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Introduction.

When compactifying the Superstring theory on a Calabi-Yau (CY)
threefold X, the low-energy effective theory is defined in terms of
the Special Kahler geometry of the CY moduli space.

It is known that the Kahler potential given by the logarithm the
holomorphic volume of Calabi-Yau manifold Xy:

G(0) .5 = 9205 K(9, 9),

e K = QAQ,
Xo

This can be rewritten in terms of periods of 2 as:

wu(@) = Q, qu € H3(X,R).

du

e N = wu(9) Cuw m?

where C,, = [qu] N [g.] is an intersection matrix of 3-cycles.



New approach

In practice, computation of periods in the symplectic basis is a very
complicated problem and was done explicitly only in few examples.

I'l present a new method to easily compute the Kahler metric for
the large class of CY defined as hypersurfaces in weighted
projective spaces.

The method uses the Correspondence between the Hodge structure
on the middle cohomology of CY manifolds and the structure
of the Invariant Frobenius Ring associated with CY manifolds.

This correspondence is realized by Oscillatory integral presentation
for the periods of the holomorphic Calabi-Yau 3-form.

Trying to clarify this correspondence we obtain the very efficient
method for computing Special geometry on the Moduli space.



Correspondence of the Hodge structure of H3(X) and R€.

Let X CY manifold realized as the zero-set of a quasi-homogeneous
polynomial W(x) in weighted P*. Cohomology H3(X) with Hodge
decomposition H3(X) = H39(X) @ H2Y(X) @ HY?(X) @ HO3(X),
the complex conjugation and Poincare pairing is isomorphic to the
invariant Milnor ring R? defined by W/(x) with its Hodge
decomposition given by the degree grading, antiholomorphic
involution M and the residue pairing 7).

From this fact we get the formula for Kahler potential K(¢)
e M@ = ,(¢) nur M, 00(9).

o,(¢) are periods computed as oscillatory integrals,
N 1S a residue pairing in the Milnor ring,
M,,., is the antiholomorphic involution of the ring R@.

All the three 0,,(¢), 1y, M, can be efficiently computed.
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Example. 101-d moduli space of Quintic threefold

Quintic CY manifold X be given as a solution of the equation
101

Zx —i—Z(bsts' =

5
s=(s1,52,53,54,55), 0 < 57 < 3, deg(s) :=) ;_;5 =5.
The complex structures Kahler potential in this case is

203 1
e K@) — Z 1)dee(m)/5 H (“' i > RO
n=0
SCRIP Ol IE= = o |
ni,...,ns >0 =1 5 mex, s
/L:(M17M27/'L37,u4nu5)1 0<pui <3, Zi:l pi =0,5,10,15.

v(x) = T1—x) Yo ={ms| zs:mssi =5n; + i}
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CY as the hypersurface in the weighted projective space

Let x1,...,x5 be homogeneous coordinates in the weighted
projective space P‘(‘kl ks) and Calabi-Yau X defined as

X={x1,...,xs €P{ 4| Wo(x) =0}
For some quasi-homogeneous polynomial Wy(x),
Wo()\k"x,-) = )\d Wo(X,')
and

5
deg Wo(x) =d => k;.
i=1

The last relation ensures that X is a CY manifold.
The moduli space of complex structures is then given by
homogeneous polynomial deformations of this singularity:

hy1—1

W(x, ) = Wo(x) + Y ¢ses(x),
s=0

where es(x) are monomials of x which have the same degree d.



Hodge structure on middle cohomology

The holomorphic everywhere non-vanishing 3-form € is defined as
xsdx1 A dxo A dxs

Q=
OW(x)/0xa
Periods of Q, needed for our goal are integrals over cycles of
H3(X7 R)
wu(¢) = Q, qu € H3(X’R)'

Au
H3(X) possesses Hodge structure H3(X) = @3_,H3~kk(X),

dim H39(X) = dim H%3(X) = 1, dim H*>1(X) = dim H}?(X) = h*1.

Poincaré pairing can be written through integrals over cycles g, as

n(xa,Xb)z/ Xa/\Xb:/ Xa CW/ Xbs
X qu v

is invariant with respect to complex conjugation (p, g)-forms.
Cuw = [qu] N [gu] is the intersection matrix of 3-cycles.
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Q-invariant Milnor ring

On the other hand the polynomial Wy(x) defines a Milnor ring Ry.
We consider its subring R invariant in respect to the symmetry
group @, that acts on C® diagonally and preserves W(x, ¢)

X{.+"+ . Xt Q
RQ:<W> L Jac(We) = (9:Wo)2,y.

