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Motivation

supersymmetric localization
(specific method to evaluate path integral)

Z =

∫
DΦ O eS

such that

δO = 0 , δS = 0 ,

and δ2 = L

Z (τ) =

∫
DΦ O eS−τδW

Independent of τ provided that δ2W = 0. So that

Z (0) = lim
τ→∞

Z (τ)
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Motivation

Localization results in various dimensions:

1D-7D gauge theories

compact vs non-compact manifolds

singular configurations

Structural properties of the answer of partition
functions/generating functions
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5D YM

We take 5D N = 1 Yang-Mills theory on:

on R4 × S1 (5D Nekrasov’s partition function)

on S5

we look at their structural properties
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5D YM

Nekrasov partition function

ZR4×S1(a, β, ε1, ε2)

C2
q,t−1 × S1
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5D YM

5D YM on S5

ZS5 =

∫
dNa eP(a)

∏
i 6=j

S3(iai−iaj |~ω)ZR4×S1(a)ZR4×S1(a)ZR4×S1(a)
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5D YM

formal matrix models:

both Nekrasov and S5 partition functions can be understood as
formal matrix models and we can introduce set of times (denoted
by t’s) and study them as generating functions.
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q-Virasoro

Reminder of Virasoro and q-Virasoro constraints

the Hermitian matrix model:

Z ({t}) =

∫
u(N)

dM e

∞∑
s=0

ts
s!
Tr(Ms)

,

where M† = M and the measure is invariant under M → U†MU
with U ∈ U(N).

In terms of eigenvalues of M:

Z ({t}) =

∫
RN

N∏
i=1

dλi
∏
i<j

(λi − λj)2e
∞∑
s=0

ts
s!

N∑
i=1

λsi
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Virasoro constraints for Hermitian matrix model

Ward identities:

∫
RN

N∏
i=1

dλi

N∑
l=1

∂

∂λl

λn+1
l

∏
i<j

(λi − λj)2e
∞∑
s=0

ts
s!

N∑
i=1

λsi

 = 0 ,

where

ln = −
N∑
l=1

∂

∂λl

(
λn+1
l · · ·

)
satisfy

[ln, lm] = (n −m)ln+m
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Virasoro constraints for Hermitian matrix model

After some rewriting we get the Virasoro constraints:

LnZ ({t}) = 0 , n ≥ −1 ,

where

L−1 =
∞∑
k=0

tk
∂

∂tk−1
,

L0 =
∞∑
k=1

ktk
∂

∂tk
+ N2 ,

Ln =
n∑

k=0

(n − k)!k!
∂2

∂tk∂tn−k
+
∞∑
k=0

k(k + n)!

k!
tk

∂

∂tk+n
, n ≥ 1
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Virasoro constraints for Hermitian matrix model

Let us think for the moment, we naturally have the representation
of Heisenberg algebra:

creation operator: α−n =

√
2

(n − 1)!
tn ,

annihilation operator: αn =
n!√

2

∂

∂tn
,

and we can check that

Ln =
1

2

+∞∑
m=−∞

: αn−m αm : , n ≥ −1

but it can be extended to all n’s and we get the full Virasoro
algebra with the central charge c = 1.
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Virasoro constraints for Hermitian matrix model

Thus we deal with the free boson φ(x) =
∑
n
anx
−n

Looking for an operator S(x) such that

[Ln, S(x)] =
d

dx
O(x) ,

we can get easily the solution of Virasoro constraints

Z ({t}) = QN , Q =

∫
dx S(x) ,

we immediately get

LnQ
N |0〉 = Ln({tk})Z({tk}) = 0

This is indeed the Hermitian matrix model, in this argument only
contour of integration is not specified.
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q-Virasoro

Virasoro constraints can be deformed and more measures
can be obtained

Deformations of Heisenberg (p = qt−1, t = qβ):

[an, am] =
1

n
(q

n
2−q−

n
2 )(t

n
2−t−

n
2 )(p

n
2 +p−

n
2 )δn+m,0 , n,m ∈ Z\{0} ,

[P,Q] = 2 ,

the deformed Virasoro

[Tn,Tm] = −
∑
`

f`(Tn−`Tm+` − Tm−`Tn+`)

−(1− q)(1− t−1)

(1− p)
(pn − p−n)δn+m,0

q = e~, we have the small ~ expansion
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q-Virasoro

Tn = 2δn,0 + ~2β

(
Ln +

Q2
β

4
δn,0

)
+ O(~4)

the representation of deformed Heisenberg

a−n = (q
n
2−q−

n
2 )tn , an =

1

n
(t

n
2−t−

n
2 )(p

n
2 +p−

n
2 )

∂

∂tn
, n ∈ Z>0 ,

√
βQ = t0 , P = 2

√
β
∂

∂t0
, |0 >= 1

So we do the similar thing, construct the operators S such that

[Tn,

∫
dx S(x)] = 0
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q-Virasoro

Z ({t}) =

∮ N∏
i=1

dwi

2πiwi

∏
i 6=j

(wiw
−1
j ; q)∞

(twiw
−1
j ; q)∞

e

∞∑
k=0

tk
∑
j
wk
j

such that

TnZ ({t}) = 0 , n > 0

3D gauge theory on D2 × S1,

N = 2 U(N) vector with adjoint chiral

Instead of integral we can have sum!
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q-Virasoro vs 5D YM

q-Virasoro for ZR4×S1(a, {t})

TnZNekr (a, {t}) = 0 , n > 0

q-Virasoro for ZS5({t}, {t̃}, {˜̃t})

TnZS5 = 0 , n > 0

T̃nZS5 = 0 , n > 0

˜̃TnZS5 = 0 , n > 0

Maxim Zabzine (Uppsala University) 5D Yang-Mills and modular triple boson



q-Virasoro vs 5D YM

(
q1 =2πiτ , t1 =2πiσ

)

(
q2 =−2πiσ/τ , t2 =−2πiτ

) (
q3 =−2πiσ, t3 =2πiτ/σ

)
.

τ = ω2/ω1 and σ = ω3/ω1

ω2
1|z1|2 + ω2

2|z2|2 + ω2
3|z3|2 = 1
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5D/3D/1D

ZC2
q,t−1×S1 =

∑
r ,c≥0

∫
ZC1

q
(u(r))ZC1

t−1
(u(c))ZS1

q-Virasoro perspective and direct calculation
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5D/3D/1D

ZS5 =
∑

N1,N2,N3≥0
ZS3(N1)ZS3(N2)ZS3(N3)ZS1ZS1ZS1

q-Virasoro perspective and direct calculation
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5D/3D/1D

three copies of (deformed) Heisenberg algebra: an, ãn, ˜̃an

construct screening charge commuting with all three q-Virasoro
(modular triple)

φ(x) =
∑
n

ane
2πin x

ω1 + ãne
2πin x

ω2 + ˜̃ane
2πin x

ω3
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boson

we can construct the formal boson theory

S =

∫
dx ∂xdωiφ dωjdωk

φ

where

dωφ(x) = φ(x + ω/2)− φ(x − ω/2)
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boson

Green function

∂xdω1dω2dω3 log S3(x |~ω) = δ(x)

The system has 3 copies of Heisenberg algebra and related to
q-Virasoro construction of S5 partition function

∫
dx eαxe(ω,dωi

φ)
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Summary

• 5D answer can be written in 3D and 1D terms

• what does it mean from the point of view of localization

• many puzzling structural properties
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