Relativistic thermodynamics and magneto-hydrodynamics

Pavel Kovtun
University of Victoria

Quarks-2018, Valday, Russia May 29, 2018

Motivation

Victoria

Hydrodynamics

Motivation

Flow of hot sub-nuclear matter: heavy-ion collisions

Flow of dense subnuclear matter: neutron star mergers

First few microseconds after the Big Bang

I didn't understand hydrodynamics as a student

Motivation

THE SUN'S ATMOSPHERE ISA SUPERHOT PLASMA GOVERNED BY MAGNETOHYDRODYNAMIC FORCES...

AH, YES, OF COURSE.

WHENEVER I HEAR THE WORD
"MAGNETOHYDRODYNAMIC" MY BRAIN JUST REPLACES IT WITH "MAGIC."

To understand hydrodynamics, first understand thermodynamics

Thermodynamics

System in external time-independent $g_{\mu v}, A_{\mu}$

Compute $W=-i \ln Z\left[g_{\mu \nu}, A_{\mu}\right]$

Local correlations $\Rightarrow W[g, A]=\int d^{d+1} x \sqrt{-g} \mathcal{F}(g, A)$

Near-uniform fields \Rightarrow expand $\mathcal{F}(g, A)$ in derivatives of g, A

Leading order $\Rightarrow \mathcal{F}(g, A)=P+O(\partial)$

Thermodynamic variables

Timelike Killing vector V^{μ}, e.g. $\mathrm{V}^{\mu}=(1, \mathbf{0})$ for matter "at rest"

$$
T=\frac{1}{\beta_{0} \sqrt{-V^{2}}}, \quad u^{\mu}=\frac{V^{\mu}}{\sqrt{-V^{2}}}, \quad \mu=\frac{V^{\mu} A_{\mu}+\Lambda_{V}}{\sqrt{-V^{2}}}
$$

JLY arXiv:1310.7024

Definition of electric and magnetic fields:

$$
F_{\mu \nu}=u_{\mu} E_{\nu}-u_{\nu} E_{\mu}-\epsilon_{\mu \nu \rho \sigma} u^{\rho} B^{\sigma}
$$

Equilibrium relations

$$
u^{\lambda} \partial_{\lambda} T=0, \quad u^{\lambda} \partial_{\lambda} \mu=0
$$

$$
a_{\lambda}=-\partial_{\lambda} T / T
$$

$$
E^{\alpha}-T \Delta^{\alpha \beta} \partial_{\beta}\left(\frac{\mu}{T}\right)=0
$$

$$
\nabla_{\mu} u_{\nu}=-u_{\mu} a_{\nu}-\frac{1}{2} \epsilon_{\mu \nu \alpha \beta} u^{\alpha} \Omega^{\beta}
$$

things don't depend on time
gravitational potential induces temperature gradient
electric field induces charge gradient: this is electric screening
shear and expansion vanish in equilibrium

$$
\begin{aligned}
a^{\mu} & \equiv u^{\lambda} \nabla_{\lambda} u^{\mu} \\
\Omega^{\mu} & \equiv \epsilon^{\mu \nu \alpha \beta} u_{\nu} \nabla_{\alpha} u_{\beta}
\end{aligned}
$$

Bound charges and bound currents

$$
\delta_{A, F} W=\int d^{d+1} x \sqrt{-g}\left[J_{\mathrm{f}}^{\mu} \delta A_{\mu}+\frac{1}{2} M^{\mu \nu} \delta F_{\mu \nu}\right]
$$

The separation of J_{f} and M is ambiguous.
But the total current is not:

$$
J^{\mu}=J_{\mathrm{f}}^{\mu}-\nabla_{\lambda} M^{\lambda \mu}
$$

"free current" "bound current"

Can fix the ambiguity by trading $\partial_{\alpha} \mu$ for E_{α}.
Then $J_{\mathrm{f}}^{\mu}=\rho u^{\mu} \quad$ where $\quad \rho \equiv \partial \mathcal{F} / \partial \mu$