R? becomes Frobenius ring if it endowed with pairing

ea(x)es(x) d5x.
H,Nzl 0;Wo(x)

dim R® = dim H3(X) and R? has the Hodge structure
in correspondence with degrees 0, d, 2d, 3d of its elements

n(ex, e3) = Res

RO — (RQ)O ® (RQ)l & (RQ)2 ® (RQ)3

. dim(R?)? =dim(R?)3 =1, dim(R?)! =dim(R®Q)? = p?1
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@—invariant cohomology H2_(C®)in,
By the next step we define two differentials D4
Di=d+dWpA, (Di)>=0

and two groups of Q—invariant cohomology HE’)i (C%) .

These groups inherit the grading degree structure from R<.
Choosing in the ring R? some basis {e,(x)} we take {e,(x)dx}
as a basis of Hp, (C°)q.

These cohomology groups are in one-to-one correspondence with
the middle cohomology group € H3(X)(Candelas 1988).

This isomorphism, defined below, maps the components
H3~99(X) to the Hodge decomposition components of H3(C%)q
spanned by e, (x) d®x with e,(x) € (R)9.

It also maps the Poincare pairing of differential forms to X to the
pairing 1(ea, €g) on the invariant ring RQ.
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Q-invariant relative homology and oscilatory integrals

Having Hgi (C®)g we define two Q-invariant the relative homology

groups fHSi’Q := Hs(C®, ReWp = L — +0c0)q as a quotient of the
relative homology group Hs(C®, ReWp = L — +00).

For this purpose we define the pairing via oscillatory integrals

<Q,jf,e,,(x)d5x> ::/ e,(x) eTWddx.

Qr

Using this pairing we define the relative invariant homology groups
329 to be the quotient of Hs(C3 Wy = L, Rel — +00)

by its subspace whose elements are ortogonal to

all elements of Hp, (C°)q.



Hs(X) versus R® correspondence

The crucial fact for further is that R? and H3(X) and all their
additional structures on these rings are isomorhic to each other.

First of all there exists an isomorphism S of cycles for each ¢ this
gives
S(QN) =qu QF €39, gu € Hy(X,2).

The isomorphism is defined by the oscilatory integrals as follows.
Let {g,} is a basis of H3(X,Z), then the basis fo of J—CEE’Q can be
choosen in such a way that the integrals over the corresponding
cycles of these bases are equal

/ Q4 = / e TW(x9) q
qu Q



H>(X) versus Hp_(C®)in, correspondence

Having isomorphism between H3(X) and iH;E’Q we define
the isomorphism between the two cohomology groups
H3(X) and Hp, (C®)q also with help of oscilatory integrals.

Namely, take the basis of cycles g, € H3(X) and the corresponding

to them basis of cycles Qljf € 5—C5i’Q at ¢ = 0, then the form
Xa € H3(X) corresponds to the form e, (x) d°x € Hp, (C°)q if

/ Xa—/ x) €FW(x9) 5 ¢
qdu Q

for all pairs {q,, Q.}
So these two forms are isomorphic if they have the equal
coordinates (that is, periods) in some isomorphic bases.

This isomorphism preserves Hodge decomposition (Candelas).
The pairing of the form € H3(X) and the pairing
of the elements € R? coincide.



Coincidence of two pairings

To show this, we rewrite the Poincaré pairing of xa, x5 in H3(X),

< Xa)Xb >:=/ Xa A\ Xb
X

as as the bilinear expression of periods

< Xas Xb >—/ Xa CW/ Xbs
q v

where C,, = g, N q, is the intersection matrix of the cycles.
On the other hand the residue pairing 7)(e,, ) in the ring R can
be written through the periods (Chiodo et al) as:

n(ea, ep) = /+ ese” W05 CW/ epe VP @5x,
Qy, Q;,L

where C,, = LZ N L, is the same as above.
Comparing two expressions from the eguality for periods we obtain

n

< Xas Xb >=1(€a, €p).

We will use the relation between n(e,, e5) and C,, below for
explicitly finding the intersection matrix in terms of R pairing.



Anti-Involution * on R¥

The same isomorphism allows to define a complex conjugation
on the Q-invariant cohomology HL‘F’)i (C>)iny-

Let the form ¢, € H3(X) corresponds to {e,(x)} € R and let
*Gu = My,

then R? inherits this involution.

