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Some known results on multiparticle production

Scalar field φ(~x , t) in (3 + 1)
dimensions

L = 1
2 (∂µφ)2 − m2

2 φ
2 − λ

4φ
4

Tree level calculations of
1→ N scattering amplitude:

Cornwall ’90, Goldberg ’90, Voloshin ’92, Brown ’92

Atree
1→N(E = Nm) = N!

(
λ

8m2

)N−2
2

Ptree
1→N ∼ N!λNeNf (E) ∼ exp( 1

λF (λN, E)), E = E−Nm
N

Semiclassical methods:
Rubakov, Tinyakov ’92, Son ’96

Bezrukov, Libanov, Troitsky ’95

Loop corrections, λN ∼> 1

Unitarity-base arguments, Zakharov ’91

Relativistic regime E � 1
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Behaviour of Pfew→N is unknown at large λN ∼> 1 and E
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Going to classical transitions

V.Rubakov, D.T.Son ’1994

C.Rebbi, R.Singleton ’1995, S.D., Levkov ’2011

I Let us study not few → N but Ni → Nf processes with large
Ni and Nf – initial and final states are semiclassical

I Ni ,Nf � 1 we have classical counterpart – classical scattering
of waves – classical solutions which linearize at t → ±∞

I Classical solution with Ni ,Nf and E exists – classically allowed
process – probability is exponentially unsuppressed

I Classical transition with Ni ,Nf and E is forbidden – probability
is exponentially suppressed
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Setup

We rescale x → m−1x and φ→
√

m2

λ φ

S [φ] = 1
λ

∫
d4x

[
1
2 (∂µφ)2 − 1

2φ
2 − 1

4φ
4
]
.

We limit ourselves to spherically symmetric case:
φ(t, r) = 1

r χ(t, r), χ(t, r = 0) = 0

S = 4π
λ

∫
dtdr

[
1
2

(
∂χ
∂t

)2
− 1

2

(
∂χ
∂r

)2
− χ2

2 −
χ4

4r2

]
We restrict the system to r ∈ [0,R] with ∂rχ(t, r = R) = 0

χ(t, r) =
∑∞

n=0 cn(t)
√

2
R sin knr ,

Equations of motion

c̈n +ω2
ncn + In = 0 , In =

√
2
R

∫ R
0 dr χ

3(t,r)
r2 sin knr n = 0, 1, ...
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Setup

We consider solutions which linearize at initial and final times

cn(t)→

{
1√
2ωn

(
ane−iωnt + a∗neiωnt

)
as t → −∞

1√
2ωn

(
bne−iωnt + b∗neiωnt

)
as t → +∞

Energy

E = 4π
λ

∑
n ωn |an|2 = 4π

λ

∑
n ωn |bn|2 .

Particle numbers

Ni = 4π
λ

∑
n |an|

2 , Nf = 4π
λ

∑
n |bn|

2

Notations

Ẽ = λ
4πE , Ñi = λ

4πNi , Ñf = λ
4πNf .

I Truncate Fourier expansion to n = Nx = 400, 600 with
R = 20, 30

I Numerically solve equations, Bulirsch-Stoer method
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Initial conditions

We take initial conditions which
correspond to localized wavepackets in
I ≡ [r1, r2]

χ(r) =

{∑
fn sin

(
k̃n(r − r1)

)
, r ∈ I

0, r /∈ I

k̃n = πn
r2−r1

, ω̃n =
√
k̃2
n + 1,

0 r1 r2 R

log P tree
1→N

Initial wavepacket is defined fn – initial Fourier amplitudes.
For wavepackets propagating to the left we expect

χi (t, r) =

{∑i2−i1
n=1 f̃n sin

(
k̃n(r − r1) + ω̃n(t − tin)

)
, r ∈ [r1, r2]

0, r /∈ [r1, r2] .
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Going to the classical boundary

Our aim – absolute minimum (maximum) of Ñf at fixed Ñi , Ẽ
Rebbi, Singleton ’96I Stochastic sampling technique

I Generate ensemble of classical solution with Ñi with a weight

p ∼ e−F ,where F = β
(
Ñf + ξ(Ẽ − Ẽ∗)

2
)

I At large positive β and ξ the ensemble will be dominated by
solutions having small F , i.e. close to Ñmin

f and E∗
I to reach Ñmax

f one takes β, ξ < 0

To generate such ensemble we use Metropolis Monte Carlo:
1. generate fn at random – a solution with Ñi = fixed, Ẽ , Ñf

