Top FCNC searches at HL-LHC with the CMS experiment

Petr Mandrik

on behalf of the CMS Collaboration

NRC «Kurchatov Institute» – IHEP

27 May - 02 June 2018, Valday, Russia

High-Luminosity LHC

The High-Luminosity LHC (HL-LHC) is the planed upgrade of the LHC:

	LHC Run II	HL-LHC
\sqrt{s}	13 TeV	14 TeV
Integrated luminosity	$50~{ m fb}^{-1}$ per year	$300~{ m fb}^{-1}$ per year
	300 at the end of Run III	$3000~{ m fb}^{-1}$ in total
Pileup	27-36	140-200

Phase-II Upgrade of the Compact Muon Solenoid

Significant upgrades of CMS for HL-LHC conditions:

- Radiation hardness
- Mitigate physics impact of high pileup

- addition of hardware trigger capabilities
- extended acceptance of the tracker and granularity of the calorimeters (HGCAL) in the forward region:

inner tracker
$$|\eta|<2.4\rightarrow |\eta|<4.0$$
 muon system $|\eta|<2.4\rightarrow |\eta|<2.8$

 pileup mitigation with PileUp Per Particle approach (PUPPI) algorithm

Large number of tops @ LHC \Rightarrow 10x more @ HL-LHC for:

- o mass, width measurement
- o kinematics, asymmetry study
- (anomalous) couplings measurement
- FCNC rare decays search
- o direct BSM search

Adelman et. al [1309.1947] Top pair and single top cross sections from MCFM tt t-channel t t-channel t s-channel t

Ve[TeV]

	13[101]
	14 TeV - 3000 ${ m fb}^{-1}$
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$3\cdot 10^9$ events
$tar{t}$, fiducial,	$155 \cdot 10^6$ events
$tar{t}$, fiducial, $M_{tar{t}}>1$ TeV	$3\cdot 10^6$ events
$tar{t}$, fiducial, $M_{tar{t}}>2$ TeV	$48\cdot 10^3$ events
t-channel	$600 \cdot 10^{6}$
tW-channel	$200 \cdot 10^{6}$
$\underline{\hspace{1cm}}$ s -channel	$30 \cdot 10^6$

Flavour changing neutral current in t-quark sector

- ullet In the SM, top quark FCNC decays are forbidden at tree level and have much smaller BR than the dominant decay mode t o bW at one loop level
- BSM models predict higher BR for top FCNC decays:

Process	SM	$2\mathrm{HDM}(\mathrm{FV})$	$2\mathrm{HDM}(\mathrm{FC})$	MSSM	RPV	RS
$t\to Zu$	7×10^{-17}	-	-	$\leq 10^{-7}$	$\leq 10^{-6}$	-
$t\to Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
$t \to gu$	4×10^{-14}	_	-	$\leq 10^{-7}$	$\leq 10^{-6}$	-
$t \to gc$	5×10^{-12}	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
$t \to \gamma u$	4×10^{-16}	-	-	$\leq 10^{-8}$	$\leq 10^{-9}$	-
$t \to \gamma c$	5×10^{-14}	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
$t \to hu$	2×10^{-17}	6×10^{-6}	_	$\leq 10^{-5}$	$\le 10^{-9}$	-
$t \to hc$	3×10^{-15}	2×10^{-3}	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$
arXiv:	1311,2028	}				

• Powerful probe for new physics

 No indication of FCNC transitions in t-quark sector:

Sensitivity to $tq\gamma$ FCNC transition

Single top quark production in association with photon:

- ⇒ distinctive event final-state signature of top quark decay with single muon or electron, neutrino and photon
- \Rightarrow enhanced FCNC production with an up-quark \rightarrow differentiate between up and charm-type FCNC couplings
- \Rightarrow the photon is expected to have large transverse momentum, because of its recoil from the heavy top quark

Signals:

- FeynRules model in MadGraph: TOPFCNCmode
- Official MC generation of datasets with MadGraph

Backgrounds:

- $t\bar{t}^1$, $t\bar{t} + \gamma^2$
- $W + \text{jets}^2$, $W + \gamma + \text{jets}^2$
- Single top¹, Single top $+\gamma^3$

Generated with ¹Powheg, ²MadGraph, ³aMCatNLO. Showered and hadronized with PYTHIA 8.

- \Rightarrow Full simulation of the upgraded CMS detector for signals and most of the backgrounds. Fast Delphes simulation of Single top $+\gamma$
- \Rightarrow Pile-Up $<\mu>=200$ scenario is assumed

Selections:

- Exactly one tight lepton (e or μ) with $p_T>25$ GeV, $|\eta|<2.8$, relative isolation <0.15 (electrons in the overlap region $1.4<|\eta|<1.6$ are removed)
- No additional leptons with $p_T > 10$ GeV, $|\eta| < 2.8$, relative isolation < 0.10
- Exactly one b-tagged jet with $p_T>30$ GeV, $|\eta|<2.8$ (cMVA algorithm for $|\eta|<1.5$, DeepCSV algorithm for $|\eta|>1.5$, PUPPI jets clustered with anti- k_T R=0.4)
- At least one photon with $p_T > 50$, $|\eta| < 2.8$ (photons in the overlap region $1.4 < |\eta| < 1.6$ are removed)
- $E_T^{miss} > 30 \text{ GeV}$
- Reconstructed t-quark mass in the range from 130 to 220 GeV

High photon p_T and Energy regions are populated by signal events:

combination of this distributions is used in statistical analysis for limit settings with the asymptotic CL_S method.

