Massive scalar field theory in the presence of moving mirrors

Astrahantsev L.,Diatlyk O.

National Research University Higher School of Economics,
Moscow
arXiv:1805.00549

Ideal mirror

K-G equation and boundary condition

$\left(\partial_{\mathrm{t}}^{2}-\partial_{\mathrm{x}}^{2}+\mathrm{m}^{2}\right) \phi(\mathrm{t}, \mathrm{x})=0, \phi(\mathrm{t}, \mathrm{z}(\mathrm{t}))=0$

$(\mathrm{t}, \mathrm{z}(\mathrm{t}))$-trajectory of the ideal mirror

Set up of the problem

- Expand field $\phi(\mathrm{t}, \mathrm{x})$ in terms of space-time harmonics according to the mirror trajectory $\mathrm{z}(\mathrm{t})$
- check the commutation relations of the field operator and its conjugate momentum
- obtain the free Hamiltonian via the creation and annihilation operators
- derive the expectation value of the stress-energy tensor

Motivation

This model system evidently can provide insight into more sophisticated process,such as particle production in cosmological models and exploding blalck holes

Mirror at rest

Field and boundary condition

$$
\hat{\phi}(\mathrm{t}, \mathrm{x})=\mathrm{i} \int_{0}^{\infty} \frac{\mathrm{dk}}{2 \pi} \sqrt{\frac{2}{\omega}} \sin (\mathrm{kx})\left[\hat{\mathrm{a}}_{\mathrm{k}} \mathrm{e}^{-\mathrm{i} w \mathrm{t}}-\hat{\mathrm{a}}_{\mathrm{k}}^{\dagger} \mathrm{e}^{\mathrm{iwt}}\right], \hat{\phi}(\mathrm{t}, 0)=0
$$

$$
\begin{aligned}
& \quad\left[\hat{a}_{\mathrm{k}}, \hat{\mathrm{a}}_{\mathrm{k}^{\prime}}^{\dagger}\right]=2 \pi \delta\left(\mathrm{k}-\mathrm{k}^{\prime}\right) \\
& {[\hat{\phi}(\mathrm{t}, \mathrm{x}), \hat{\pi}(\mathrm{t}, \mathrm{y})]=\mathrm{i}[\delta(\mathrm{x}-\mathrm{y})-\delta(\mathrm{x}+\mathrm{y})]} \\
& \text { where } \hat{\pi}(\mathrm{t}, \mathrm{y})=\partial_{\mathrm{t}} \hat{\phi}(\mathrm{t}, \mathrm{y})
\end{aligned}
$$

- canonical momentum

Mirror at rest

The stress-energy tensor

$$
\mathrm{T}_{\mu \nu}=\frac{1}{2}\left(\partial_{\mu} \phi \partial_{\nu} \phi+\partial_{\nu} \phi \partial_{\mu} \phi\right)-\frac{1}{2} \mathrm{~g}_{\mu \nu}\left(\partial_{\alpha} \phi \partial^{\alpha} \phi+\mathrm{m}^{2} \phi^{2}\right), \partial^{\mu} \mathrm{T}_{\mu \nu}=0
$$

$$
\begin{gathered}
\mathrm{H}=\int_{0}^{\infty} \mathrm{T}_{\mathrm{tt}} \mathrm{dx}=\int_{0}^{+\infty} \frac{\mathrm{dk}}{2 \pi} \frac{\omega}{2}\left(\hat{a}_{\mathrm{k}} \hat{a}_{\mathrm{k}}^{\dagger}+\hat{\mathrm{a}}_{\mathrm{k}}^{\dagger} \hat{a}_{\mathrm{k}}\right) \\
\left\langle: \mathrm{T}_{\mu \nu}:\right\rangle=-\frac{1}{2 \pi} \mathrm{~m}^{2} \mathrm{~K}_{0}(2 \mathrm{mx})\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

Mirror moving with constant velocity

In this case consider the velocity $0<\beta<1, \phi(\mathrm{t},-\beta \mathrm{t})=0$

