Mirror and spectral dualities in 3d T[SU(N)] theories

Yegor Zenkevich

Milano-Bicocca University and ITEP, Moscow

QUARKS-2018, Valdai, 30 May 2018

based on arXiv:1712.08140 with Nedelin and Pasquetti and work in progress with Aprile, Nedelin, Nieri, Pasquetti, Sacchi

Introduction and plan

Why are we interested in the zoo of obscure 3d SUSY theories? Because they are interconnected by interesting dualities. According to the relative paradigm:

Objects are secondary, while the relations between them are fundamental.

The theories we are going to consider are also related to topological strings and 5d gauge theories.

Plan

- ightharpoonup 3d $\mathcal{N}=2$ quiver theories, mirror and spectral dualities and what is the difference between the two
- ▶ 3*d* spectral dualities from 5*d* and topological strings via Higgsing/geometric transition

3d $\mathcal{N}=2$ basics

Field content:

- ▶ Vector multiplets: $V = (A_u, \lambda, \sigma \in \mathbb{R}, aux)$
- Adjoint chiral multiplets: $\Phi = (\phi \in \mathbb{C}, fermions, aux)$
- ▶ Matter chiral multiplets (usually in fundamental rep of the gauge group): $Q_i = (Q_i \in \mathbb{C}, fermions, aux)$
- One can also introduce the linear multiplets: $\Sigma = (\sigma, ..., F_{\mu\nu})$.

The moduli space of vacua:

Pure Higgs branch where $SU(N) \rightarrow SU(N-1)$

Pure Coulomb branch Mixed branches $\langle Q_i \rangle \neq 0$ and $\langle \sigma \rangle = 0$ where $\langle Q_i \rangle = 0$ and and G is partly broken, e.g. $\langle \sigma \rangle \neq 0$, which breaks the gauge group to its Cartan: $G \rightarrow U(1)^r$

In the bulk of the (abelianised) Coulomb branch one can dualise the gauge fields to scalars: $F^j_{\mu\nu}=\epsilon_{\mu\nu\rho}\partial^\rho\gamma_j\,,\;j=1,\cdots r.$

The currents $J^j_{\mu} = \epsilon_{\mu\nu\rho} (F^{\nu\rho})^j$ generate the topological symmetry $(U(1)_J)^r$ which shifts the dual photons $\gamma_j \to \gamma_j + \alpha_j$.

There is also flavor symmetry $SU(N_f)$ acting on the matter multiplets: $Q_i o \Omega^j_i Q_i$

Example:

where and $\mu_p = e^{RM_p}$, $\tau_p = e^{RT_p}$, $t = q^{\frac{1}{2}}e^{Rm_A}$.

T[SU(N)]

The $\mathcal{N}=4$ T[SU(N)] is a quiver theory introduced as boundary condition for 4d SYM [Gaiotto-Witten]. Low energy theory on D3 branes suspended between NS5 and D5:

- ▶ Global symmetry: $SU(N)_F \times SU(N)_{top}$
- ▶ Self-dual under mirror symmetry: Coulomb ↔ Higgs branch
- ▶ Masses M_p , T_p in $SU(N)_F \times SU(N)_{top}$
- Axial mass $m_A \in SU(2)_C \times SU(2)_H$ breaking to $\mathcal{N} = 2^*$
- ▶ The mass deformed theory has *N*! isolated vacua

T[SU(N)] and its mirror dual

The gauge invariant operators include the mesons:

$$\mathbb{Q}_{ij} \equiv Q_i \tilde{Q}_j$$
,

and the monopole operators:

$$\mathcal{M}_{ij} \equiv \left(\begin{array}{cccc} {\rm Tr} \Phi^{(1)} & \mathcal{M}^{100} & \mathcal{M}^{110} & \mathcal{M}^{111} \\ \mathcal{M}^{-100} & {\rm Tr} \Phi^{(2)} & \mathcal{M}^{010} & \mathcal{M}^{011} \\ \cdots & \cdots & \cdots & \cdots \end{array} \right).$$

The mirror dual theory $\check{T}[SU(N)]$ has gauge invariant operators $\check{\mathcal{M}}_{ij}$ and $\check{\mathbb{Q}}_{ij}$.