For the basis {e,(x)} the antiholomorphic operation * reads as

* e,(x) = My e (x).

From this definition and since (¥)2 = I, it follows that MM = |.
It is convenient to introduce the special basis Fff dual to the basis
{eu(x)} such that:

(I'i, e (x)d°x) = /i e,(x) eTMMN s x =4,
M
This definition induces the antiholomorphic operation * on Fﬁ

*ri M, TE



+ +,Q
The cycles '}, belongs to homology group 33
with complex coefficients.
If we define T as a transition matrix from cycles I_ff to an arbitrary
real basis of cycles, say, Lefschetz thimbles L = xL

+ +
Ly =Tul,.
Then we have
+ _F +
Ly = Tuw (7).
Comparing this relation with
= My, T3
we obtain for M the useful expression in terms T
M=T71T.
Obviously M does not depend on the choice of real cycles.
Using the definition <Ff, ey (x) d°x) = 0, we obtain the useful
(as we will see) for computing T, (and M,,) relation
Tw = /i e,(x) eT W) qox.
L
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Deriving the main formula for Kahler potential

Now use the CY/RQ correspondence to transform the expression
e = wi(9) Cob w, (9)
where periods given by oscilatory integrals over cycles LF
o) = [ TVEONx = T, 0k(0),
and periods aff(gb) are integrals over cycles rf

+ _ FW(x,9) 15
oE(6) = /r e .

We have also the expression for pairing on R? through the same
periods wX(4) in ¢ =0

n(eu e) = / ene” "dx Cop / e, x = T, Cap Ty
LT Ly
Excluding from these relations the matrix C,, we obtain finally

e K@) — Z o, (9) Nur My 03 ().

w.ru\




Example. Quintic threefold

In this case CY manifold X is given by the equation

X={(x1:---:x) €P*| W(x, ) =0},

100
W(x,9) = Wo(x) + Y _ dree(x), Wo(x) = X7 + 53 +5 + 3 + X3
t=0

and e;(x) are the degree 5 monomials such that each variable has
the power that is a non-negative integer less then four.

Here monomials e;(x) = x{'x2x5°xg* %, (t:= (t1,- - , t5)).
There are precisely 101 of such monomials, which can be divided
into 5 sets in respect to the permutation group Ss: (1,1,1,1,1),
(2,1,1,1,0), (2,2,1,0,0), (3,1,1,0,0), (3,2,0,0,0).

In these groups there are 1, 20, 30, 30, 20 different monomials.

We denote ep(x) := €(1,1,1,1,1)(X) = x1x2x3x4%5 to be the so-called
fundamental monomial, which will be somewhat distinguished in
our picture. For Quintic dim H3(X) = 204.



We can consider Wy(x) as an isolated singularity in C°.
Then we have an associated Milnor ring

_ Clxq, -+, xs]
o= ""aw)

For Quintic threefold X its Milnor ring Ry is generated as a vector
space by monomials where each variable has degree less than four,
and its dim Ry = 1024.

Polynomial Wy(x) is homogeneous and, in particular,
Wo(axi, ... ,axs) = Wo(xi,...,xs) for a® = 1.

This action preserves W(x) and is trivial in the corresponding
projective space and on X.

Such a group with this action is called the quantum symmetry Q.
In this case Q ~ Zs.



Milnor Ring

Quantum group Q obviously acts on the Milnor ring Rp.
We define a subring R in the Milnor ring Ry,

R? := {e.(x) € Ro | eu(ax) = eu(x)}, a® =1,

to be a Q-invariant part of the Milnor ring. dim RQ = 204.
It is multiplicatively generated by the fifth degree monomials e;(x).

More precisely, R consists of elements of degree 0,5,10 and 15,
dimensions of the corresponding subspaces are 1,101,101 and 1.
This degree grading defines a Hodge structure on R9.

dim R? = dim H3(X)

R is isomorphic to H3(X) and the isomorphism sends the degree
filtration to the Hodge filtration on H3(X) (Candelas).



Phase symmtery and pairing

There is the greater symmetry group Z2 that diagonally acts
on C% a-(x1, ,x5) = (1xq, -+ ,a5x5), a? = 1.

This action preserves Wp = >, x?.

The above quantum symmetry Q is a subgroup of Z2.

Basis {e,(x)} of R¥ is the eigenbasis of the phase symmetry 72
and each e,(x) has a unique weight.