Field

$$
\hat{\phi}(\mathrm{t}, \mathrm{x})=\mathrm{i} \int_{\gamma \beta \mathrm{m}}^{+\infty} \frac{\mathrm{dk}}{2 \pi} \frac{1}{\sqrt{2 \omega}} \hat{\mathrm{a}}_{\mathrm{k}}\left(\mathrm{e}^{-\mathrm{i} \omega \mathrm{t}-\mathrm{ikx}}-\mathrm{e}^{-\mathrm{i} \omega_{\mathrm{r}} \mathrm{t}+\mathrm{i} \mathrm{k}_{\mathrm{r}} \mathrm{x}}\right)+\text { h.c. }
$$

$$
\begin{aligned}
& {[\hat{\phi}(\mathrm{t}, \mathrm{x}), \hat{\pi}(\mathrm{t}, \mathrm{y})]=\mathrm{i}\left[\delta(\mathrm{x}-\mathrm{y})-\frac{1}{2} \delta\left[2 \gamma^{2} \beta(1-\beta) \mathrm{t}+(1-\beta)^{2} \gamma^{2} \mathrm{x}+\right.\right.} \\
& \left.\mathrm{y}]-\frac{1}{2} \delta\left[2 \gamma^{2} \beta(1+\beta) \mathrm{t}+(1+\beta)^{2} \gamma^{2} \mathrm{x}+\mathrm{y}\right]\right]
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{\mathrm{r}}=\left(1+\beta^{2}\right) \gamma^{2} \omega-2 \beta \gamma^{2} \mathrm{k} \\
& \mathrm{k}_{\mathrm{r}}=2 \beta \gamma^{2} \omega+\left(1+\beta^{2}\right) \gamma^{2} \mathrm{k}
\end{aligned}
$$

Mirror moving with constant velocity

$$
\mathrm{H}=\int_{-\beta \mathrm{t}}^{\infty} \mathrm{T}_{\mathrm{tt}} \mathrm{dx}=\frac{1}{2} \int_{-\beta \mathrm{t}}^{+\infty}\left[\left(\partial_{\mathrm{t}} \phi\right)^{2}-\phi \partial_{\mathrm{t}}^{2} \phi\right] \mathrm{dx}, \mathrm{P}=\int_{-\beta \mathrm{t}}^{\infty} \mathrm{dx} \mathrm{~T}_{\mathrm{tx}}
$$

Translation operator

$$
\mathrm{H}-\beta \mathrm{P}=\int_{\gamma \beta \mathrm{m}}^{\infty} \frac{\mathrm{dk}}{2 \pi} \frac{\gamma^{2}(\omega-\beta \mathrm{k})(\omega-\beta \mathrm{k}-\beta(1-\beta) \omega)}{2 \omega_{\mathrm{r}}}\left[\hat{\mathrm{a}}_{\mathrm{k}} \hat{\mathrm{a}}_{\mathrm{k}}^{\dagger}+\hat{\mathrm{a}}_{\mathrm{k}}^{\dagger} \hat{\mathrm{a}}_{\mathrm{k}}\right]
$$

Operator of the translations along the mirror is diagonal unlike the Hamiltonian and Momentum separately

For massless field

$$
\mathrm{H}-\beta \mathrm{P}=
$$

$$
(1-\beta) \int_{0}^{\infty} \frac{\mathrm{dk}}{2 \pi} \frac{\mathrm{k}}{2}\left[\mathrm{a}_{\mathrm{k}} \mathrm{a}_{\mathrm{k}}^{\dagger}+\mathrm{a}_{\mathrm{k}}^{\dagger} \mathrm{a}_{\mathrm{k}}\right]
$$

Mirror moving with constant velocity

$$
\left\langle\mathrm{T}_{\mathrm{tx}}\right\rangle=\lim _{\varepsilon \rightarrow 0} \frac{1}{2}\left\langle\partial_{\mathrm{t}} \phi(\mathrm{t}, \mathrm{x}) \partial_{\mathrm{x}} \phi(\mathrm{t}+\mathrm{i} \varepsilon, \mathrm{x})+\partial_{\mathrm{x}} \phi(\mathrm{t}, \mathrm{x}) \partial_{\mathrm{t}} \phi(\mathrm{t}+\mathrm{i} \varepsilon, \mathrm{x})\right\rangle
$$

