Constraints on multiparticle production in a scalar field theory from classical simulations

20th International Seminar on High Energy Physics, QUARKS-2018, Valday, Russia, 30 June, 2018

S.V.Demidov, B.R.Farhtdinov, INR RAS

Some known results on multiparticle production

Scalar field
$$\phi(\vec{x}, t)$$
 in $(3 + 1)$ dimensions

Tree level calculations of

 $1 \rightarrow N$ scattering amplitude:

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4} \phi^4$$

Cornwall '90, Goldberg '90, Voloshin '92, Brown '92

$$\mathcal{A}_{1 o N}^{tree}(E = Nm) = N! \left(\frac{\lambda}{8m^2}\right)^{\frac{N-2}{2}}$$

$$\mathcal{P}_{1 \to N}^{tree} \sim N! \lambda^N e^{Nf(\mathcal{E})} \sim exp(\frac{1}{\lambda}F(\lambda N, \mathcal{E})), \quad \mathcal{E} = \frac{E - Nm}{N}$$

Semiclassical methods:

Rubakov, Tinyakov '92, Son '96 Bezrukov, Libanov, Troitsky '95

Loop corrections, $\lambda N \gtrsim 1$

Unitarity-base arguments, Zakharov '91

Relativistic regime $\mathcal{E}\gg 1$

Behaviour of $\mathcal{P}_{\text{few} \to N}$ is unknown at large $\lambda N \gtrsim 1$ and E

Going to classical transitions

V.Rubakov, D.T.Son '1994 C.Rebbi, R.Singleton '1995, S.D., Levkov '2011

- ▶ Let us study not $few \rightarrow N$ but $N_i \rightarrow N_f$ processes with large N_i and N_f initial and final states are semiclassical
- ▶ N_i , $N_f \gg 1$ we have classical counterpart classical scattering of waves classical solutions which linearize at $t \to \pm \infty$
- Classical solution with N_i, N_f and E exists classically allowed process – probability is exponentially unsuppressed
- Classical transition with N_i, N_f and E is forbidden probability is exponentially suppressed

Setup

We rescale $x \to m^{-1} x$ and $\phi \to \sqrt{\frac{m^2}{\lambda}} \phi$

$$S[\phi] = rac{1}{\lambda} \int d^4x \left[rac{1}{2} (\partial_\mu \phi)^2 - rac{1}{2} \phi^2 - rac{1}{4} \phi^4
ight].$$

We limit ourselves to spherically symmetric case:

$$\phi(t,r) = \frac{1}{r}\chi(t,r), \ \chi(t,r=0) = 0$$

$$S = \frac{4\pi}{\lambda} \int dt dr \left[\frac{1}{2} \left(\frac{\partial \chi}{\partial t} \right)^2 - \frac{1}{2} \left(\frac{\partial \chi}{\partial r} \right)^2 - \frac{\chi^2}{2} - \frac{\chi^4}{4r^2} \right]$$

We restrict the system to $r \in [0, R]$ with $\partial_r \chi(t, r = R) = 0$

$$\chi(t,r) = \sum_{n=0}^{\infty} c_n(t) \sqrt{\frac{2}{R}} \sin k_n r,$$

Equations of motion

$$\ddot{c}_n + \omega_n^2 c_n + I_n = 0 \,, \quad I_n = \sqrt{\tfrac{2}{R}} \, \int_0^R dr \frac{\chi^3(t,r)}{r^2} \sin k_n r \quad n = 0, 1, \dots \label{eq:continuous}$$

Setup

We consider solutions which linearize at initial and final times

$$c_n(t)
ightarrow egin{cases} rac{1}{\sqrt{2\omega_n}} \left(a_n \mathrm{e}^{-i\omega_n t} + a_n^* \mathrm{e}^{i\omega_n t}
ight) & ext{as } t
ightarrow -\infty \ rac{1}{\sqrt{2\omega_n}} \left(b_n \mathrm{e}^{-i\omega_n t} + b_n^* \mathrm{e}^{i\omega_n t}
ight) & ext{as } t
ightarrow +\infty \end{cases}$$

Energy

$$E = \frac{4\pi}{\lambda} \sum_{n} \omega_{n} \left| a_{n} \right|^{2} = \frac{4\pi}{\lambda} \sum_{n} \omega_{n} \left| b_{n} \right|^{2}$$
.