The phase symmetry preserves the Hodge decomposition.

On the invariant ring RY there exists the pairing turning it into a
Frobenius algebra:

el
o = RS T8, Wo(x)

For the monomial basis it is 1, = 6,4..p.



Two cohomology groups

We introduce a couple of differentials which acts on differential
forms on C°: Dy = d F dWp(x)A.

They define the cohomology groups Hp, (C3).

The isomorphism J between Ry and Hpf, (C®) is defined as

J(eu(x)) = eu(x) d°x, eu(x) € Ro.

We see, that Q = Zs naturally acts on Hgi (C5) and J sends the
Q-invariant part R? to Q-invariant subspace Hgi(CS);,,V.

This space obtains the Hodge structure that corresponds to the
Hodge structure on H3(X).

The complex conjugation acts on H3(X) so that

APA(X) = H#(X), in particular FZ1(X) = HL2(X).

Due to the isomorphism between R® and H3(X) the complex
conjugation acts also on the elements of the ring RQ as
xe,(x) = pye,—.(x), where p, is a constant.



Oscillatory representation

Relative homology groups Hs(C®, ReWy = L — £0c0) have a
natural pairing with Q-invariant cohomology groups Hgi (C>)iny:

(M, e,(x)d%x) = /r X e, (x)eT) @S T+ € H5(C5, ReWp = L — +oc

Using this we define two invariant homology groups Héc’i"v as
quotient of H5(C5, ReWy = L — 400) by the subgroups
orthogonal to Hgi((C5),-,,v.

We introduce the special basises I'ff in the homology groups
;"™ by requing their duality to the basises in H3_ (C®)jny:

/ e, (x)eTMMdox =5,

M

and the corresponding periods
0, (0) = /r _ealx)eF VAo,
Ui( ) = UO,u((b)



Computation of periods o,,(¢)

To explicitly compute O';i:(gb), first we expand the exponent in the
integral in ¢ representing W(x, ¢) = Wo(x) + >, dses(x)

O'I:f(ﬁb) = Z/ H er(X)m, e:FWo(X) d5x (H (i¢s)ms) ’
m rf r

mg!
s S

where m := {ms}s, ms > 0 denotes a multi-index of powers of ¢
in the expansion above.

o, (¢) = (=)Mo} (¢), so we focus on o,(¢) := ;5 ().

For each of the summands the form ], es(x)™ d°x
belongs to Hgi((}r’)mv, for it is killed by D, and Q—invariant.
The oscilatory integrals of D, -exact terms are zero, therefore:

[P = [ e P x4 D,0)
i

+
Mo

for any polynomial P(x) and any polynomial 4—form U.



Computation of periods o,,(¢)

Let us denote mgs; = 5n; + v;, v; < 5 for later convenience.
To compute
e—WO(X) H Xi5”i+Vi d5X
r .
r i

we use the trick above with

[ dox =
i

1 Ay
=(-1) <n1 -1+ Vl; ) x>(m=1)+n HXI-E”’JFV’ d®°x+ D U
i>1
, where

1 _ o,
U= gxf"ﬁ”l 4 Hx?”’“’ dxo A -+ Adxg
i>1



Computation of periods o,,(¢)

We can continue this procedure by induction with respect to all n;.
The final result can be compactly written using Pochhammer's
symbols:

. . 1 1 i
i moi

; 5
1
where (a), =T(a+ n)/T'(a).

If any v; = 4 then the differential form is exact and the integral is
zero.

Otherwise, rhs of the equation is proportional to e,(x) and we can
use the definition of I'}:

/ ev(x) e~ Wolx) @5x = S
r+

o



Computation of periods o,,(¢)

Doing in this way and integrating over FZ we obtain the explicite
expression for the periods

SO o A ) ( ")

pi+1l +1
n>0 i mex, s

where

So={m| ) mss=5n+p}
S



Formula for Kahler potential

Pick Lefschetz thimbles Lff as basis of cycles with real coefficients.
Define T as a transition matrix from cycles Ff to Lefschetz
thimbles Lff

e = (T, L.

and compute the transition matrix T, with use of the relation
T :/ e (x) e ()5,
L
Then we obtain for matrix M as
M=T71T

which we need to insert to the expression for Kahler potential
together with 7, = d,, p—..