Vacuum average of tx-component

$$
\left\langle\mathrm{T}_{\mathrm{tx}}\right\rangle=-\frac{1}{2 \pi} \gamma^{2} \beta \mathrm{~m}^{2} \mathrm{~K}_{0}(2 \mathrm{~m} \gamma(\mathrm{x}+\beta \mathrm{t}))
$$

No flux

For each fixed x , as $\mathrm{t} \rightarrow+\infty,\left\langle\mathrm{T}_{\mathrm{tx}}\right\rangle \rightarrow 0$
Boost the mirror at rest

$$
\left\langle\mathrm{T}_{\mathrm{tx}}\right\rangle=\beta \gamma^{2}\left(\left\langle: \mathrm{T}_{\mathrm{t}^{\prime} \mathrm{t}^{\prime}}:\right\rangle+\left\langle: \mathrm{T}_{\mathrm{x}^{\prime} \mathrm{x}^{\prime}}:\right\rangle\right)=-\frac{1}{2 \pi} \mathrm{~m}^{2} \beta \gamma^{2} \mathrm{~K}_{0}\left(2 \mathrm{mx}^{\prime}\right)
$$

Non-ideal mirror

$$
\begin{array}{r}
\left(\partial_{\mathrm{t}}^{2}-\partial_{\mathrm{x}}^{2}+\mathrm{m}^{2}+\alpha \delta(\mathrm{x})\right) \mathrm{h}(\mathrm{t}, \mathrm{x})=0, \quad \alpha>0 \\
\mathrm{~h}(\mathrm{t},+0)=\mathrm{h}(\mathrm{t},-0) ; \partial_{\mathrm{x}} \mathrm{~h}(\mathrm{t},+0)-\partial_{\mathrm{x}} \mathrm{~h}(\mathrm{t},-0)=\alpha \mathrm{h}(\mathrm{t}, 0)
\end{array}
$$

Modes

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{k}>0}(\mathrm{t}, \mathrm{x})= \begin{cases}\frac{\mathrm{e}^{-\mathrm{i} \omega \mathrm{t}}}{\sqrt{2 \omega}}\left(\mathrm{e}^{-\mathrm{i} k x}-\frac{\alpha}{2 \mathrm{ik}+\alpha} \mathrm{e}^{\mathrm{i} k \mathrm{x}}\right) & \mathrm{x}<0 \\
\frac{\mathrm{e}^{-\mathrm{i} \omega \mathrm{t}}}{\sqrt{2 \omega}} \frac{2 i \mathrm{ik}}{2 \mathrm{ik+} \mathrm{\alpha}+\alpha} \mathrm{e}^{-\mathrm{i} k x} & \mathrm{x}>0\end{cases} \\
& \mathrm{h}_{\mathrm{k}<0}(\mathrm{t}, \mathrm{x})= \begin{cases}\frac{\mathrm{e}^{-\mathrm{i} \omega \mathrm{t}}}{\sqrt{2 \omega}}\left(\mathrm{e}^{-\mathrm{i} k x}+\frac{\alpha}{2 \mathrm{ik}-\alpha} \mathrm{e}^{\mathrm{i} k x}\right) & \mathrm{x}>0 \\
\frac{\mathrm{e}^{-\mathrm{i} \omega \mathrm{t}}}{\sqrt{2 \omega}} \frac{2 i k}{2 \mathrm{ik-} \mathrm{\alpha}} \mathrm{e}^{-\mathrm{i} k x} & \mathrm{x}<0\end{cases}
\end{aligned}
$$