Bound charges and bound currents

Define charge density and spatial current:

Polarization vectors:

$$
M_{\mu \nu}=p_{\mu} u_{\nu}-p_{\nu} u_{\mu}-\epsilon_{\mu \nu \rho \sigma} u^{\rho} m^{\sigma}
$$

$$
\begin{aligned}
& \mathcal{N}=\rho-\nabla_{\mu} p^{\mu}+p^{\mu} a_{\mu}-m_{\mu} \Omega^{\mu} \\
& \mathcal{J}^{\mu}=\epsilon^{\mu \nu \rho \sigma} u_{\nu} \nabla_{\rho} m_{\sigma}+\epsilon^{\mu \nu \rho \sigma} u_{\nu} a_{\rho} m_{\sigma}
\end{aligned}
$$

$\mathrm{a}_{\mu}=$ acceleration $\Omega_{\mu}=$ vorticity

Bound charges and bound currents

Define charge density and spatial current:

Polarization vectors:

$$
M_{\mu \nu}=p_{\mu} u_{\nu}-p_{\nu} u_{\mu}-\epsilon_{\mu \nu \rho \sigma} u^{\rho} m^{\sigma}
$$

$$
\begin{aligned}
& n=\rho-\boldsymbol{\nabla} \cdot \mathbf{p}-\mathbf{p} \cdot \boldsymbol{\nabla} T / T-2 \mathbf{m} \cdot \boldsymbol{\omega} \\
& \mathbf{J}=\boldsymbol{\nabla} \times \mathbf{m}+\mathbf{m} \times \boldsymbol{\nabla} T / T
\end{aligned}
$$

These were equilibrium charges and currents.
Now need to find equilibrium $\mathrm{T}^{\mu \nu}$.
For that, need the derivative expansion.

Derivative expansion

$$
W[g, A]=\int \sqrt{-g} p+O(\partial)
$$

How do we count derivatives?
Clearly, $g_{\mu v}, T \sim O(1)$
In equilibrium, $E^{\alpha}-T \Delta^{\alpha \beta} \partial_{\beta}\left(\frac{\mu}{T}\right)=0$
So if $\mu \sim \mathrm{O}(1)$, then $\mathrm{E} \sim \mathrm{O}(\partial)$. This is screening.
No similar constraint on B , can take $\mathrm{B} \sim \mathrm{O}(\partial)$ or $\mathrm{B} \sim \mathrm{O}(1)$

Derivative expansion

$$
W[g, A]=\int \sqrt{-g} p+O(\partial)
$$

Weak E, B: $p=p(T, \mu)$
Insulator in strong E, B fields: $p=p\left(T, E^{2}, B^{2}, E \cdot B\right)$
Conductor in strong B-field: $\mathrm{p}=\mathrm{p}\left(\mathrm{T}, \mu, \mathrm{B}^{2}\right)$

Example: P-invariant conductor in strong B field

Free energy: $\quad \mathcal{F}(g, A)=p\left(T, \mu, B^{2}\right)+M_{\Omega}\left(T, \mu, B^{2}\right) B \cdot \Omega+O\left(\partial^{2}\right)$

Vary $W[g, A]=\int d^{d+1} x \sqrt{-g} \mathcal{F}(g, A)$ to find $T^{\mu v}, J \mu$

In constant B-field: $\quad T_{s}^{\mu \nu}=Q_{s}^{\mu} u^{\nu}+Q_{s}^{\nu} u^{\mu}, \quad Q_{s}^{\alpha}=M_{\Omega} \epsilon^{\alpha \mu \nu \rho} u_{\mu} B_{\nu} n_{\rho}$

Angular momentum:

$$
\frac{\mathbf{L}}{V}=2 M_{\Omega} \mathbf{B}
$$

Example: P-invariant conductor in strong B field

System at rest
in flat space, constant B-field:

$$
\frac{\mathbf{L}}{V}=2 M_{\Omega} \mathbf{B}
$$

System rotating in flat space, $\mathbf{m}=2 M_{\Omega} \boldsymbol{\omega}$ no B-field:

