5D Yang-Mills and modular triple boson

Maxim Zabzine (Uppsala University)
Uppsala University
May 30, 2018

based on the joint works with Fabrizio Nieri and Yiwen Pan (1710.07170, 1711.06150 and more to come)

Outline

1. Motivation and the problem
2. 5 D Yang-Mills on $\mathbb{R}^{4} \times S^{1}$ and S^{5}
3. q-Virasoro constraints
4. q-Virasoro constraints for Nekrasov's and S^{5} partition functions
5. 5D/3D/1D picture and formal construction
6. Modular triple boson
7. Summary

Motivation

supersymmetric localization
(specific method to evaluate path integral)

$$
Z=\int D \Phi O e^{S}
$$

such that

$$
\delta O=0, \quad \delta S=0
$$

and $\delta^{2}=\mathcal{L}$

$$
Z(\tau)=\int D \Phi O e^{S-\tau \delta W}
$$

Independent of τ provided that $\delta^{2} W=0$. So that

$$
Z(0)=\lim _{\tau \rightarrow \infty} Z(\tau)
$$

Motivation

Localization results in various dimensions:
1D-7D gauge theories
compact vs non-compact manifolds
singular configurations
Structural properties of the answer of partition functions/generating functions

We take 5D $N=1$ Yang-Mills theory on:
on $\mathbb{R}^{4} \times S^{1}$ (5D Nekrasov's partition function)
on S^{5}
we look at their structural properties

Nekrasov partition function

$$
Z_{\mathbb{R}^{4} \times S^{1}}\left(a, \beta, \epsilon_{1}, \epsilon_{2}\right)
$$

$$
\mathbb{C}_{q, t^{-1}}^{2} \times S^{1}
$$

5D YM on S^{5}

$$
Z_{S^{5}}=\int d^{N} a e^{P(a)} \prod_{i \neq j} S_{3}\left(i a_{i}-i a_{j} \mid \vec{\omega}\right) Z_{\mathbb{R}^{4} \times S^{1}}(a) Z_{\mathbb{R}^{4} \times S^{1}}(a) Z_{\mathbb{R}^{4} \times S^{1}}(a)
$$

formal matrix models:
both Nekrasov and S^{5} partition functions can be understood as formal matrix models and we can introduce set of times (denoted by t 's) and study them as generating functions.

q-Virasoro

Reminder of Virasoro and q-Virasoro constraints

the Hermitian matrix model:

$$
Z(\{t\})=\int_{u(N)} d M e^{\sum_{s=0}^{\infty} \frac{t_{s}}{s!} \operatorname{Tr}\left(M^{s}\right)}
$$

where $M^{\dagger}=M$ and the measure is invariant under $M \rightarrow U^{\dagger} M U$ with $U \in U(N)$.

In terms of eigenvalues of M :

$$
Z(\{t\})=\int_{\mathbb{R}^{N}} \prod_{i=1}^{N} d \lambda_{i} \prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2} e^{\sum_{s=0}^{\infty} \frac{t_{s}}{} \sum_{i=1}^{N} \lambda_{i}^{s}}
$$

Virasoro constraints for Hermitian matrix model

Ward identities:

$$
\int_{\mathbb{R}^{N}} \prod_{i=1}^{N} d \lambda_{i} \sum_{l=1}^{N} \frac{\partial}{\partial \lambda_{l}}\left(\lambda_{l}^{n+1} \prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2} e^{\sum_{s=0}^{\infty} \frac{t_{s}^{s}}{s!} \sum_{i=1}^{N} \lambda_{i}^{s}}\right)=0
$$

where

$$
I_{n}=-\sum_{l=1}^{N} \frac{\partial}{\partial \lambda_{l}}\left(\lambda_{l}^{n+1} \cdots\right)
$$

satisfy

$$
\left[I_{n}, I_{m}\right]=(n-m) I_{n+m}
$$

Virasoro constraints for Hermitian matrix model

After some rewriting we get the Virasoro constraints:

$$
L_{n} Z(\{t\})=0, \quad n \geq-1,
$$

where

$$
\begin{gathered}
L_{-1}=\sum_{k=0}^{\infty} t_{k} \frac{\partial}{\partial t_{k-1}}, \\
L_{0}=\sum_{k=1}^{\infty} k t_{k} \frac{\partial}{\partial t_{k}}+N^{2}, \\
L_{n}=\sum_{k=0}^{n}(n-k)!k!\frac{\partial^{2}}{\partial t_{k} \partial t_{n-k}}+\sum_{k=0}^{\infty} \frac{k(k+n)!}{k!} t_{k} \frac{\partial}{\partial t_{k+n}}, \quad n \geq 1
\end{gathered}
$$