Systematic scenario:

- \Rightarrow 1.5% luminosity uncertanty
- \Rightarrow 1% JES uncertainty
- \Rightarrow 5% b-tagging uncertainty for the used working point
- \Rightarrow Run II normalization uncertainties (Single top $+\gamma$, $t\bar{t}$)
- ⇒ 50% variation of the renormalization and factorization scales (rest of the backgrounds)

single top $+\gamma$ and $t\bar{t}+\gamma$ cross section uncertainties are dominated!

Limits:

• 14 TeV 3000 fb⁻¹ preliminary

CMS-TDR-17-007

$$\circ Br(t \to \gamma + u) < 1.16 \cdot 10^{-5}$$

$$\circ Br(t \to \gamma + c) < 9.12 \cdot 10^{-5}$$

• 8 TeV 19.7 fb⁻¹

JHEP 0 2 (2017) 028

$$\circ Br(t \to \gamma + u) < 1.3 \cdot 10^{-4}$$

$$\circ Br(t \to \gamma + c) < 1.7 \cdot 10^{-3}$$

• 14 TeV 3000 fb⁻¹ (fast simulation based)

CMS-PAS-FTR-16-006

$$\circ Br(t \to \gamma + u) < 2.7 \cdot 10^{-5}$$

$$\circ Br(t \to \gamma + c) < 2.0 \cdot 10^{-4}$$

Sensitivity to tqZ FCNC transition

Top-quark pair with one top quark FCNC decay:

- \Rightarrow final-state signature with three isolated leptons (μ or e), neutrino and photon
 - $\begin{array}{l} \bullet \ \, \text{backgrounds:} \ t\bar{t}+jets, \\ t\bar{t}+Z/W+jets, \\ t+Z/W+jets, \\ Z/W+jets, \\ WW/WZ/ZZ+jet \end{array}$
 - fast Delphes simulation for signals and backgrounds
 - pile-up $<\mu>=140$ scenario is assumed

⇒ signals and backgrounds events are generated with MadGraph 5, showering and hadronization with Pythia 6,

Selections:

- Three isolated leptons with $p_T>30$ GeV, $|\eta|<2.5$ for electron and $|\eta|<2.4$ for muon
- ullet Invariant mass of two opposite-signed leptons $\in [78,102]$ GeV
- At least two jets with $p_T > 50$ GeV, $|\eta| < 2.4$, one b-tagged jet
- $E_T^{miss} > 30 \text{ GeV}$
- ullet Reconstructed t-quark mass from SM decay $\in [137.5, 207.5]$

The expected number of events after selectios:

Process	Cross section (pb)	Expected @ 3000 fb ⁻¹
top FCNC signal	1.91	578 ± 13
vector boson + jet	338×10^{3}	< 55
di-boson + jets	412	40 ± 31
top pair + jets	954	70 ± 57
single top + jets	323	< 8
boson + top + jets	97.3	15 ± 15
boson + top pair + jets	3.97	144 ± 14

Reconstructed m_{Zj} and m_{Wb} distributions of the simulated signal and background events for an integrated luminosity of 3000 fb¹:

The open histogram is the expected $Br(t \to Zq)$ is equal to 0.1%. The statistical uncertainties of these simulated background events are shown as shadowed area.

Systematic scenario:

- based on the study done with 8 TeV CMS-PAS-TOP-12-037
- \bullet rescaled as $\sqrt{19.5fb/\mathcal{L}}$ by 0.25

Uncertainty (%)	$3000{\rm fb}^{-1}$ @ 14 TeV
Jet energy scale	3.4
$E_{\rm T}$ resolution	3.2
MC Statistics	1.3
$\sigma(tqZ)/\sigma(Vt\bar{t})$	0.8
b-tagging	4.2
Total	7

- ⇒ Simple counting experiment using the number of events after selections
- \Rightarrow Modified frequentist approach (CL_s method)

CMS PAS FTR-13-016

$\mathcal{B}(t\to Zq)$	19.5 fb ⁻¹ @ 8 TeV	300 fb ⁻¹ @ 14 TeV	3000 fb ⁻¹ @ 14 TeV
Exp. bkg. yield	3.2	26.8	268
Expected limit	< 0.10%	< 0.027%	< 0.010%
1σ range	0.06 - 0.13%	0.018 - 0.038%	0.007 - 0.014%
2σ range	0.05 - 0.20%	0.013 - 0.051%	0.005 - 0.020%

Conclusions:

- ullet The High-Luminosity LHC will deliver up billions of tops o great opportunity to challenge the SM by searching for FCNC with upgraded CMS detector
- Search for FCNC in $t \to q \gamma$ and $t \to q Z$ events are projected into the HL-LHC conditions and shows the possibility of improving existing constraints on the branchings by about one order of magnitude.
- Several studies for different FCNC in top quark sector are in an ongoing state:

 - 2 tHq and tqZ transition based on a full detector simulation
- \bullet Systematic uncertainty will play a dominant role in such analyzes \to efforts to improve the accuracy of calculations of the cross sections of processes