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Introduction.

When compactifying the Superstring theory on a Calabi–Yau (CY)
threefold X , the low-energy effective theory is defined in terms of
the Special Kähler geometry of the CY moduli space.

It is known that the Kähler potential given by the logarithm the
holomorphic volume of Calabi-Yau manifold Xφ:

G (φ)ab̄ = ∂a∂b K (φ, φ̄),

e−K(φ) =

∫
Xφ

Ω ∧ Ω,

This can be rewritten in terms of periods of Ω as:

ωµ(φ) :=

∫
qµ

Ω, qµ ∈ H3(X ,R).

e−K = ωµ(φ)Cµν ων(φ),

where Cµν = [qµ] ∩ [qν ] is an intersection matrix of 3-cycles.



New approach

In practice, computation of periods in the symplectic basis is a very
complicated problem and was done explicitly only in few examples.

I’l present a new method to easily compute the Kähler metric for
the large class of CY defined as hypersurfaces in weighted
projective spaces.

The method uses the Correspondence between the Hodge structure
on the middle cohomology of CY manifolds and the structure
of the Invariant Frobenius Ring associated with CY manifolds.

This correspondence is realized by Oscillatory integral presentation
for the periods of the holomorphic Calabi-Yau 3-form.

Trying to clarify this correspondence we obtain the very efficient
method for computing Special geometry on the Moduli space.



Correspondence of the Hodge structure of H3(X ) and RQ .

Let X CY manifold realized as the zero-set of a quasi-homogeneous
polynomial W (x) in weighted P4. Cohomology H3(X ) with Hodge
decomposition H3(X ) = H3,0(X )⊕ H2,1(X )⊕ H1,2(X )⊕ H0,3(X ),
the complex conjugation and Poincare pairing is isomorphic to the
invariant Milnor ring RQ defined by W (x) with its Hodge
decomposition given by the degree grading, antiholomorphic
involution M and the residue pairing ηµλ.

From this fact we get the formula for Kähler potential K (φ)

e−K(φ) = σµ(φ) ηµλ Mλν σν(φ).

σµ(φ) are periods computed as oscillatory integrals,

ηµν is a residue pairing in the Milnor ring,

Mµν is the antiholomorphic involution of the ring RQ .

All the three σµ(φ), ηµν , Mµν can be efficiently computed.
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Example. 101-d moduli space of Quintic threefold

Quintic CY manifold X be given as a solution of the equation

W (x , φ) =
5∑

i=1

x5
i +

101∑
s=1

φs
∏
i

x sii = 0

s=(s1, s2, s3, s4, s5), 0 ≤ si ≤ 3, deg(s) :=
∑5

i=1 si = 5.
The complex structures Kähler potential in this case is

e−K(φ) =
203∑
µ=0

(−1)deg(µ)/5
∏

γ

(
µi + 1

5

)
|σµ(φ)|2,

σµ(φ) =
∑

n1,...,n5≥0

5∏
i=1

Γ(µi+1
5 + ni )

Γ(µi+1
5 )

∑
m∈Σn

∏
s

φms
s

ms !
,

µ=(µ1, µ2, µ3, µ4, µ5), 0 ≤ µi ≤ 3,
∑5

i=1 µi = 0, 5, 10, 15.

γ(x) =
Γ(x)

Γ(1− x)
, Σn = {ms |

∑
s

mssi = 5ni + µi}
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CY as the hypersurface in the weighted projective space
Let x1, . . . , x5 be homogeneous coordinates in the weighted
projective space P4

(k1,...,k5) and Calabi-Yau X defined as

X = {x1, . . . , x5 ∈ P4
(k1,...,k5)|W0(x) = 0}.

For some quasi-homogeneous polynomial W0(x),

W0(λki xi ) = λdW0(xi )

and

degW0(x) = d =
5∑

i=1

ki .

