# Holography, quantum complexity and quantum chaos in different models

Ageev D.
Steklov Mathematical Institute

Based on

arXiv 1803.11162, D.A., I. Aref'eva, A. Bagrov, M. Katsnelson arXiv 1805.XXXX, D.A., I. Aref'eva

The **Quark** and the Jaguar: Adventures in the Simple and **Complex** 



### The plan of my talk

- The <u>chaos</u> in quantum field theory and gravity:short review
- Where the <u>quantum complexity</u> is necessary in quantum field theory and what is it?
- Holographic local quench as a toy model of quantum system out of equilibrium and complexity evolution.
- Qualitative check of correspondence between gravity and chaos: <u>chaos supression and</u> <u>holography</u>

### AdS/CFT correspondence

 Relates gravity in d+1 dimension and strongly coupled quantum system in d dimensions

### Gravity(Holography) and quantum information

- The physics of quantum information has played a growing role in our understanding of the emergence of spacetime and gravity in the context of the AdS/CFT correspondence
- Examples:
  - 1. AdS (in dim=2) space naturally emerges from the special «variational ansatz» for the state in conformal quantum system tensor network
  - 2. Einstein equations implies equations for the entanglement entropy in CFT and vice versa

Hayden et.al., 1601.01694 Faulkner et.al., 1601.01694

# Recent ideas with strong connection to the gravity and AdS/CFT

- -Scrambling
- -Quantum chaos
- -Quantum complexity
- -Black holes are the fastest scramblers
- -Black holes are the fastest quantum computers
- -Black holes are-??????

### Chaos reigns

- New quantitatives measure of the chaos
  - 1. Commutator square correlator

$$C(t) = -\langle [W(t), V(0)]^2 \rangle \\ \langle \cdot \rangle = Z^{-1} \mathrm{tr}[e^{-\beta H} \cdot]$$

2. Spectral form factor

$$\left| \frac{Z(\beta, t)}{Z(\beta)} \right|^2 = \frac{1}{Z(\beta)^2} \sum_{m,n} e^{-\beta(E_m + E_n)} e^{i(E_m - E_n)t}$$

- 3.Operator size
- 4. General idea of out-of-time ordered correlators

# Chaos reigns in holographic systems

#### **Bound on chaos!**

Maldacena, Stanford, Shenker, 1503.01409

$$F_d - F(t) = \epsilon \exp \lambda_L t$$
  $\lambda_L \leq rac{2\pi}{eta} = 2\pi T$ 

#### Examples:

- 1. Two dimensional CFT at large central charge (holographic dual of 3-dimensional gravity)
- 2. Sachdev-Ye-Kitaev model and other melonic models (probable dual of 2-dimensional dilaton gravity)

# New time scales in strongly coupled quantum systems

- Local thermalization: (also called diffusion time or collision time)
- Scrambling:
  - Time of the chaos onset
  - Time when all information is governed by higher- and-higher-point correlators and non-local measures. Estimation by vanishing of n-point mutual information. D.A., I. Aref'eva, 1701.07280
- Global thermalization

### Eternal black holes: the paradox

- Eternal black holes are dual to the thermofield double of QFT.
- The dual boundary theories very quickly comes to the thermal equilibrium.
- All <u>evolution seems to stop</u> at the scrambling time
- <u>But the one thing does not stop evolving the</u> <u>Einstein-Rosen bridge: linearly and eternal</u> <u>growing.</u>

### The complexity conjecture

D Stanford, L Susskind, 1406.2678

The quantum state does not stop evolving.

- Subtle quantum properties continue to equilibrate long after a system is scrambled.
- These properties can be summarized in a quantity called quantum complexity, or just complexity.
- Complexity characterizes «how much elementary operations we have to do to make the target state».