Operator map:

$$\mathbb{Q}_{ij} \leftrightarrow \check{\mathcal{M}}_{ij} , \qquad \qquad \mathcal{M}_{ij} \leftrightarrow \check{\mathbb{Q}}_{ij}$$

The partition functions satisfy:

$$Z_{T[SU(N)]}(\vec{M}, \vec{T}, m_A) = Z_{T[SU(N)]}(\vec{T}, \vec{M}, -m_A).$$

FT[SU(N)] and its dual

We take Fourier transform in the mesons using N^2 gauge singlets X_{ij} and obtain FT[SU(N)] describing D3 branes between NS5 and D5':

Now the gauge invariant operators are \mathcal{M}_{ij} , X_{ij} . The dual theory is FT[SU(N)] with the operator map

$$X_{ij} \leftrightarrow \check{\mathcal{M}}_{ij}$$
, $\mathcal{M}_{ij} \leftrightarrow \check{X}_{ij}$

The partition functions satisfy:

$$Z_{FT[SU(N)]}(\vec{M}, \vec{T}, m_A) = Z_{FT[SU(N)]}(\vec{T}, \vec{M}, m_A)$$

Notice that $Z_{FT[SU(N)]}(\vec{M}, \vec{T}, m_A) = K[\vec{M}, m_A] Z_{T[SU(N)]}(\vec{M}, \vec{T}, m_A)$ with $K[\vec{M}, m_A]$ the contribution of the singlets X_{ij} in the SU(N) adjoint.

Difference operators

It has been shown that the T[SU(N)] partition function is an eigenfunction of the N-body trigonometric Ruijsenaars-Schneider (RS) Hamiltonians [Gaiotto-Koroteev],[Bullimore-Kim-Koroteev]:

$$T_r(\vec{M}, m_a) Z_{T[SU(N)]}(\vec{M}, \vec{T}, m_A) = \chi_r(\vec{T}) Z_{T[SU(N)]}(\vec{M}, \vec{T}, m_A)$$

$$T_r(\vec{T}, -m_a)Z_{T[SU(N)]}(\vec{M}, \vec{T}, m_A) = \chi_r(\vec{M})Z_{T[SU(N)]}(\vec{M}, \vec{T}, m_A),$$

with $r = 1, \dots, N$. This has been used to derive the identity for mirror self-duality:

$$Z_{T[SU(N)]}(\vec{M}, \vec{T}, m_A) = Z_{T[SU(N)]}(\vec{T}, \vec{M}, -m_A).$$

Moreover since $T_r(\vec{M}, -m_a) = K[\vec{M}, m_A]^{-1} T_r(\vec{M}, m_a) K[\vec{M}, m_A]$ we can also prove the identity for spectral self-duality

$$Z_{FT[SU(N)]}(\vec{M},\vec{T},m_A) = Z_{FT[SU(N)]}(\vec{T},\vec{M},m_A)\,. \label{eq:ZFTSU(N)}$$

Bonus duality

Using the difference operators we get another identity:

$$Z_{T[SU(N)]}(\vec{M}, \vec{T}, m_A) = K[\vec{M}, m_A]^{-1}K[\vec{T}, m_A]Z_{T[SU(N)]}(\vec{M}, \vec{T}, -m_A).$$

This is actually a new duality (it reduces to the known Aharony duality in the N=2 case).

The l.h.s. theory is T[SU(N)] with $W = W_{N=4}$ with operators including monopoles \mathcal{M}_{ij} and mesons \mathbb{Q}_{ij} .

The r.h.s. theory is FFT[SU(N)] with $W = W_{\mathcal{N}=4} + S_{ij}\mathcal{M}_{ij} + X_{ij}Q_iQ_j$. The gauge invariant operators in FFT[SU(N)] include gauge singlets:

$$X_{ij}$$
, S_{ij} .

Operator map:

$$\mathbb{Q}_{ij} \to X_{ij}$$
, $\mathcal{M}_{ij} \to S_{ij}$.