The last relation ensures that X is a CY manifold.
The moduli space of complex structures is then given by
homogeneous polynomial deformations of this singularity:

W (x , φ) = W0(x) +

h21−1∑
s=0

φses(x),

where es(x) are monomials of x which have the same degree d .



Hodge structure on middle cohomology

The holomorphic everywhere non-vanishing 3-form Ω is defined as

Ω =
x5dx1 ∧ dx2 ∧ dx3

∂W (x)/∂x4

Periods of Ω, needed for our goal are integrals over cycles of
H3(X ,R)

ωµ(φ) :=

∫
qµ

Ω, qµ ∈ H3(X ,R).

H3(X ) possesses Hodge structure H3(X ) = ⊕3
k=0H

3−k,k(X ),

dimH3,0(X ) = dimH0,3(X ) = 1, dimH2,1(X ) = dimH1,2(X ) = h2,1.

Poincaré pairing can be written through integrals over cycles qµ as

η(χa, χb) =

∫
X
χa ∧ χb =

∫
qµ

χa Cµν

∫
qν

χb,

is invariant with respect to complex conjugation (p, q)-forms.
Cµν = [qµ] ∩ [qν ] is the intersection matrix of 3-cycles.
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Q-invariant Milnor ring

On the other hand the polynomial W0(x) defines a Milnor ring R0.
We consider its subring RQ invariant in respect to the symmetry
group Q, that acts on C5 diagonally and preserves W (x , φ)

RQ =

(
C[x1, · · · , x5]

Jac(W0)

)Q

, Jac(W0) = 〈∂iW0〉5i=1.

RQ becomes Frobenius ring if it endowed with pairing

η(eα, eβ) = Res
eα(x)eβ(x) d5x∏N

i=1 ∂iW0(x)
.

dimRQ = dimH3(X ) and RQ has the Hodge structure
in correspondence with degrees 0, d , 2d , 3d of its elements

RQ = (RQ)0 ⊕ (RQ)1 ⊕ (RQ)2 ⊕ (RQ)3

. dim(RQ)0 = dim(RQ)3 = 1, dim(RQ)1 = dim(RQ)2 = h2,1
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Q−invariant cohomology H5
D±

(C5)inv

By the next step we define two differentials D±

D± = d± dW0∧, (D±)2 = 0

and two groups of Q−invariant cohomology H5
D±

(C5)Q .

These groups inherit the grading degree structure from RQ .
Choosing in the ring RQ some basis {eµ(x)} we take {eµ(x)d5x}
as a basis of H5

D±
(C5)Q .

These cohomology groups are in one-to-one correspondence with
the middle cohomology group ∈ H3(X )(Candelas 1988).

This isomorphism, defined below, maps the components
H3−q,q(X ) to the Hodge decomposition components of H5

±(C5)Q
spanned by eµ(x) d5x with eµ(x) ∈ (RQ)q.

It also maps the Poincare pairing of differential forms to X to the
pairing η(eα, eβ) on the invariant ring RQ .
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Q-invariant relative homology and oscilatory integrals

Having H5
D±

(C5)Q we define two Q-invariant the relative homology

groups H
±,Q
5 := H5(C5, ReW0 = L→ ±∞)Q as a quotient of the

relative homology group H5(C5, ReW0 = L→ ±∞).

For this purpose we define the pairing via oscillatory integrals

〈Q±µ , eν(x)d5x〉 :=

∫
Q±µ

eν(x) e∓W (x)d5x .

Using this pairing we define the relative invariant homology groups
H
±,Q
5 to be the quotient of H5(C5,W0 = L, ReL→ ±∞)

by its subspace whose elements are ortogonal to
all elements of H5

D±
(C5)Q .



H3(X ) versus RQ correspondence

The crucial fact for further is that RQ and H3(X ) and all their
additional structures on these rings are isomorhic to each other.

First of all there exists an isomorphism S of cycles for each φ this
gives

S(Q+
µ ) = qµ, Q+

µ ∈ H
±,Q
5 , qµ ∈ H3(X ,Z).