Lefschetz thimbles

Lefschetz thimbles Llf are products of one-dimensial cycles C,,

Ly =1] Cos

i=1
and Gy, = p% - Cp with p = e2mi/5,
This definition of one-dimensial cycle C,;, means that this cycle is
the path in x;-plane obtained by rotating counter clockwise
through angle p® from the basic path C is depicted on the figure

Co

By construction LT are steepest descent/acsent cycles for ReWp.



Computing the matrices T and M

Now we compute compute T, explicitly
Top = / eue” 0 dx = p T MAu),
L+

where A, is a product of five Gamma-integrals

w117 (57

1 —~(a+1,a
Tﬁa = B(M)[P(MJr ) - 1]

=TT e

Then

i

My, = (T T ) = H’Y (ui;_ 1) Op,p—v
_ ()
v(x) = m



Kahler potential for 101-d moduli space of Quintic

Inserting all these explicit expressions to the formula

KO = o (3)nuMavoy (9)

we obtain the explicit expression for Kahler potential on the full
moduli space of complex structures

203

_ e it+1
o K(9) — Z d g(11)/5 H <“ >|o—u(¢)!2,

n=0

M,+1 Jrnl "
ou(d) = Z H (u,+1 Z H¢

ny,...,ns >0 i=1 mex, s

N:(M17N2aﬂ3vﬂ47l~05), 0< i <3, Z?:]_ Mi = 0757 107 15.

Y(x) = Fa—x) Xp={ms| stsi = 5nj + pi}

S
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Appendix A. Coinsidence of two pairings. Proof.

Following Chiodo et al we prove the second equality
e, epdx
=Res ————— = e C ep eV
Nab esalwmanw Lt a "x uu/ b

Consider a small relevant perturbation of the isolated singularity
W(x,t) = W(x) + > eix;. Then the isolated singularity of W
located in x; = 0 transforms to a set of Morse critical points {p,}.
Consider instead of 1,5, the bilinear form

Nab(t, 2) 3:/ e, e~ Wt)/zqny C;u// ep eV t)/zqny
L+
First of all we notice, that if t = 0, then
Das(t = 0,2) = 2" - nap(t = 0, 1),

We take as basis of cycles Lff the so-called of Lefschetz thimbles.
They start from Morse points p, and goes along the gradient of
ReW(x, t) in the direction of the steepest descent/ascent.

With the proper orientation their intersections are L+ NL, =0,u.



Appendix A. Coincidence of two pairings. Proof.

Then rhs of the equality becomes in this basis:
Z/ e, e—W(X,t)/zan / ep eW(X’t)/zan
Ly Ly
I o i
From stationary phase expansion as z — 0 we obtain for a period:

n/2
/ ea(X) e—W(x,t)/zan — (27TZ)
L

HessW(py,, t)

(ea(pu) + O(2))
Using this we get

(e, 2) = Y ez oo PP (14 0(2)) =

(2miz)" <Res m + O(z)>

It holds for t = 0. Taking into account 1,,(0,2z) = z" - 1,,(0, 1)
we obtain the equality < va, Xp >= n(es, ep).



Appendix B. Kahler potential for the moduli space

The final expression for Kahler potential contains
periods o7 (¢), the pairing 7,,, and the matrix of the
antiholomorphic involution M,

e O =3 " 5(8) mur M, 07 (9),

HVs A

Computing periods aj(gb) with use the oscilating integrals over Fff
and of the cohomology technique is especially simple.

Basis {e,(x)} € R can be choosen such, that the pairing 7 is
antidiagonal or, equivalently, such that to each e,(x)=>¢,/(x) and
eu(x) - e (x) = ey(x), where e,(x) is the element of degree 3d.

Matrix M,,, = (T~ T),, and for this choice is also antidiagonal
xe,(x) d°x = py, e (x) dx.

This simplifies the final expression for K

e K =% " pof () 0 (¢).
w



Appendix C. Special geometry for Fermat hypersurfaces.

Let X is Fermat CY X = {x1,..., x5 € P?kl,...,k5)| W(x,¢) = 0}.

d h21 5

Zx +Z¢5Hx d=> k

i=1
Then Kahler potent|a| on the full Moduli space

e_K(¢) :Z deg M)/dH <k(,ul+1 )‘Uu((b)F?

I

a0 = ¥ Tty S5

ni,...,n5s >0 =1 mex, s

OS/’L/S%_21 Z/:1Mi207d72d73d-
”Y(X):m7 Lp={ms| sts,_ ”:+M:}
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