Non-ideal mirror

The quantized field

$$
\hat{\phi}(\mathrm{t}, \mathrm{x})=\int_{-\infty}^{+\infty} \frac{\mathrm{dk}}{2 \pi} \frac{\hat{a}_{\mathrm{k}} \mathrm{~h}(\mathrm{x}) \mathrm{e}^{\mathrm{i} \omega \mathrm{t}}+\hat{\mathrm{a}}_{\mathrm{k}}^{\dagger} \mathrm{h}^{*}(\mathrm{x}) \mathrm{e}^{-\mathrm{i} \omega \mathrm{t}}}{\sqrt{2 \omega}}
$$

Commutation relation

$$
\left[\hat{\phi}(\mathrm{t}, \mathrm{x}), \partial_{\mathrm{t}} \hat{\phi}(\mathrm{t}, \mathrm{y})\right]=\mathrm{i} \delta(\mathrm{x}-\mathrm{y})
$$

Non-ideal mirror

The Hamiltonian

$$
\begin{gathered}
\hat{\mathrm{H}}=\frac{1}{2} \int_{-\infty}^{+\infty} \mathrm{dx}\left[\left(\partial_{\mathrm{t}} \hat{\phi}\right)^{2}+\left(\partial_{\mathrm{x}} \hat{\phi}\right)^{2}+\mathrm{m}^{2} \hat{\phi}^{2}+\alpha \hat{\phi}^{2}(\mathrm{t}, 0)\right]= \\
=\int_{-\infty}^{+\infty} \frac{\mathrm{dk}}{2 \pi} \frac{\omega}{2}\left(\hat{a}_{\mathrm{k}} \hat{a}_{\mathrm{k}}^{\dagger}+\hat{\mathrm{a}}_{\mathrm{k}}^{\dagger} \hat{a}_{\mathrm{k}}\right)
\end{gathered}
$$

Non-ideal mirror

The vacuum expectation value of the stress-energy tensor

$$
\begin{gathered}
\left\langle\mathrm{T}_{\mu \nu}\right\rangle=-\frac{1}{4 \pi} \eta_{\mu \nu}\left[\mathrm{M}^{2} \log \Lambda-2 \alpha \delta(\mathrm{x}) \frac{\arctan \left(\sqrt{\frac{4 \mathrm{~m}^{2}}{\alpha^{2}}-1}\right)}{\sqrt{\frac{4 \mathrm{~m}^{2}}{\alpha^{2}}-1}}\right]+ \\
+\mathrm{F}(\mathrm{~m}, \mathrm{M}, \mathrm{x})\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{F}(\mathrm{~m}, \mathrm{M}, \mathrm{x})=\mathrm{m}^{2} \int_{-\infty}^{+\infty}\left[\theta(-\mathrm{x}) \theta(\mathrm{k})\left(\frac{\alpha}{2 \mathrm{ik}-\alpha} \mathrm{e}^{-2 \mathrm{ikx}}-\frac{\alpha}{2 \mathrm{ik+} \mathrm{\alpha}} \mathrm{e}^{2 \mathrm{ikx}}\right)+\right. \\
& \left.+\theta(\mathrm{x}) \theta(-\mathrm{k})\left(\frac{\alpha}{2 \mathrm{ik}-\alpha} \mathrm{e}^{2 \mathrm{ikx}}-\frac{\alpha}{2 \mathrm{ik+} \mathrm{\alpha}} \mathrm{e}^{-2 \mathrm{ikx}}\right)\right] \frac{\mathrm{dk}}{4 \pi \omega}-(\mathrm{m} \rightarrow \mathrm{M})
\end{aligned}
$$

Conclusions

- In case of the ideal mirror, the field operator and its conjugate momentum do not obey the canonical commutation relations
- in the presence of moving mirrors the diagonal form has the $\hat{\mathrm{H}}-\beta \hat{\mathrm{P}}$ operator rather than $\hat{\mathrm{H}}$ itself
- In the presence of a mirror moving with constant velocity the expectation value of the stress-energy tensor has a non-diagonal contribution
- In the case of non-ideal mirror the commutation relations of the field operator and its conjugate momentum have their canonical form, as it should be in proper physical situations

Thank you for your attention!