The isomorphism is defined by the oscilatory integrals as follows.
Let {qµ} is a basis of H3(X ,Z), then the basis Q±µ of H±,Q5 can be
choosen in such a way that the integrals over the corresponding
cycles of these bases are equal∫

qµ

Ωφ =

∫
Q±µ

e∓W (x ,φ) d5x .



H3(X ) versus H5
D±

(C5)inv correspondence

Having isomorphism between H3(X ) and H
±,Q
5 we define

the isomorphism between the two cohomology groups
H3(X ) and H5

D±
(C5)Q also with help of oscilatory integrals.

Namely, take the basis of cycles qµ ∈ H3(X ) and the corresponding

to them basis of cycles Q±µ ∈ H
±,Q
5 at φ = 0, then the form

χα ∈ H3(X ) corresponds to the form eα(x) d5x ∈ H5
D±

(C5)Q if∫
qµ

χα =

∫
Q±µ

eα(x) e∓W (x ,φ) d5x

for all pairs {qµ,Qµ}.
So these two forms are isomorphic if they have the equal
coordinates (that is, periods) in some isomorphic bases.

This isomorphism preserves Hodge decomposition (Candelas).
The pairing of the form ∈ H3(X ) and the pairing
of the elements ∈ RQ coincide.



Coincidence of two pairings

To show this, we rewrite the Poincaré pairing of χa, χb in H3(X ),

< χa, χb >:=

∫
X
χa ∧ χb

as as the bilinear expression of periods

< χa, χb >=

∫
qµ

χa Cµν

∫
qν

χb,

where Cµν = qµ ∩ qν is the intersection matrix of the cycles.
On the other hand the residue pairing η(ea, eb) in the ring RQ can
be written through the periods (Chiodo et al) as:

η(ea, eb) =

∫
Q+

µ

eae
−W (x ,φ)d5x Cµν

∫
Q−µ

ebe
W (x ,φ)d5x ,

where Cµν = L+
µ ∩ L−ν is the same as above.

Comparing two expressions from the eguality for periods we obtain

< χa, χb >= η(ea, eb).

We will use the relation between η(ea, eb) and Cµν below for
explicitly finding the intersection matrix in terms of RQ pairing.



Anti-Involution ∗ on RQ

The same isomorphism allows to define a complex conjugation ∗
on the Q-invariant cohomology H5

D±
(C5)inv .

Let the form φµ ∈ H3(X ) corresponds to {eµ(x)} ∈ RQ and let

∗φµ = Mνµφν

then RQ inherits this involution.
For the basis {eµ(x)} the antiholomorphic operation ∗ reads as

∗ eµ(x) = Mνµeν(x).

From this definition and since (∗)2 = I , it follows that M̄M = I .
It is convenient to introduce the special basis Γ±µ dual to the basis
{eµ(x)} such that:

〈Γ±µ , eν(x)d5x〉 =

∫
Γ±µ

eν(x) e∓W0(x)d5x = δµν .

This definition induces the antiholomorphic operation ∗ on Γ±µ

∗Γ±µ = M̄µνΓ±ν

.



The cycles Γ±µ belongs to homology group H
±,Q
5

with complex coefficients.
If we define T as a transition matrix from cycles Γ±µ to an arbitrary
real basis of cycles, say, Lefschetz thimbles L±µ = ∗L±µ

L±µ = TµνΓ±ν .

Then we have
L±µ = Tµν (∗Γ±ν ).

Comparing this relation with

∗Γ±µ = M̄µν Γ±ν ,

we obtain for M the useful expression in terms T

M = T−1T̄ .