2. make a change fn → f ′n = fn + ∆fn – normalize to have the
same Ñi , evolve in time and find Ẽnew , Ñnew

f

3. Compute ∆F ; solution is accepted with pacc = min
(
1, e−∆F

)
4. increase ξ, decrease “temperature” βi = β0 log (1 + i)
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Ñi = 1, classically allowed region; R = 20, Nx = 400
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The picture is a combination of several runs with different
Ẽ∗
Ñi

= 1.5, 2.0, ..., 9.5, 10.0, 11.0, ..., 20.0

The obtained region has a smooth envelopes, Ñmin
f (Ẽ ) and

Ñmax
f (Ẽ ), which represent the boundary of the classically allowed

region

Multiparticle production 8



empty
Ñi = 1, example of solution

Typical time evolution (upper boundary solution at Ẽ ≈ 6.0)
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Initial wave packet has a sharp (spiky) part and soft oscillatory part
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Ñi = 1, energy and particle number
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Actual change in Ñ(t) occurs when the sharpest part of the
wavepacket reaches the interaction region
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Ñi = 1, initial wavepackets at different energies
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Ñi = 1, energy distribution per wave number unit
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We observe expected softening of the energy distributions for the
final wave packet as compared to the initial one
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Ñi = 1, lattice dependence
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Ñi = 1, examples (upper boundary), L = 30, Nx = 600
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Ñi = 0.1, classically allowed region, L = 30, Nx = 600
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Maximal change in particle number is more than two order of
magnitude smaller than for the case Ñi = 1 for the same Ẽ/Ñi .
Form of the boundary solutions is the same (single spiky part and
oscillating tail)
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Ñi = 10.0, classically allowed region, L = 30, Nx = 600
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I The boundary consists of two different branches of classical
solutions.

I Initial configuration consists of 2-3 similar but space shifted
configurations.
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Ñi = 10.0, examples (lower boundary)
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Ñi = 30.0, classically allowed region
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I Boundary solutions contain 4–7 spikes in the initial (and final)
wavepackets.

I Task becomes complicated – many local minima, which
correspond to solutions with larger distances between spikes in
the initial wavepackets.
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Ñi = 30.0, examples (upper and lower boundaries)
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Results indicate that at large Ñi boundary wavepacketes tend to
consist of more and more space separated wavetrains.
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Large Ñi limit

I If there are solutions with (Ñ
(1)
i , Ñ

(1)
f , Ẽ (1)) and

(Ñ
(2)
i , Ñ

(2)
f , Ẽ (2)), than a solution with

(Ñ
(1)
i + Ñ

(2)
i , Ñ

(1)
f + Ñ

(2)
f , Ẽ (1) + Ẽ (2)) exists

I Width of the classically allowed region should grow with
increase of Ñi faster than linear function
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An indication on existence of a limiting boundary at Ñi →∞
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Connections to 2→ Nf scattering

1. Inclusive probability (Ni ,Nf ,E ∼ 1
λ)

P(Ni ,Nf ,E ) =
∑

i ,f

∣∣∣〈i |P̂Ni
Ŝ P̂Nf

P̂E |f 〉
∣∣∣2

Consider two subprocesses with different Ñ and Ẽ
P(N

(1)
i +N

(2)
i ,N

(1)
f +N

(2)
f ,E (1) + E (2)) ≥ P(N

(1)
i ,N

(1)
f ,E (1))P(N

(2)
i ,N

(2)
f ,E (2))

In particular, P(2 + N, 2N,E + E0) ≥ P(2,N,E )P(N,N,E0)
As P(N, 2N,E + E0) is suppressed, P(2,N,E ) is also suppressed

2. T–invariance:

P(Ni ,Nf ,E ) = P(Nf ,Ni ,E )

As P(N, 2,E ) is suppressed , then P(2,N,E ) is also suppressed
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Conclusions and plans

I We obtain classically allowed regions for processes describing
O(3)-symmetric scattering of waves in unbroken scalar φ4

theory and study properties of boundary solutions at different
Ñi

I Our results indicate on existence of limiting (at Ñi →∞)
boundary region of classically allowed transitions, which
implies suppression of 2→ N processes at any N (not only at
small λN)

I We plan to calculate suppression exponent semiclassically
starting with processes Ñi → Ñf . The problem is reduced to
solution of a corresponding semiclassical boundary value
problem and by taking Ñi → 0. When approaching the
boundary of the classically allowed region the suppression
exponent should go to zero which can be used as a check of
our procedure.
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Thank you!
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