Fluid with a global $\mathrm{U}(1)$

$$
W[g, A]=\int d^{4} x \sqrt{-g}\left[p(T, \mu)+\sum_{n} f_{n}(T, \mu) s_{n}^{(2)}\right]+\ldots
$$

n	1	2	3	4	5	6	7	8	9
$s_{n}^{(2)}$	R	a^{2}	Ω^{2}	B^{2}	$B \cdot \Omega$	E^{2}	$E \cdot a$	$B \cdot E$	$B \cdot a$
P	+	+	+	+	+	+	+	-	-
C	+	+	+	+	-	+	-	+	-
T	+	+	+	+	+	+	+	-	-
W	n/a	n/a	2	4	3	4	n/a	4	n/a

Nine thermodynamic susceptibilities $f_{n}(T, \mu)$, have to be computed from the microscopics, just like $p(T, \mu)$

Fluid with a global $\mathrm{U}(1)$

$$
W[g, A]=\int d^{4} x \sqrt{-g}\left[p(T, \mu)+\sum_{n} f_{n}(T, \mu) s_{n}^{(2)}\right]+\ldots
$$

$\mathrm{f}_{1}: T$ - and μ-dependent Newton's constant
f_{2} : pressure response to $(\nabla \mathrm{T})^{2}$
f_{3} : pressure response to (vorticity) ${ }^{2}$
$f_{4,6,8}$: magnetic, electric, and magneto-electric suseptibilities
f_{5} : magneto-vortical susceptibility, determines $\mathbf{L} \sim \mathbf{B}, \mathbf{m} \sim \boldsymbol{\omega}$
$\mathrm{f}_{7,9}$: pressure response to $\mathbf{E} \cdot \mathbf{\nabla} \mathbf{T}, \mathbf{B} \cdot \mathbf{\nabla} \mathbf{T}$

Example: no external E,B fields

QCD with $\boldsymbol{\mu}_{\mathrm{B}} \neq \mathbf{0}$: vary $\mathrm{W}[\mathrm{g}, \mathrm{A}]$, get $T^{\mu v}$ and J^{μ} in terms of five susceptibilities $f_{n}(T, \mu), n=1,2,3,5,7$ besides the pressure $p(T, \mu)$

CFT with $\boldsymbol{\mu} \neq \mathbf{0}$: vary $\mathrm{W}[\mathrm{g}, \mathrm{A}]$, get $\mathrm{T}^{\mu v}$ and $\mathrm{J} \mathrm{\mu}$ in terms of three susceptibilities $f_{n}(T, \mu), n=1,3,5$ besides the pressure $p(T, \mu)$

Various combinations of $f_{n}(T, \mu)$ and their derivatives in $T^{\mu v}, J \mu$ are often called "thermodynamic transport coefficients".

Can be computed perturbatively, on the lattice, or in AdS/CFT BRSSS 0712.2451, Romatschke, Son 0903.3946, Moore, Sohrabi 1007.5333, 1210.3340, Arnold, Vaman, Wu, Xiao 1105.4645, Philipsen, Schäfer 1311.6618, Megias, Valle 1408.0165, Finazzo, Rougemont, Marrochio, Noronha 1412.2968, Buzzegoli, Grossi, Becattini 1704.02808

If you really want to see the expressions

$$
\begin{aligned}
T^{\mu \nu} & =\mathcal{E} u^{\mu} u^{\nu}+\mathcal{P} \Delta^{\mu \nu}+\mathcal{Q}^{\mu} u^{\nu}+\mathcal{Q}^{\nu} u^{\mu}+\mathcal{T}^{\mu \nu} \\
J^{\mu} & =\mathcal{N} u^{\mu}+\mathcal{J}^{\mu}
\end{aligned}
$$

$$
\mathcal{E}=\epsilon+\left(f_{1}^{\prime}-f_{1}\right) R+\left(4 f_{1}^{\prime}+2 f_{1}^{\prime \prime}-f_{2}-f_{2}^{\prime}\right) a^{2}
$$