Obviously M does not depend on the choice of real cycles.
Using the definition 〈Γ±µ , eν(x) d5x〉 = δµν we obtain the useful
(as we will see) for computing Tµν (and Mµν) relation

Tµν =

∫
L±µ

eν(x) e∓W0(x)d5x .
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Deriving the main formula for Kähler potential

Now use the CY /RQ correspondence to transform the expression

e−K = ω+
b (φ) Cab ω

−
b (φ)

where periods given by oscilatory integrals over cycles L±a

ω±a (φ) =

∫
L±a

e∓W (x ,φ)d5x = Taµσ
±
µ (φ),

and periods σ±µ (φ) are integrals over cycles Γ±µ

σ±µ (φ) =

∫
Γ±µ

e∓W (x ,φ)d5x .

We have also the expression for pairing on RQ through the same
periods ω±a (φ) in φ = 0

η(eµ, eν) =

∫
L+
a

eµe
−W0(x)d5x Cab

∫
L−b

eνe
W0(x)d5x = TaµCabTbν

Excluding from these relations the matrix Cab we obtain finally

e−K(φ) =
∑
µ,ν,λ

σ+
µ (φ) ηµλ Mλν σ

−
ν (φ).



Example. Quintic threefold

In this case CY manifold X is given by the equation

X = {(x1 : · · · : x5) ∈ P4 |W (x , φ) = 0},

W (x , φ) = W0(x) +
100∑
t=0

φtet(x), W0(x) = x5
1 + x5

2 + x5
3 + x5

4 + x5
5

and et(x) are the degree 5 monomials such that each variable has
the power that is a non-negative integer less then four.
Here monomials et(x) = x t1

1 x t2
2 x t3

3 x t4
4 x t5

5 , ( t := (t1, · · · , t5)).

There are precisely 101 of such monomials, which can be divided
into 5 sets in respect to the permutation group S5: (1, 1, 1, 1, 1),
(2, 1, 1, 1, 0), (2, 2, 1, 0, 0), (3, 1, 1, 0, 0), (3, 2, 0, 0, 0).
In these groups there are 1, 20, 30, 30, 20 different monomials.

We denote e0(x) := e(1,1,1,1,1)(x) = x1x2x3x4x5 to be the so-called
fundamental monomial, which will be somewhat distinguished in
our picture. For Quintic dimH3(X ) = 204.



Q-nvariant Ring

We can consider W0(x) as an isolated singularity in C5.
Then we have an associated Milnor ring

R0 =
C[x1, · · · , x5]

〈∂iW 〉
.

For Quintic threefold X its Milnor ring R0 is generated as a vector
space by monomials where each variable has degree less than four,
and its dimR0 = 1024.

Polynomial W0(x) is homogeneous and, in particular,
W0(αx1, . . . , αx5) = W0(x1, . . . , x5) for α5 = 1.
This action preserves W (x) and is trivial in the corresponding
projective space and on X .

Such a group with this action is called the quantum symmetry Q.
In this case Q ' Z5.



Milnor Ring

Quantum group Q obviously acts on the Milnor ring R0.
We define a subring RQ in the Milnor ring R0,

RQ := {eµ(x) ∈ R0 | eµ(αx) = eµ(x)}, α5 = 1,

to be a Q-invariant part of the Milnor ring. dimRQ = 204.
It is multiplicatively generated by the fifth degree monomials et(x).

More precisely, RQ consists of elements of degree 0, 5, 10 and 15,
dimensions of the corresponding subspaces are 1, 101, 101 and 1.
This degree grading defines a Hodge structure on RQ .

dimRQ = dimH3(X )

RQ is isomorphic to H3(X ) and the isomorphism sends the degree
filtration to the Hodge filtration on H3(X ) (Candelas).



Phase symmtery and pairing

There is the greater symmetry group Z5
5 that diagonally acts

on C5: α · (x1, · · · , x5) = (α1x1, · · · , α5x5), α5
i = 1.

This action preserves W0 =
∑

i x
5
i .

The above quantum symmetry Q is a subgroup of Z5
5.