# Proposal of definition of QFT complexity

 «Entropy is only the tip of the gigantic complexity iceberg»

D Stanford, L Susskind, 1406.2678

# Proposal of definition of QFT complexity: discrete version

#### Minimize over all possible operations sets

$$\psi_{\rm T} = U\psi_{\rm R} \equiv Q_{22}^{\alpha_3} Q_{21}^{\alpha_2} Q_{11}^{\alpha_1} \psi_{\rm R} \qquad Q_{21} \psi(x_1, x_2) = \psi(x_1 + \epsilon x_2, x_2)$$
$$Q_{11} \psi(x_1, x_2) = e^{\epsilon/2} \psi(e^{\epsilon} x_1, x_2)$$

$$\psi_{\rm R}(x_1, x_2) = \sqrt{\frac{\omega_0}{\pi}} \exp\left[-\frac{\omega_0}{2} (x_1^2 + x_2^2)\right]$$

$$\psi_{\rm T}(x_1, x_2) = \frac{\left(\omega_1 \omega_2 - \beta^2\right)^{1/4}}{\sqrt{\pi}} \exp\left[-\frac{\omega_1}{2}x_1^2 - \frac{\omega_2}{2}x_2^2 - \beta x_1 x_2\right]$$

$$\mathcal{D}(U) = |\alpha_1| + |\alpha_2| + |\alpha_3|$$

Jefferson, Myers, 1707.08570 
$$= \frac{1}{\epsilon} \left[ \frac{1}{2} \log \left( \frac{\omega_1 \omega_2 - \beta^2}{\omega_0^2} \right) + \sqrt{\frac{\omega_0}{\omega_1}} \frac{|\beta|}{\sqrt{\omega_1 \omega_2 - \beta^2}} \right]$$

# Continous complexity=geometric complexity

Geodesics in the parameter space:

set all possible operators O and minimize over Y

Jefferson, Myers, 1707.08570

$$U = \overleftarrow{\mathcal{P}} \exp \int_0^1 \mathrm{d}s \, Y^I(s) \, \mathcal{O}_I$$

$$\psi_{\mathrm{T}}\left(x_{1}, x_{2}\right) = U\psi_{\mathrm{R}}\left(x_{1}, x_{2}\right)$$

$$\mathcal{D}(U) = \int_0^1 \mathrm{d}s \sqrt{G_{IJ} Y^I(s) Y^J(s)}$$

### Free fields

#### **Examples:**

Chapman, et.al. 1707.08582, Jefferson, Myers, 1707.08570

$$b_{\vec{k}} = \beta_k^+ a_{\vec{k}} + \beta_k^- a_{-\vec{k}}^{\dagger}; \quad b_{\vec{k}} | R(M) \rangle = 0;$$

$$\beta_k^+ = \cosh 2r_k; \quad \beta_k^- = \sinh 2r_k; \quad r_k \equiv \log \sqrt[4]{\frac{M}{\omega_k}}$$

$$C^{(n)} = 2\sqrt[n]{\frac{\operatorname{Vol}}{2} \int_{k \le \Lambda} d^d k |r_k|^n}$$

### Holographic complexity

- There are two main proposals:
- Complexity=Volume
- Complexity=Action
- In fact the <u>conventional</u> covariant version of the holographic complexity for arbitrary state (for example interval) is <u>unknown</u>.

### Holographic proposals:CV

- «CV» is Complexity=Volume conjecture
- The CV <u>complexity</u> of the state on in quantum field theory is (modulo technical details) the volume under the minimal surface spanned on the region corresponding to the state

Alishahiha, 1509.06614; Carmi, Myers, Rath 1612.00433

### Holographic proposals:CA

- Complexity action:

  Brown, et.al. 1512.04993
- Action of the gravitational theory(plus matter fields!!) in the special region called Wheeler-de-Witt patch in the bulk of the AdS space





#### CA versus CV

- CV conjecture is strongly defined by the entanglement properties of the state
- CV conjecture has strong numerical support in its favor(with tensor networks numerics)
- The simplest formulation of CV incudes additional parameter while the original CA does not
- CV and CA are supported by tensor networks arguments
- In fact in the simplest situations they lead to the very similar results