$$
+\left(f_{1}^{\prime}-f_{2}-3 f_{3}+f_{3}^{\prime}\right) \Omega^{2}-2\left(f_{1}+f_{1}^{\prime}-f_{2}\right) u^{\alpha} R_{\alpha \beta} u^{\beta},
$$

$$
\mathcal{P}=p+\frac{1}{3} f_{1} R-\frac{1}{3}\left(2 f_{1}^{\prime}+f_{3}\right) \Omega^{2}-\frac{1}{3}\left(2 f_{1}^{\prime}+4 f_{1}^{\prime \prime}-f_{2}\right) a^{2}+\frac{2}{3}\left(2 f_{1}^{\prime}-f_{1}\right) u^{\alpha} R_{\alpha \beta} u^{\beta},
$$

$$
\mathcal{Q}_{\mu}=\left(f_{1}^{\prime}+2 f_{3}^{\prime}\right) \epsilon_{\mu \lambda \rho \sigma} a^{\lambda} u^{\rho} \Omega^{\sigma}+\left(2 f_{1}+4 f_{3}\right) \Delta_{\mu}^{\rho} R_{\rho \sigma} u^{\sigma},
$$

$$
\mathcal{T}_{\mu \nu}=\left(4 f_{1}^{\prime}+2 f_{1}^{\prime \prime}-2 f_{2}\right) a_{\langle\mu} a_{\nu\rangle}-\frac{1}{2}\left(f_{1}^{\prime}-4 f_{3}\right) \Omega_{\langle\mu} \Omega_{\nu\rangle}+2 f_{1}^{\prime} u^{\alpha} R_{\alpha\langle\mu \nu\rangle \beta} u^{\beta}-2 f_{1} R_{\langle\mu \nu\rangle} .
$$

$$
\mathcal{N}=n+f_{1, \mu} R+\left(f_{2, \mu}+f_{7}+f_{7}^{\prime}\right) a^{2}+\left(f_{3, \mu}-f_{5}+\frac{1}{2} f_{7}\right) \Omega^{2}-f_{7} u^{\alpha} R_{\alpha \beta} u^{\beta},
$$

$$
\mathcal{J}^{\mu}=-\left(f_{5}+f_{5}^{\prime}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} a_{\rho} \Omega_{\sigma}+2 f_{5} \Delta^{\mu \rho} R_{\rho \lambda} u^{\lambda}
$$

$$
f_{n}^{\prime} \equiv T f_{n, T}+\mu f_{n, \mu}, f_{n}^{\prime \prime} \equiv T^{2} f_{n, T, T}+2 \mu T f_{n, T, \mu}+\mu^{2} f_{n, \mu, \mu}
$$

How to compute the susceptibilities

Kubo formulas is how you connect microscopics (e.g. QCD) to macroscopics (thermodynamics, hydrodynamics)

All seven parity-even susceptibilities are given by 2-point equilibrium functions of $\mathrm{T}^{\mu \mathrm{v}}$ and $\mathrm{J} \mathrm{\mu}$ in flat space.

Can calculate all parity-even susceptibilities on the lattice or in holography.

Example: free fields

Evaluate the one-loop diagram:

Free massless real scalar:

$$
f_{1}=\frac{T^{2}}{144}(1-6 \xi), \quad f_{2}=0, \quad f_{3}=-\frac{T^{2}}{144} .
$$

Free massless Dirac fermion at $\mu=0$:

$$
f_{1}=-\frac{T^{2}}{144}, \quad f_{2}=-\frac{T^{2}}{24}, \quad f_{3}=-\frac{T^{2}}{288} .
$$

