
− 1

)
is precisely what we need if we use smooth regularization and
g = m/v , Λ = m2v2. (see also talk of A.Shkerin)

|ϕ|

V
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Q-balls

Regularized potential admits Q-balls (general conditions on
potential see Coleman’85) in single field theory with global
U(1)-invariance

∂µφ
∗∂µφ− V (|φ|)

We will assume some regularization, but it does not change
classical solution seriously (we checked this statment numerically
and will use numerical calculations for main result). Localized
solution — stationary anzatz

φ = f (r)eiωt

one can minimize energy E at fixed global charge

Q ∼ ω
∫

f 2(r)r2dr
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Properties of Q-balls

Energy can be compared with energy of free particles E = mQ for
the same charge

Qc
0 Qs Q

E

E
=
mQ

EQ(Q)

decaying
Q-balls

There is a region of charges where tunneling is kinematically
possible... What about potential barrier?
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Q-clouds

There is unstable branch of solutions
— Q-clouds (M. Alford’88). Q/Qc

(E −mQ)/EQ(Qc)
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Q-cloud is more thick for the same
global charge
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Instability of Q-clouds

Vakhitov-Kolokolov criterion ∂Q/∂ω > 0
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critical

Only one decay mode for simple potential (EN, A. Shkerin, 2014).
Looks like sphaleron (critical bubble)?
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Interpretation of Q-clouds

For compactified theory we have three solutions for the same
charge. Height of the pass is finite and the tunneling is indeed
possible.

{ϕ, ∂tϕ}Q

E[ϕ, ∂tϕ]

0

particles Q-ball

Q-cloud
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Bounce solution

Let us compare the problem with ordinary false vacuum decay

we already work in semiclassical regime

we know initial configurations for different charges

we have crosscheck for Euclidean solutions due to
U(1)-invariance

additional check: kinematics

Objections:

Euclidean continuation of stationary factors e iωt is not
healthy for numerical calculations

Euclidean solution is not O(4)-invariant!
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Euclidean theory

Saddle point solution → minimum of euclidean action, t = iτ .

SE =

∫ β

−β
dτd3

x(∂τϕ∂τ ϕ̄+∇ϕ∇ϕ̄+ V (ϕϕ̄)) ,

Instead of being mutually conjugate, ϕ and ϕ̄ should be considered as
independent real functions of x and τ . β will be sent to infinity in the
end of the calculation.

(∂2
τ +∇2)ϕcl = V ′ϕcl , (∂2

τ +∇2)ϕ̄cl = V ′ϕ̄cl ,

where V ′ is a derivative of V (ϕ̄ϕ) with respect to its argument.

Boundary conditions are nontrivial and O(4)-invariance is broken.
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Quantum state for Q-ball

One can define projector onto the states with charge Q

P̂Q =

2πi∫
0

dη

2πi
eη(Q̂−Q) , P̂2

Q = P̂Q ,

then Q-ball state |Q〉 can be defined by limiting formula

e−βĤ P̂Q |i〉 → e−βEQ |Q〉〈Q|i〉 as β → +∞ ,

here |i〉 is arbitrary state.
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Decay probability

P =
∑
f

∣∣∣∣〈f |e−i Ĥt0 |Q〉
∣∣∣∣2 = e

2βEQ
∑
i, f

∣∣∣∣〈f |e−i Ĥ(t0−iβ)P̂Q |i〉
∣∣∣∣2

Technically it is easier to solve e.o.m. with parameter η assuming it will take saddle point value. This modify initial
configuration at τ → −∞

ϕcl = e−ωβ−η0χQ (r), ϕ̄cl = eωβ+η0χQ (r)

which can be formulated in terms of ϕcl , ϕ̄cl and their derivatives only

ϕcl = e−ωβ−2η0 ϕ̄cl , ∂τϕcl = −eωβ−2η0∂τ ϕ̄cl

For the turning point τ = 0 solution should be symmetric with respect to time reflections:

ϕcl = ϕ̄cl , ∂τϕcl = −∂τ ϕ̄cl

and can represent classical evolution after continuation to Minkowski time
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Decay rate

Exponential suppression (saddle point approximation)

ΓQ = AQ · e−FQ ,

where prefactor contains m — dimensional parameter and slow
dependence on charge. We can also use our results for finite β to
make some conclusions for the case T 6= 0.
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Figure: Semiclassical solutions ρ(r , τ) ≡ (ϕϕ̄)1/2 describing decay of
Q-balls with Q/Qc ≈ 1.05 (a), 1.33 (b), and 1.56 (c).
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Figure: Left: Sections τ = const of the semiclassical solution in the
centre of previous Figure (lines). Empty circles show Q-ball configuration
with the same charge. The values of mτ are written near the graphs. On
the right – the same semiclassical solution continued to Minkowski time
t = iτ after the turning point. Graphs show field configurations
ρ(r , t) ≡ |ϕ| at different times mt (numbers near the graphs). The total
disintegration of localized solution can be interprited as collective
tunneling to free particles.
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Collective tunneling

in: Q-ball out: free particles

Q Q

collective

tunneling
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Suppression exponent
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F as
Q

F fit
Q

F as
Q → d1 + d2 log (1− Q/Qs)

FQ ≈ (Q − Qc) [c1 + c2 log (1− Q/Qs)] ,

where c1 = −0.28, c2 = −2.6.
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Conclusions

The smallest classically stable Q-balls are, in fact, generically
metastable: they decay into bunches of free warm particles via
collective tunneling.

Our method uses Euclidean field-theoretical solutions
resembling the Coleman’s bounce and avoid broblems due to
the stationary factor in Minkowski time.

We have crosscheck for Euclidean solutions due to
U(1)-invariance.

We obtain the fitting formula for F in the entire metastability
window.
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