### Local quench

- We need the example that is intuitively easy to understand and non-trivial enough to compare these conjectures
- Local quench is the local perturbation(for example by the energy injection at one point) of the quantum system.
- Examples:joining two semi-infinite spin chains.
   Insertion of operator at a point in CFT.
- Exactly solvable at CFT different description
- This process have good holographic description

### Holographic local quench

Nozaki, Numasawa, Takayanagi, 1302.5703

$$\mathcal{R}^{\mu\nu} - \frac{1}{2}g^{\mu\nu}\mathcal{R} + \Lambda g^{\mu\nu} = \mathcal{T}^{\mu\nu}$$

$$\mathcal{T}^{\mu\nu} = \frac{8\pi mG_N}{\sqrt{-g}} \cdot \frac{\partial_t X^{\mu} \partial_t X^{\nu}}{\sqrt{-g_{\mu\nu} \cdot \partial_t X^{\mu}(t) \cdot \partial_t X^{\nu}(t)}} \cdot \delta(z - z(t)) \cdot \delta^{d-1}(x_i)$$

Static (in the space coordinates) point particle deforming the Poincare patch of the AdS space.

### Holographic local quench: dual metric

$$ds^{2} = \frac{1}{z^{2}} \frac{\left(\alpha^{2}dx - 2txdt + dx\left(u - z^{2}\right) + 2xzdz\right)^{2}}{\alpha^{4} + 2\alpha^{2}\left(u - z^{2}\right) + \left(z^{2} - v\right)^{2}} - \frac{1}{z^{2}} \frac{\left(\alpha^{4} + 2\alpha^{2}\left(u + z^{2}(1 - 2M)\right) + \left(z^{2} - v\right)^{2}\right)\left(\alpha^{2}dt + \left(u + z^{2}\right)dt - 2t(xdx + zdz)\right)^{2}}{\left(\alpha^{4} + 2\alpha^{2}\left(u + z^{2}\right) + \left(z^{2} - v\right)^{2}\right)^{2}} \frac{1}{z^{2}} \frac{\left(\alpha^{4}dz + 2\alpha^{2}\left(udz - z(tdt + xdx)\right) + \left(v - z^{2}\right)\left(-2tzdt + 2xzdx + \left(v + z^{2}\right)dz\right)\right)^{2}}{\left(\alpha^{4} + 2\alpha^{2}\left(u - z^{2}\right) + \left(z^{2} - v\right)^{2}\right)\left(\alpha^{4} + 2\alpha^{2}\left(-2Mz^{2} + u + z^{2}\right) + \left(z^{2} - v\right)^{2}\right)},$$

$$u = t^2 - x^2$$
$$v = t^2 + x^2$$

# Two quasiparticles from quench: vev of stress-energy tensor



### Constant time slice volume density evolution



Quench starts at x=0

# CV for total system grows monotonicaly



# CV (for interval) complexity following quench



### Complexity versus entanglement



# Complexity-Action for total system decrease monotonicaly



### Complexity-Action for subsystem



### Lloyd bound

$$\mathcal{R} < \frac{2E}{\pi},$$

$$\mathcal{R}(t) = \frac{d\Delta \mathcal{C}}{dt}$$

Conjectural bound of the speed of «computational machine» to proceed with the physical process.

For Complexity=Action conjecture this bound is precisely saturated at time t=0 in local quench

For 2D conformal field theory to insert the heavy operator in radial quantization (to quench the system) is the operation of maximal computation complexity?