Basis {eµ(x)} of RQ is the eigenbasis of the phase symmetry Z5
5

and each eµ(x) has a unique weight.
The phase symmetry preserves the Hodge decomposition.
On the invariant ring RQ there exists the pairing turning it into a
Frobenius algebra:

ηµν = Res
eµ(x) eν(x)∏

i ∂iW0(x)
.

For the monomial basis it is ηµν = δµ+ν,ρ.



Two cohomology groups
We introduce a couple of differentials which acts on differential
forms on C5 : D± = d∓ dW0(x)∧.
They define the cohomology groups H∗D±(C5).

The isomorphism J between R0 and H∗D±(C5) is defined as

J(eµ(x)) = eµ(x)d5x , eµ(x) ∈ R0.

We see, that Q = Z5 naturally acts on H5
D±

(C5) and J sends the

Q-invariant part RQ to Q-invariant subspace H5
D±

(C5)inv .

This space obtains the Hodge structure that corresponds to the
Hodge structure on H3(X ).

The complex conjugation acts on H3(X ) so that
Hp,q(X ) = Hq,p(X ), in particular H2,1(X ) = H1,2(X ).

Due to the isomorphism between RQ and H3(X ) the complex
conjugation acts also on the elements of the ring RQ as
∗eµ(x) = pµeρ−µ(x), where pµ is a constant.



Oscillatory representation

Relative homology groups H5(C5, ReW0 = L→ ±∞) have a
natural pairing with Q-invariant cohomology groups H5

D±
(C5)inv :

〈Γ±, eµ(x)d5x〉 =

∫
Γ±

eµ(x)e∓W0(x)d5x , Γ± ∈ H5(C5, ReW0 = L→ ±∞).

Using this we define two invariant homology groups H
±,inv
5 as

quotient of H5(C5, ReW0 = L→ ±∞) by the subgroups
orthogonal to H5

D±
(C5)inv .

We introduce the special basises Γ±µ in the homology groups

H
±,inv
5 by requing their duality to the basises in H5

D±
(C5)inv :∫

Γ±µ

eν(x)e∓W0(x)d5x = δµν

and the corresponding periods

σ±αµ(φ) :=

∫
Γ±µ

eα(x)e∓W (x ,φ)d5x ,

σ±µ (φ) := σ±0µ(φ).



Computation of periods σµ(φ)

To explicitly compute σ±µ (φ), first we expand the exponent in the
integral in φ representing W (x , φ) = W0(x) +

∑
s φses(x)

σ±µ (φ) =
∑
m

∫
Γ±µ

∏
r

er (x)mr e∓W0(x) d5x

(∏
s

(±φs)ms

ms !

)
,

where m := {ms}s , ms ≥ 0 denotes a multi-index of powers of φs
in the expansion above.
σ−µ (φ) = (−1)|µ|σ+

µ (φ), so we focus on σµ(φ) := σ+
µ (φ).

For each of the summands the form
∏

s es(x)ms d5x
belongs to H5

D±
(C5)inv , for it is killed by D+ and Q−invariant.

The oscilatory integrals of D+-exact terms are zero, therefore:∫
Γ+
µ

e−W0(x)P(x) d5x =

∫
Γ+
µ

e−W0(x)(P(x) d5x + D+U)

for any polynomial P(x) and any polynomial 4−form U.



Computation of periods σµ(φ)

Let us denote mssi = 5ni + νi , νi < 5 for later convenience.
To compute ∫

Γ+
µ

e−W0(x)
∏
i

x5ni+νi
i d5x

we use the trick above with∏
i

x5ni+νi
i d5x =

= (−1)

(
n1 − 1 +

ν1 + 1

5

)
x5(n1−1)+ν1

∏
i>1

x5ni+νi
i d5x + D+U

, where

U =
1

5
x5n1+ν1−4

1

∏
i>1

x5ni+νi
i dx2 ∧ · · · ∧ dx5



Computation of periods σµ(φ)