Application: hydro with $O(1)$ external magnetic field

$$
\begin{gathered}
\qquad \nabla_{\mu} T \mu v=F v \lambda J_{\lambda} \quad \text { diffeomorphism invariance } \\
\nabla_{\mu} J \mu=0 \quad \text { gauge invariance } \\
T^{\mu v}=T^{\mu v}{ }_{e q}+T^{\mu v} v_{\text {non-eq }}, \quad J \mu=J \mu_{e q}+J \mu_{\text {non-eq }} \\
\text { get from equilibrium } W[g, A]=\int p+O(\partial) \\
\text { e.g. } J \mu_{\text {eq }}=\rho u^{\mu}-\nabla \lambda M \lambda \mu
\end{gathered}
$$

Application: hydro with $O(1)$ external magnetic field

$$
\begin{gathered}
\nabla_{\mu} T \mu v=F v \lambda J_{\lambda} \\
\nabla_{\mu} J \mu=0 \\
T^{\mu v}=T \mu v e q+T^{\mu v} v_{\text {non-eq }}, \quad J \mu=J \mu_{\text {eq }}+J \mu_{\text {non-eq }}
\end{gathered}
$$

vanish in equilibrium, depend on $\partial_{\mu}, B_{\mu}, E_{\mu}, \eta, \zeta, \ldots$

Application: hydro with $\mathrm{O}(1)$ external magnetic field

For P-invariant conducting fluid in 3+1dim:

- one thermodynamic susceptibility $\mathrm{M}_{\Omega}=\mathrm{f}_{5}$
- two shear viscosities (\perp and || to B)
- three bulk viscosities
- two electrical conductivities (\perp and $|\mid$ to B)
- two Hall viscosities (\perp and || to B)
- one Hall conductivity

Eleven coefficients total:
1 thermodynamic, non-dissipative
3 non-equilibrium, non-dissipative
7 non-equilibrium, dissipative