Virasoro constraints for Hermitian matrix model

Let us think for the moment, we naturally have the representation of Heisenberg algebra:
creation operator: $\quad \alpha_{-n}=\frac{\sqrt{2}}{(n-1)!} t_{n}$,
annihilation operator: $\quad \alpha_{n}=\frac{n!}{\sqrt{2}} \frac{\partial}{\partial t_{n}}$,
and we can check that

$$
L_{n}=\frac{1}{2} \sum_{m=-\infty}^{+\infty}: \alpha_{n-m} \alpha_{m}:, \quad n \geq-1
$$

but it can be extended to all n's and we get the full Virasoro algebra with the central charge $c=1$.

Virasoro constraints for Hermitian matrix model

Thus we deal with the free boson $\phi(x)=\sum_{n} a_{n} x^{-n}$ Looking for an operator $S(x)$ such that

$$
\left[L_{n}, S(x)\right]=\frac{d}{d x} \mathrm{O}(x)
$$

we can get easily the solution of Virasoro constraints

$$
Z(\{t\})=Q^{N}, \quad Q=\int d x S(x)
$$

we immediately get

$$
L_{n} Q^{N}|0\rangle=L_{n}\left(\left\{t_{k}\right\}\right) \mathrm{Z}\left(\left\{t_{k}\right\}\right)=0
$$

This is indeed the Hermitian matrix model, in this argument only contour of integration is not specified.

q-Virasoro

Virasoro constraints can be deformed and more measures can be obtained

Deformations of Heisenberg $\left(p=q t^{-1}, t=q^{\beta}\right)$:

$$
\begin{gathered}
{\left[a_{n}, a_{m}\right]=\frac{1}{n}\left(q^{\frac{n}{2}}-q^{-\frac{n}{2}}\right)\left(t^{\frac{n}{2}}-t^{-\frac{n}{2}}\right)\left(p^{\frac{n}{2}}+p^{-\frac{n}{2}}\right) \delta_{n+m, 0}, \quad n, m \in \mathbb{Z} \backslash\{0\},} \\
{[P, Q]=2}
\end{gathered}
$$

the deformed Virasoro

$$
\begin{gathered}
{\left[T_{n}, T_{m}\right]=-\sum_{\ell} f_{\ell}\left(T_{n-\ell} T_{m+\ell}-T_{m-\ell} T_{n+\ell}\right)} \\
-\frac{(1-q)\left(1-t^{-1}\right)}{(1-p)}\left(p^{n}-p^{-n}\right) \delta_{n+m, 0}
\end{gathered}
$$

$q=e^{\hbar}$, we have the small \hbar expansion

q-Virasoro

$$
T_{n}=2 \delta_{n, 0}+\hbar^{2} \beta\left(L_{n}+\frac{Q_{\beta}^{2}}{4} \delta_{n, 0}\right)+O\left(\hbar^{4}\right)
$$

the representation of deformed Heisenberg

$$
\begin{gathered}
a_{-n}=\left(q^{\frac{n}{2}}-q^{-\frac{n}{2}}\right) t_{n}, \quad a_{n}=\frac{1}{n}\left(t^{\frac{n}{2}}-t^{-\frac{n}{2}}\right)\left(p^{\frac{n}{2}}+p^{-\frac{n}{2}}\right) \frac{\partial}{\partial t_{n}}, \quad n \in \mathbb{Z}_{>0} \\
\sqrt{\beta} Q=t_{0}, \quad P=2 \sqrt{\beta} \frac{\partial}{\partial t_{0}}, \quad \mid 0>=1
\end{gathered}
$$