We can continue this procedure by induction with respect to all ni .
The final result can be compactly written using Pochhammer’s
symbols:∏

i

x5ni+νi
i d5x = (−1)

∑
i ni
∏
i

(
νi + 1

5

)
ni

∏
i

xνii d5x , νi < 5.

where (a)n = Γ(a + n)/Γ(a).
If any νi = 4 then the differential form is exact and the integral is
zero.
Otherwise, rhs of the equation is proportional to eν(x) and we can
use the definition of Γ+

µ :∫
Γ+
µ

eν(x) e−W0(x) d5x = δµν



Computation of periods σµ(φ)

Doing in this way and integrating over Γ+
µ we obtain the explicite

expression for the periods

σµ(φ) =
∑
ni≥0

∏
i

Γ
(
ni + µi+1

5

)
Γ
(
µi+1

5

) ∑
m∈Σn

∏
s

φms
s

ms !
.

where
Σn = {m |

∑
s

mssi = 5ni + µi}



Formula for Kähler potential

Pick Lefschetz thimbles L±µ as basis of cycles with real coefficients.
Define T as a transition matrix from cycles Γ±µ to Lefschetz
thimbles L±µ

Γ±µ = (T−1)µν L
±
ν .

and compute the transition matrix Tµν with use of the relation

Tµν =

∫
L±µ

eν(x) e∓W0(x)d5x .

Then we obtain for matrix M as

M = T−1T̄

which we need to insert to the expression for Kähler potential
together with ηµν = δµ,ρ−ν .



Lefschetz thimbles

Lefschetz thimbles L±µ are products of one-dimensial cycles Cαi

L+
α =

5∏
i=1

Cαi ,

and Cαi = ρ̂αi · C0 with ρ = e2πi/5.
This definition of one-dimensial cycle Cαi means that this cycle is
the path in xi -plane obtained by rotating counter clockwise
through angle ραi from the basic path C0 is depicted on the figure

2π
5

C0

By construction L±α are steepest descent/acsent cycles for ReW0.



Computing the matrices T and M
Now we compute compute Tαµ explicitly

Tαµ =

∫
L+
α

eµ e
−W0 d5x = ρ(ᾱ,µ̄)A(µ),

where Aµ is a product of five Gamma-integrals

Aµ =
1

55

∏
i

Γ

(
µi + 1

5

)
.

Then
T−1
µ̄ᾱ = B(µ)[ρ̄(µ̄+1,ᾱ) − 1]

B(µ) =
∏
i

1

Γ
(
µi+1

5

)
Mµν = (T−1T̄ )µν =

∏
i

γ

(
µi + 1

5

)
δµ,ρ−ν

γ(x) =
Γ(x)

Γ(1− x)
.



Kähler potential for 101-d moduli space of Quintic

Inserting all these explicit expressions to the formula

e−K(φ) = σ+
µ (φ)ηµλMλνσ

−
ν (φ)

we obtain the explicit expression for Kähler potential on the full
moduli space of complex structures

e−K(φ) =
203∑
µ=0

(−1)deg(µ)/5
∏

γ

(
µi + 1

5

)
|σµ(φ)|2,

σµ(φ) =
∑

n1,...,n5≥0

5∏
i=1

Γ(µi+1
5 + ni )

Γ(µi+1
5 )

∑
m∈Σn

∏
s

φms
s

ms !
,

µ=(µ1, µ2, µ3, µ4, µ5), 0 ≤ µi ≤ 3,
∑5

i=1 µi = 0, 5, 10, 15.