Application: hydro with $\mathrm{O}(1)$ external magnetic field

$$
\begin{aligned}
& \mathcal{E}=-p+T p_{, T}+\mu p_{, \mu}+\left(T M_{\Omega, T}+\mu M_{\Omega, \mu}-2 M_{\Omega}\right) B \cdot \Omega, \\
& \mathcal{P}=p-\frac{4}{3} p_{B^{2}} B^{2}-\frac{1}{3}\left(M_{\Omega}+4 M_{\Omega, B^{2}} B^{2}\right) B \cdot \Omega-\zeta_{1} \nabla \cdot u-\zeta_{2} b^{u} b^{\nu} \nabla_{\mu} u_{\nu}, \\
& \mathcal{Q}^{\mu}=-M_{\Omega} \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\sigma} B_{\rho}+\left(2 M_{\Omega}-T M_{\Omega, T}-\mu M_{\Omega, \mu}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} B_{\rho} \partial_{\sigma} T / T \\
& -M_{\Omega, B^{2}} \epsilon^{\mu \nu \rho \sigma} u_{\nu} B_{\rho} \partial_{\sigma} B^{2}+\left(-2 p_{B^{2}}+M_{\Omega, \mu}-2 M_{\Omega, B^{2}} B \cdot \Omega\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} E_{\rho} B_{\sigma} \\
& +M_{\Omega} \epsilon^{\mu \nu \rho \sigma} \Omega_{\nu} E_{\rho} u_{\sigma}, \\
& \mathcal{T}^{\mu \nu}=2 p_{, B^{2}}\left(B^{\mu} B^{\nu}-\frac{1}{3} \Delta^{\mu \nu} B^{2}\right)+M_{\Omega, B^{2}} B^{\langle\mu} B^{\nu\rangle} B \cdot \Omega+M_{\Omega} B^{\langle\mu} \Omega^{\nu\rangle} \\
& -\eta_{\perp} \sigma_{\perp}^{\mu \nu}-\eta_{\|}\left(b^{\mu} \Sigma^{\nu}+b^{\nu} \Sigma^{\mu}\right)-b^{\langle\mu} b^{\nu\rangle}\left(\eta_{1} \nabla \cdot u+\eta_{2} b^{\alpha} b^{\beta} \nabla_{\alpha} u_{\beta}\right) \\
& -\tilde{\eta}_{\perp} \tilde{\sigma}_{\perp}^{\mu \nu}-\tilde{\eta}_{\|}\left(b^{\mu} \tilde{\Sigma}^{\nu}+b^{\nu} \tilde{\Sigma}^{\mu}\right), \\
& \mathcal{N}=p_{, \mu}+M_{\Omega, \mu} B \cdot \Omega-m \cdot \Omega, \\
& \mathcal{J}^{\mu}=\epsilon^{\mu \nu \rho \sigma} u_{\nu} \nabla_{\rho} m_{\sigma}+\epsilon^{\mu \nu \rho \sigma} u_{\nu} a_{\rho} m_{\sigma}+\left(\sigma_{\perp} \mathbb{B}^{\mu \nu}+\sigma_{\|} \frac{B^{\mu} B^{\nu}}{B^{2}}\right) V_{\nu}+\tilde{\sigma} \tilde{V}^{\mu} \\
& \text { * In thermodynamic frame, up to } O(\partial) \\
& \Delta^{\mu \nu} \equiv g^{\mu \nu}+u^{\mu} u^{\nu} \quad b^{\mu} \equiv B^{\mu} / B \\
& \sigma^{\mu \nu} \equiv \Delta^{\mu \alpha} \Delta^{\nu \beta}\left(\nabla_{\alpha} u_{\beta}+\nabla_{\beta} u_{\alpha}-\frac{2}{3} \Delta_{\alpha \beta} \nabla \cdot u\right) \\
& \tilde{\sigma}^{\mu \nu} \equiv \frac{1}{2 B}\left(\epsilon^{\mu \lambda \alpha \beta} u_{\lambda} B_{\alpha} \sigma_{\beta}{ }^{\nu}+\epsilon^{\nu \lambda \alpha \beta} u_{\lambda} B_{\alpha} \sigma_{\beta}{ }^{\mu}\right) \\
& \mathbb{B}^{\mu \nu} \equiv \Delta^{\mu \nu}-b^{\mu} b^{\nu} \quad \Sigma^{\mu} \equiv \mathbb{B}^{\mu \lambda} \sigma_{\lambda \rho} b^{\rho} \\
& V^{\mu} \equiv E^{\mu}-T \Delta^{\mu \nu} \partial_{\nu}(\mu / T) \\
& \tilde{v}^{\mu} \equiv \epsilon^{\mu \nu \rho \sigma} u_{\nu} B_{\rho} v_{\sigma} / B \\
& m^{\mu}=\left(2 p_{, B^{2}}+2 M_{\Omega, B^{2}} B \cdot \Omega\right) B^{\mu}+M_{\Omega} \Omega^{\mu}
\end{aligned}
$$

Application：hydro with $\mathrm{O}(1)$ external magnetic field

Inequality constraints on n＇s，乙＇s，o＇s from 2－nd law
Equality constraints on n＇s，そ＇s，o＇s from Onsager relations
Eigenmodes：collective cyclotron modes，sound，diffusion，．．．
Express n＇s，乙＇s，o＇s in terms of $\left\langle T_{\mu v} T_{\alpha \beta}\right\rangle,\left\langle T_{\mu \nu} J_{a}\right\rangle,\left\langle J_{\mu} J_{a}\right\rangle$
Transport coefficients for P －violating fluids
Hernandez，PK 1703.08757
Huang，Sedrakian，Rischke 1108.0602
Finazzo，Rougemont，Marrochio，Noronha 1412.2968

Application: Maxwell equations in matter

Equilibrium generating functional $\mathrm{W}\left[\mathrm{g}_{\mu v}, \mathrm{~A}_{\mu}\right]=$ Equilibrium effective action $\mathrm{S}\left[\mathrm{g}_{\mu v}, \mathrm{~A}_{\mu}\right]$

In the vacuum:

$$
S_{\mathrm{eff}}[g, A]=\int d^{d+1} x \sqrt{-g}\left[-\frac{1}{4} F_{\mu \nu}^{2}\right]
$$

$\delta_{A} S_{\text {eff }}=0 \Rightarrow$ Maxwell equations: $J \mu=0$, or $\nabla_{\mathrm{V}} \mathrm{F}^{\mu v}=0$.