# Can we say something about chaotic evolution <u>of</u> perturbing operator?

yes

### Particle=Operator in AdS/CFT

- We model the local quench and study the evolution of the system
- Can we say something about operator characteristics during the evolution?
- First let us consinder the operator in the probe limit(neglecting backreaction) to simplify the problem

### Operator size

Roberts, Stanford, Streicher, 1802.02633

$$W(t) = \sum_{s,a_1 < \dots < a_s} c_{a_1 \dots a_s}(t) \psi_{a_1} \dots \psi_{a_s}$$

- S-grows while the system evolves
- Characterizes how «complex» becomes the  $\approx e^{\frac{2\pi}{\beta}t}$  operator during the evolution of the system
- Important quantitative chaotic measure in holographic systems

### «Why things do fall?»-Susskind, 1802.01198

- There is conjectural correspondence (by L.Susskind) between the <u>particle radial</u> <u>momentum</u> falling in the black hole (i.e. operator evolving at finite temperature) and the <u>operator size</u>.
- It occurs that holographic theories precisely saturate some bound of this growth
- Gravity makes things more and more complex

Operator size 
$$\longleftrightarrow \mathbf{p_z(t)}$$

$$p_z(t) \approx e^{\frac{2\pi}{\beta}t}$$

### Why things stop falling?

- We make a quantitative check of this correspondence. We show that finite chemical potential suppreses the chaos both in the holographic model and in the model dual theories.
- Charged operator = charged particle

$$S = -m \int \sqrt{-g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}}d\tau + qA_{\mu}\dot{x}^{\mu}d\tau$$

D.A., I.Aref'eva, 1805.xxxx

# Reissner-Nordstrom black hole and finite chemical potential

$$ds^{2} = \frac{1}{z^{2}} \left( -f(z)dt^{2} + \frac{dz^{2}}{f(z)} + d\bar{x}^{2} \right)$$
$$f(z) = 1 - M\left(\frac{z}{z_{h}}\right)^{d} + Q\left(\frac{z}{z_{h}}\right)^{2d-2},$$

$$A = \mu \left(1 - \left(\frac{z}{z_h}\right)^{d-2}\right) dt$$

### Critical charge



$$q_{crit} = \frac{\sqrt{f(z_*)}}{z_* A(z_*)}$$

# Momentum stops growing after critical charge



Operator size  $\longleftrightarrow \mathbf{p_z}(\mathbf{t})$ 

### Quantum models that support these results

- Sachdev-Ye-Kitaev randomly all-to-all interacting complex fermions at finite chemical potential
- Matrix quantum mechanics with the mass term in the special limit

### Quantum models that support these results:1

Sachdev-Ye-Kitaev — randomly all-to-all interacting complex fermions

$$H = \sum_{i} J_{i_1..i_q} \psi_{i_1}^{\dagger} ... \psi_{i_{q/2}}^{\dagger} \psi_{i_{q/2}+1} ... \psi_{i_q}$$

$$G_0 = \frac{1}{i\omega + \mu}$$



### Quantum models that support these results:2

 Matrix quantum mechanics with the mass term in the special limit

Tatsuo Azeyanagi, Frank Ferrari, and Fidel I. Schaposnik Massolo Phys. Rev. Lett. 120, 061602

0.5

$$H = ND \text{tr} \left( m \psi_{\mu}^{\dagger} \psi_{\mu} + \frac{1}{2} \lambda \sqrt{D} \psi_{\mu} \psi_{\nu}^{\dagger} \psi_{\mu} \psi_{\nu}^{\dagger} \right)$$

$$0.10 \quad \text{supercritical phase}$$

$$0.08 \quad \text{From Phys. Rev. Lett. 120, 061602}$$

$$0.04 \quad \text{HE phase}$$

$$0.02 \quad \text{LE phase}$$

0.4

0.2

0.3

0.1

#### Conclusion

- We calculated the quantum complexity in the model of the locally excited system. In some sense our results are consistent with the intuitive definition of complexity. CV looks more «physical».
- Our CA results states that 2d CFT local excitation saturates the bound on complexity
- At the finite chemical potential the chaos (corresponding to the local charged excitations) is in accordance with the QFT models (chaos is supressed)