γ(x) =
Γ(x)

Γ(1− x)
, Σn = {ms |

∑
s

mssi = 5ni + µi}
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Appendix A. Coinsidence of two pairings. Proof.
Following Chiodo et al we prove the second equality

ηab = Res
ea · eb dnx

∂1W · · · ∂nW
=

∫
L+
µ

ea e
−Wdnx Cµν

∫
L−ν

eb eWdnx

Consider a small relevant perturbation of the isolated singularity
W (x , t) = W (x) +

∑
eixi . Then the isolated singularity of W

located in xi = 0 transforms to a set of Morse critical points {pµ}.
Consider instead of ηab the bilinear form

ηab(t, z) :=

∫
L+
µ

ea e
−W (x ,t)/zdnx Cµν

∫
L−ν

eb eW (x ,t)/zdnx

First of all we notice, that if t = 0, then

ηab(t = 0, z) = zn · ηab(t = 0, 1).

We take as basis of cycles L±µ the so-called of Lefschetz thimbles.
They start from Morse points pµ and goes along the gradient of
ReW (x , t) in the direction of the steepest descent/ascent.
With the proper orientation their intersections are L+

µ ∩ L−ν = δµν .



Appendix A. Coincidence of two pairings. Proof.
Then rhs of the equality becomes in this basis:∑

µ

∫
L+
µ

ea e
−W (x ,t)/zdnx

∫
L−µ

eb eW (x ,t)/zdnx

From stationary phase expansion as z → 0 we obtain for a period:∫
L+
µ

ea(x) e−W (x ,t)/zdnx =
(2πz)n/2√

HessW (pµ, t)
(ea(pµ) + O(z))

Using this we get

ηab(t, z) =
∑
µ

(2πiz)n
ea(pµ) · eb(pµ)

Hess(W (pµ, t))
(1 + O(z)) =

(2πiz)n
(
Res

ea · eb dnx

∂1W · · · ∂nW
+ O(z)

)
It holds for t = 0. Taking into account ηab(0, z) = zn · ηab(0, 1)
we obtain the equality < χa, χb >= η(ea, eb).



Appendix B. Kähler potential for the moduli space
The final expression for Kähler potential contains
periods σ+

µ (φ), the pairing ηµν and the matrix of the
antiholomorphic involution Mµν

e−K(φ) =
∑
µ,ν,λ

σ+
µ (φ) ηµλ Mλν σ

−
ν (φ),

Computing periods σ±µ (φ) with use the oscilating integrals over Γ±µ
and of the cohomology technique is especially simple.

Basis {eµ(x)} ∈ RQ can be choosen such, that the pairing η is
antidiagonal or, equivalently, such that to each eµ(x)=>eµ′(x) and
eµ(x) · eµ′(x) = eρ(x), where eρ(x) is the element of degree 3d.

Matrix Mµν = (T−1T̄ )µν and for this choice is also antidiagonal

∗eµ(x) d5x = pµ eµ′(x)d5x .

This simplifies the final expression for K

e−K(φ) =
∑
µ

pµσ
+
µ (φ) σ−µ (φ).



Appendix C. Special geometry for Fermat hypersurfaces.

Let X is Fermat CY X = {x1, . . . , x5 ∈ P4
(k1,...,k5)|W (x , φ) = 0}.

W (x , φ) =
5∑

i=1

x
d
ki
i +

h21∑
s=1

φs
∏
i

x sii , d =
5∑

i=1

ki

Then Kähler potential on the full Moduli space

e−K(φ) =
∑
µ

(−1)deg(µ)/d
∏
i

γ

(
ki (µi + 1)

d

)
|σµ(φ)|2,

σµ(φ) =
∑

n1,...,n5≥0

5∏
i=1

Γ(µi+1
5 + ni )

Γ(ki (µi+1)
d )

∑
m∈Σn

∏
s

φms
s

ms !
,

0 ≤ µi ≤ d
ki
− 2,

∑5
i=1 µi = 0, d , 2d , 3d .

γ(x) =
Γ(x)

Γ(1− x)
, Σn = {ms |

∑
s

mssi =
d

ki
ni + µi}

Alexander Belavin (based on joint works with K. Aleshkin)Special geometry on Calabi-Yau moduli spaces and Q-invariant Frobenius rings.