Application: Maxwell equations in matter

Equilibrium generating functional $\mathrm{W}\left[\mathrm{g}_{\mu v}, \mathrm{~A}_{\mu}\right]=$
Equilibrium effective action $\mathrm{S}\left[\mathrm{g}_{\mu v}, \mathrm{~A}_{\mu}\right]$

In matter:

$$
S_{\mathrm{eff}}[g, A]=\int d^{d+1} x \sqrt{-g}\left[-\frac{1}{4} F_{\mu \nu}^{2}+\mathcal{F}_{\mathrm{m}}\left[T, \mu, E^{2}, B^{2}, B \cdot \Omega, \ldots\right]\right]
$$

$\delta_{A} S_{\text {eff }}=0 \Rightarrow$ Maxwell equations: $J^{\mu}=0$, or $\nabla_{V} H^{\mu v}=n u^{\mu}$.

$$
\begin{aligned}
H^{\mu \nu} & \equiv F^{\mu \nu}-M_{m}^{\mu \nu} \\
n & \equiv \partial \mathcal{F}_{\mathrm{m}} / \partial \mu
\end{aligned}
$$

Application: Maxwell equations in matter

Equilibrium generating functional $\mathrm{W}\left[\mathrm{g}_{\mu v}, \mathrm{~A}_{\mu}\right]=$ Equilibrium effective action $\mathrm{S}\left[\mathrm{g}_{\mu v}, \mathrm{~A}_{\mu}\right]$

Equations to solve:

$$
\begin{aligned}
& \nabla_{\mu} T^{\mu \nu}=F^{\lambda \nu} J_{\mathrm{ext} \lambda} \\
& J^{\mu}+J_{\mathrm{ext}}^{\mu}=0 \\
& \epsilon^{\mu \nu \alpha \beta} \nabla_{\nu} F_{\alpha \beta}=0
\end{aligned}
$$

This is relativistic MHD, with 11 transport coefficients

MHD vs hydro in external B-field

- MHD has the same 11 transport coef-s (7 are dissipative)
- MHD has the same entropy current
- MHD has the same Kubo formulas for viscosities
- MHD has different Kubo formulas for conductivities

$$
\begin{aligned}
& \frac{1}{\omega} \operatorname{Im} G_{E_{z} E_{z}}^{\mathrm{ret}}(\omega, \mathbf{k}=0)=\rho_{\|} \\
& \frac{1}{\omega} \operatorname{Im} G_{E_{x} E_{x}}^{\mathrm{ret} .}(\omega, \mathbf{k}=0)=\rho_{\perp} \\
& \frac{1}{\omega} \operatorname{Im} G_{E_{x} E_{y}}^{\mathrm{ret}}(\omega, \mathbf{k}=0)=-\tilde{\rho}_{\perp} \operatorname{sign}\left(B_{0}\right)
\end{aligned}
$$

$$
\begin{array}{r}
\sigma_{a b} \equiv \sigma_{\perp} \delta_{a b}+\tilde{\sigma} \epsilon_{a b} \\
\left(\sigma^{-1}\right)_{a b}=\rho_{\perp} \delta_{a b}+\tilde{\rho}_{\perp} \epsilon_{a b} \\
\rho_{\|} \equiv 1 / \sigma_{\|}
\end{array}
$$

- MHD has different eigenmodes (e.g. Alfven waves)

Questions

There is more to thermodynamics than knowing $p(T, \mu)$. Compute in lattice QCD \& in AdS?

Well-posedness of MHD a la Israel-Stewart?

Transport coef-s in B-field at weak vs strong coupling? Physical implications?

Statistical fluctuations, aggravated by the B-field?
There is a "dual" formulation of MHD in terms of the magnetic flux. Relation to "conventional" MHD underexplored.

Thank you!