Particle numbers

$$N_i = rac{4\pi}{\lambda} \sum_n |a_n|^2$$
 , $N_f = rac{4\pi}{\lambda} \sum_n |b_n|^2$

Notations

$$\tilde{E} = \tfrac{\lambda}{4\pi} E \; , \quad \tilde{N}_i = \tfrac{\lambda}{4\pi} N_i \; , \quad \tilde{N}_f = \tfrac{\lambda}{4\pi} N_f \; .$$

- ► Truncate Fourier expansion to $n = N_x = 400,600$ with R = 20,30
- Numerically solve equations, Bulirsch-Stoer method

Initial conditions

We take initial conditions which correspond to localized wavepackets in $I \equiv [r_1, r_2]$

$$\chi(r) = \begin{cases} \sum f_n \sin\left(\tilde{k}_n(r - r_1)\right), \ r \in I \\ 0, r \notin I \end{cases}$$

$$\tilde{k}_n = \frac{\pi n}{r_2 - r_1}$$
, $\tilde{\omega}_n = \sqrt{\tilde{k}_n^2 + 1}$,

Initial wavepacket is defined f_n – initial Fourier amplitudes. For wavepackets propagating to the left we expect

$$\chi_i(t,r) = \begin{cases} \sum_{n=1}^{i_2-i_1} \tilde{f}_n \sin\left(\tilde{k}_n(r-r_1) + \tilde{\omega}_n(t-t_{in})\right), & r \in [r_1, r_2] \\ 0, r \notin [r_1, r_2]. \end{cases}$$

Going to the classical boundary

Our aim – absolute minimum (maximum) of \tilde{N}_f at fixed \tilde{N}_i , \tilde{E}

Stochastic sampling technique

- Rebbi, Singleton '96
- ightharpoonup Generate ensemble of classical solution with \tilde{N}_i with a weight

$$p \sim \mathrm{e}^{-F}$$
 , where $F = eta \left(ilde{ extsf{N}}_{\!f} + \xi (ilde{E} - ilde{E}_*)^2
ight)$

- ▶ At large positive β and ξ the ensemble will be dominated by solutions having small F, i.e. close to \tilde{N}_f^{min} and E_*
- to reach \tilde{N}_f^{max} one takes $\beta, \xi < 0$

To generate such ensemble we use Metropolis Monte Carlo:

- 1. generate f_n at random a solution with $\tilde{N}_i = \text{fixed}$, \tilde{E} , \tilde{N}_f
- 2. make a change $f_n \to f_n' = f_n + \Delta f_n$ normalize to have the same \tilde{N}_i , evolve in time and find \tilde{E}^{new} , \tilde{N}_f^{new}
- 3. Compute ΔF ; solution is accepted with $p_{acc} = \min(1, e^{-\Delta F})$
- 4. increase ξ , decrease "temperature" $\beta_i = \beta_0 \log (1+i)$

$ilde{N}_i=1$, classically allowed region; R=20, $N_{\!\scriptscriptstyle X}=400$

The picture is a combination of several runs with different $\frac{\tilde{E}_*}{\tilde{N}_i}=1.5,2.0,...,9.5,10.0,11.0,...,20.0$

The obtained region has a smooth envelopes, $\tilde{N}_f^{min}(\tilde{E})$ and $\tilde{N}_f^{max}(\tilde{E})$, which represent the boundary of the classically allowed region

$ilde{ extsf{N}}_i = 1$, example of solution

Typical time evolution (upper boundary solution at $\tilde{E} \approx 6.0$)

Initial wave packet has a sharp (spiky) part and soft oscillatory part

$ilde{N}_i=1$, energy and particle number

Actual change in $\tilde{N}(t)$ occurs when the sharpest part of the wavepacket reaches the interaction region

$ilde{ ilde{N}_i}=1$, initial wavepackets at different energies

$ilde{N}_i = 1$, energy distribution per wave number unit

We observe expected softening of the energy distributions for the final wave packet as compared to the initial one