So we do the similar thing, construct the operators S such that

$$
\left[T_{n}, \int d x S(x)\right]=0
$$

q-Virasoro

$$
Z(\{t\})=\oint \prod_{i=1}^{N} \frac{d w_{i}}{2 \pi i w_{i}} \prod_{i \neq j} \frac{\left(w_{i} w_{j}^{-1} ; q\right)_{\infty}}{\left(t w_{i} w_{j}^{-1} ; q\right)_{\infty}} e^{\sum_{k=0}^{\infty} t_{k} \sum_{j} w_{j}^{k}}
$$

such that

$$
T_{n} Z(\{t\})=0, \quad n>0
$$

3D gauge theory on $D^{2} \times S^{1}$,
$N=2 U(N)$ vector with adjoint chiral
Instead of integral we can have sum!

q-Virasoro vs 5D YM

q-Virasoro for $Z_{\mathbb{R}^{4} \times S^{1}}(a,\{t\})$

$$
T_{n} Z_{\text {Nekr }}(a,\{t\})=0, \quad n>0
$$

q-Virasoro for $Z_{S^{5}}(\{t\},\{\tilde{t}\},\{\tilde{\tilde{t}}\})$

$$
\begin{array}{ll}
T_{n} Z_{S^{5}}=0, & n>0 \\
\tilde{T}_{n} Z_{S^{5}}=0, & n>0 \\
\tilde{T}_{n} Z_{S^{5}}=0, & n>0
\end{array}
$$

q-Virasoro vs 5D YM

$$
\begin{gathered}
\left(q_{1}={ }^{2 \pi i \tau}, t_{1}={ }^{2 \pi i \sigma}\right) \\
\left(q_{2}=^{-2 \pi i \sigma / \tau}, t_{2}=^{-2 \pi i \tau}\right) \longmapsto\left(q_{3}=^{-2 \pi i \sigma}, t_{3}=^{2 \pi i \tau / \sigma}\right) . \\
\tau=\omega_{2} / \omega_{1} \text { and } \sigma=\omega_{3} / \omega_{1} \\
\omega_{1}^{2}\left|z_{1}\right|^{2}+\omega_{2}^{2}\left|z_{2}\right|^{2}+\omega_{3}^{2}\left|z_{3}\right|^{2}=1
\end{gathered}
$$

$$
Z_{\mathbb{C}_{q, t^{-1}}^{2} \times S^{1}}=\sum_{r, c \geq 0} \int Z_{\mathbb{C}_{q}^{1}}(u(r)) Z_{\mathbb{C}_{t^{-1}}^{1}}(u(c)) Z_{S^{1}}
$$

q-Virasoro perspective and direct calculation

$$
Z_{S^{5}}=\sum_{N_{1}, N_{2}, N_{3} \geq 0} Z_{S^{3}}\left(N_{1}\right) Z_{S^{3}}\left(N_{2}\right) Z_{S^{3}}\left(N_{3}\right) Z_{S^{1}} Z_{S^{1}} Z_{S^{1}}
$$

q-Virasoro perspective and direct calculation
three copies of (deformed) Heisenberg algebra: $a_{n}, \tilde{a}_{n}, \tilde{a}_{n}$
construct screening charge commuting with all three q-Virasoro (modular triple)

$$
\phi(x)=\sum_{n} a_{n} e^{2 \pi i n \frac{x}{\omega_{1}}}+\tilde{a}_{n} e^{2 \pi i n \frac{x}{\omega_{2}}}+\tilde{\tilde{a}}_{n} e^{2 \pi i n \frac{x}{\omega_{3}}}
$$

we can construct the formal boson theory

$$
S=\int d x \partial_{x} d_{\omega_{i}} \phi d_{\omega_{j}} d_{\omega_{k}} \phi
$$

where

$$
d_{\omega} \phi(x)=\phi(x+\omega / 2)-\phi(x-\omega / 2)
$$

Green function

$$
\partial_{x} d_{\omega_{1}} d_{\omega_{2}} d_{\omega_{3}} \log S_{3}(x \mid \vec{\omega})=\delta(x)
$$

The system has 3 copies of Heisenberg algebra and related to q-Virasoro construction of S^{5} partition function

$$
\int d x e^{\alpha x} e^{\left(\omega, d_{\omega_{i}} \phi\right)}
$$

Summary

- 5D answer can be written in 3D and 1D terms
- what does it mean from the point of view of localization
- many puzzling structural properties