T[SU(N)] holomorphic block integral

We will work with $D_2 \times S^1$ partition functions, the holomorphic blocks.

$$\mathcal{B}_{T[SU(N)]}^{D_2\times S^1,\,(\alpha_0)} = Z_{\mathrm{cl}}^{3d,\,(\alpha_0)} Z_{\mathrm{1-loop}}^{3d,\,(\alpha_0)} Z_{\mathrm{vort}}^{3d,\,(\alpha_0)}\,,$$

$$\begin{split} Z_{\text{vort}}^{3d,(\alpha_0)}(\vec{\mu},\vec{\tau},q,t) &= \\ &= \sum_{\left\{k_i^{(a)}\right\}} \prod_{a=1}^{N-1} \left[\left(t \frac{\tau_a}{\tau_{a+1}}\right)^{\sum_{i=1}^a k_i^{(a)}} \prod_{i \neq j}^a \frac{\left(t \frac{\mu_i}{\mu_j};q\right)_{k_i^{(a)}-k_j^{(a)}}}{\left(\frac{\mu_i}{\mu_j};q\right)_{k_i^{(a)}-k_i^{(a)}}} \prod_{i=1}^a \prod_{j=1}^{a+1} \frac{\left(\frac{q}{t} \frac{\mu_i}{\mu_j};q\right)_{k_i^{(a)}-k_j^{(a+1)}}}{\left(q \frac{\mu_i}{\mu_j};q\right)_{k_i^{(a)}-k_j^{(a+1)}}} \right] \end{split}$$

the sum is over sets of integers $k_i^{(a)}$ satisfying the inequalities

3d FT[SU(N)] and its dual from 5d

FT[SU(N)] lives on D3 branes suspended between N NS5s and N D5's. These branes form the (p,q)-web engineering the 5d $\mathcal{N}=1$ quiver theory $N+SU(N)^{N-1}+N$.

We want to view FT[SU(N)] as a codimension-two defect in this theory:

- ▶ Higgsing: the FT[U(N)] partition function is obtained by tuning the parameters of the 5d square quiver partition function.
- ▶ Brane realisation: the codimension-two defect theory is the vortex string theory on the Higgs branch of the 5*d* theory.
- ► Geometric engineering: Higgsing corresponds to geometric transition happening at quantised values of the Kähler parameters.
- 3d spectral duality descends from fiber-base or IIB S-duality

Higgsing the 5d square quiver

The instanton partition function $Z_{inst}^{5d}[U(N)^{N-1}]$ is a sum over *N*-tuples of Young diagrams, $\vec{Y}^{(a)} = \{Y_1^{(a)}, \dots, Y_N^{(a)}\}, a = 1, \dots, (N-1).$

When the Coulomb branch parameters are tuned to special values, the Young diagrams for some nodes truncate to diagrams with finitely many columns yielding the partition function of a coupled system:

$$Z^{5d}[U(N)^{N-1}] \xrightarrow{\mathsf{Higgsing}} Z^{5d-3d}$$
.

For maximal Higgsing the 5d bulk theory is trivial and we just get the vortex partition function of the 3d theory.

FT[SU(N)] via Higgsing

By *maximally* Higgsing the 5*d* square quiver by tuning masses and Coulomb parameters as:

$$\begin{array}{llll} a_{1}^{(1)} = m_{1}t, & a_{1}^{(N-1)} = m_{1}t, & \bar{m}_{1} = m_{1}\frac{t^{2}}{q}, \\ a_{2}^{(1)} = m_{2}, & a_{2}^{(N-1)} = m_{2}t, & \bar{m}_{2} = m_{2}\frac{t^{2}}{q}, \\ & \vdots & \cdots & \vdots & & \vdots \\ a_{N-1}^{(1)} = m_{N-1}, & a_{N-1}^{(N-1)} = m_{N-1}t, & \bar{m}_{N-1} = m_{N-1}\frac{t^{2}}{q}, \\ a_{N}^{(1)} = m_{N}, & a_{N}^{(N-1)} = m_{N}, & \bar{m}_{N} = m_{N}\frac{t^{2}}{q}, \end{array}$$

we obtain FT[SU(N)]:

$$Z^{5d}[U(N)^{N-1}] \to \mathcal{B}_{FT[SU(N)]}^{D_2 \times S^1, (\alpha_0)}.$$

Higgsing and branes

The 5d square quiver can be realised as the low energy description of a web of N NS5 and N D5' branes.