$ilde{N}_i=1$, lattice dependence

$ilde{ extcircle{N}_i}=1$, examples (upper boundary), L=30, $extcircle{N}_{\!\scriptscriptstyle X}=600$

$ilde{N}_i = 0.1$, classically allowed region, L = 30, $N_{\!\scriptscriptstyle X} = 600$

Maximal change in particle number is more than two order of magnitude smaller than for the case $\tilde{N}_i=1$ for the same \tilde{E}/\tilde{N}_i . Form of the boundary solutions is the same (single spiky part and oscillating tail)

$ilde{N}_i = 10.0$, classically allowed region, L = 30, $N_{\!\scriptscriptstyle X} = 600$

- The boundary consists of two different branches of classical solutions.
- Initial configuration consists of 2-3 similar but space shifted configurations.

$ilde{ ilde{N}_i} = 10.0$, examples (lower boundary)

$ilde{N}_i = 30.0$, classically allowed region

- ▶ Boundary solutions contain 4–7 spikes in the initial (and final) wavepackets.
- ► Task becomes complicated many local minima, which correspond to solutions with larger distances between spikes in the initial wavepackets.

$ilde{N}_i = 30.0$, examples (upper and lower boundaries)

Multiparticle production

Large \tilde{N}_i limit

- If there are solutions with $(\tilde{N}_i^{(1)}, \tilde{N}_f^{(1)}, \tilde{E}^{(1)})$ and $(\tilde{N}_i^{(2)}, \tilde{N}_f^{(2)}, \tilde{E}^{(2)})$, than a solution with $(\tilde{N}_i^{(1)} + \tilde{N}_i^{(2)}, \tilde{N}_f^{(1)} + \tilde{N}_f^{(2)}, \tilde{E}^{(1)} + \tilde{E}^{(2)})$ exists
- ▶ Width of the classically allowed region should grow with increase of \tilde{N}_i faster than linear function

An indication on existence of a limiting boundary at $ilde{N}_i o \infty$

Connections to $2 \rightarrow N_f$ scattering

1. Inclusive probability $(N_i, N_f, E \sim \frac{1}{\lambda})$

$$\mathcal{P}(N_i, N_f, E) = \sum_{i, f} \left| \langle i | \hat{P}_{N_i} \hat{S} \hat{P}_{N_f} \hat{P}_E | f \rangle \right|^2$$

Consider two subprocesses with different \tilde{N} and \tilde{E} $\mathcal{P}(N_i^{(1)} + N_i^{(2)}, N_f^{(1)} + N_f^{(2)}, E^{(1)} + E^{(2)}) \ge \mathcal{P}(N_i^{(1)}, N_f^{(1)}, E^{(1)}) \mathcal{P}(N_i^{(2)}, N_f^{(2)}, E^{(2)})$

In particular, $\mathcal{P}(2+N,2N,E+E_0) \geq \mathcal{P}(2,N,E)\mathcal{P}(N,N,E_0)$ As $\mathcal{P}(N,2N,E+E_0)$ is suppressed, $\mathcal{P}(2,N,E)$ is also suppressed

2. *T*-invariance:

$$\mathcal{P}(N_i, N_f, E) = \mathcal{P}(N_f, N_i, E)$$

As $\mathcal{P}(N,2,E)$ is suppressed , then $\mathcal{P}(2,N,E)$ is also suppressed

Conclusions and plans

- We obtain classically allowed regions for processes describing O(3)-symmetric scattering of waves in unbroken scalar ϕ^4 theory and study properties of boundary solutions at different \tilde{N}_i
- ▶ Our results indicate on existence of limiting (at $\tilde{N}_i \to \infty$) boundary region of classically allowed transitions, which implies suppression of $2 \to N$ processes at any N (not only at small λN)
- We plan to calculate suppression exponent semiclassically starting with processes $\tilde{N}_i \to \tilde{N}_f$. The problem is reduced to solution of a corresponding semiclassical boundary value problem and by taking $\tilde{N}_i \to 0$. When approaching the boundary of the classically allowed region the suppression exponent should go to zero which can be used as a check of our procedure.

Thank you!