On the Higgs branch the NS5 branes can be removed from the web and D3 stretched in between. The 3d low energy theory on the D3s is our vortex theory.

Higgsing and geometric transition

Equivalently we can engineer the 5d quiver theory from M-theory on $X \times \mathbb{R}^4_{q,t} \times S^1$ with X toric CY 3-fold, which can be drawn as a toric diagram. The Higgsing conditions translate into quantisation condition for Kähler parameters $Q = \sqrt{\frac{q}{t}} t^N$ for which there is geometric transition.

Using the refined topological vertex technique one can check that:

$$Z_{ ext{top}}^{X}(ec{\mu},ec{ au},q,t)=\mathcal{B}_{FT[SU(N)]}^{\mathcal{D}_2 imes\mathcal{S}^1,(lpha_0)}(ec{\mu},ec{ au},q,t)$$

 $\vec{\mu}, \vec{\tau}$ are identified with fiber and base Kähler paramters.

3d duality from fiber-base duality

The CY X is invariant under the action fiber-base duality which swaps μ_i with τ_i and so

$$Z_{ ext{top}}^{X}(\vec{\mu}, \vec{ au}, q, t) = Z_{ ext{top}}^{X}(\vec{ au}, \vec{\mu}, q, t).$$

Notice that t is an Ω -background parameter not affected by the map, as in

$$\mathcal{B}_{FT[SU(N)]}^{D_2\times S^1,\,(\alpha)}(\vec{\mu},\vec{\tau},t) = \mathcal{B}_{FT[SU(N)]}^{D_2\times S^1,\,(\alpha)}(\vec{\tau},\vec{\mu},t).$$

 \rightarrow 3d self-duality for FT[SU(N)] descends from fiber-base duality!

We can generate large families of new 3d dualities from fiber-base via Higgsing. New quantitative approach to study 3d dualities!

Conclusions

- ▶ There are two distinct mirror-like dualities in 3d $\mathcal{N}=2$ gauge theories: one inverting the $\mathcal{N}=2$ deformation parameter, the other keeping it fixed.
- ► These theories can be understood from the 5*d* point of view using the Higgsing procedure.
- One of the mirror-like dualities is explained by the spectral duality of refined topological string.
- ▶ The other duality gives a new relation for the amplitudes of the refined topological string, geometrically engineering the 5*d* gauge theory.
- ► There are many more relations e.g. with conformal blocks of *q*-Virasoro, ordinary Virasoro and exotic *d*-Virasoro algebras.

Thank you for your attention!

What was left aside

3d gauge theory partition functions as q-Toda blocks

What was left aside

3d
ightarrow 2d compactifications and q
ightarrow 1 limits: several of them

What was left aside

d-Virasoro algebra

Starting from the *q*-Virasoro relation:

$$f\left(\frac{w}{z}\right)T(z)T(w)-f\left(\frac{z}{w}\right)T(w)T(z)=-\frac{(1-q)(1-t^{-1})}{1-\frac{q}{t}}\left(\delta\left(\frac{q}{t}\frac{w}{z}\right)-\delta\left(\frac{t}{q}\frac{w}{z}\right)\right)$$

We can take an unconventional limit where $z=q^u, w=q^v$ and finite $t(u)=\lim_{q\to 1} T(q^u)$ to obtain the d-Virasoro algebra:

$$g(v-u)t(u)t(v)-g(u-v)t(v)t(u)=\frac{\beta}{\beta-1}\left(\delta(v-u+1-\beta)-\delta(v-u-1+\beta)\right)$$

with

$$g(u) = \frac{2(1-\beta)}{u} \frac{\Gamma\left(\frac{u+2-\beta}{2(1-\beta)}\right) \Gamma\left(\frac{u+1-2\beta}{2(1-\beta)}\right)}{\Gamma\left(\frac{u+1}{2(1-\beta)}\right) \Gamma\left(\frac{u-\beta}{2(1-\beta)}\right)}.$$

We found a bosonization of this algebra: the screening current and vertex operators and calculated their normal ordered correlators $dDF_{N+2}^{A_{N-1}}$. They are equal to ordinary CFT correlators!