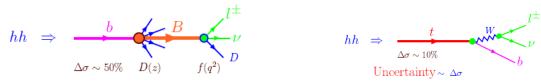
Progress in top quark physics

E.E. Boos SINP MSU


Outline

- Top quark in the Standard Model
- Progress in measurements and in perturbative computations
- Searches for "New Physics" in processes involving the top quark (few examples)

Top quark is the heaviest elementary particle found so far with a mass slightly less than the mass of the gold nucleus

(Mass of 186 gold nucleus isotop is 173.2 GeV, its life time is about 10 min)

• Top decays ($\tau_t \sim 5 \times 10^{-25}~sec$) much faster than a typical time-scale for a formation of the strong bound states ($\tau_{QCD} \sim 3 \times 10^{-24}~sec$). No top hadrons. A very clean source for a fundamental information.

- Top is so heavy and point like at the same time.
- Top Yukawa coupling ($y_t = \frac{\sqrt{2}M_{top}}{v}$) is very close to unity. Studies of top may shed a light on an origin of the mechanism of the EW symmetry breaking.

What is a role of the Top quark in SM and BSM?

Cancellation of chiral anomalies in SM with 3 generations

 $(Q_{top}+Q_b)\times N_c+Q_{tou}=0$ ATLAS: $Q_{top} = 0.64 \pm 0.02 \text{(stat.)} \pm 0.08 \text{(syst.)}$ (from charge correlations of W[±] u b-jets in top and anti-top decays)

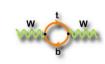
- GIM mechanism and flavor changing neutral current (FCNC) suppression

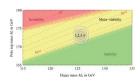
FCNC appear from two bosons (W⁺ and W⁻) emission by the quark currents

$$V_{su}^{\dagger}V_{ub} + V_{sc}^{\dagger}V_{cb} + V_{st}^{\dagger}V_{tb} = \mathbf{0}$$

$$V_{su}^{\dagger}V_{ub} \quad S(p, M_u) + V_{sc}^{\dagger}V_{cb} \quad S(p, M_c) + V_{st}^{\dagger}V_{tb} \quad S(p, M_{top}) \neq \mathbf{0}$$

$$SM: \mathbf{Br}(\mathbf{B^0_s} \to \mu^+\mu^-)_{\mathbf{theory}} = (3.66 \pm 0.23) \times 10^{-9} \quad \mathbf{Bobeth \ et \ al., \ PRD \ (2014) \ 101801}$$


$$E_s^0 \to \mu^+\mu^-$$


$$E_s^0 \to \mu^-\mu^-$$

$$E_s^0 \to$$

Large Top quark Yukawa coupling

$$M_h^{
m max} = \sqrt{M_Z^2 + \epsilon}$$

$$\epsilon = \frac{3G_F \overline{m}_t^4}{\sqrt{2}\pi^2 \sin^2 \beta} \left[f(t) \right]$$

$$t = \log \left(\frac{M_S^2}{m^2} \right)$$

- Key particle in various SM extensions, in particular, in MSSM $\epsilon = \frac{3G_F \overline{m}_t^4}{\sqrt{2}\pi^2 \sin^2\beta} \left[f(t) \right]$ MSSM is alive because of heavy Top (light Higgs mass < 135-140 GeV)

 - «Laboratory» for many BSM searches (various signal and background processes)

Top-quark production at hadron colliders

tt pair production (QCD)

Tevatron, 1.96 TeV: $\sigma \approx 7.01 \text{ pb}$

LHC. 8 TeV: $\sigma \approx 220$ pb

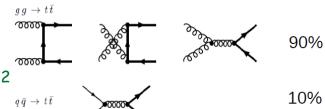
13 TeV: $\sigma \approx 826$ pb

NNLO+NNLL accuracy

Reneke Falcari Klein So

Beneke , Falgari ,Klein ,Schwinn'12

Cacciari, Czakon, Mangano, Mitov ,Nason'12


Czakon, Mitov '12,13

Bruncherseifer, Caola, Melnikov'13

Kidonakis' 11-16

14 TeV: $\sigma \approx 975$ pb

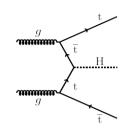
....

t(t) single production (electroweak)

NNLO+NNLL accuracy t-channel bb Tevatron, 1.96 TeV 2.26 64 7 TeV 87 8 TeV LHC 13 TeV 221 11.3 14 TeV 252 12.4

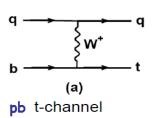
Kidonakis' 14-15

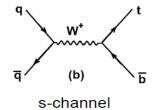
Kidonakis I	1 13	
s-channe	el	tW-channel
	pb	
1.04	0.14	
4.6	15.6	
5.6	21.1	

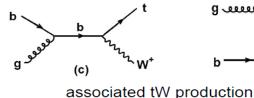

72.6

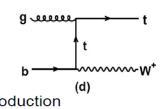
85.6

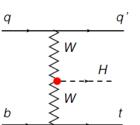
The single top rate is about 40% of the top pair

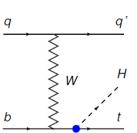

ttH (W,Z) production

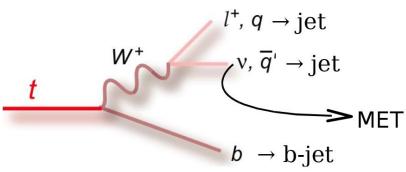

LHC Higgs WG (ttH) ~ 0.13 pb at 8TeV ~ 0.61 pb at 14TeV

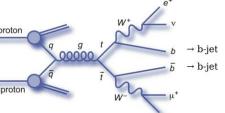


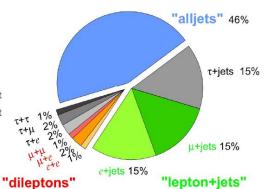

tHq rate production


Birwas, Gabrielli, Mele' 12 ~ 0.015 pb at 8TeV ~ 0.072 pb at 14TeV

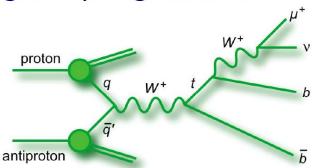


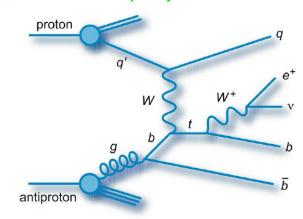



• Top decays:

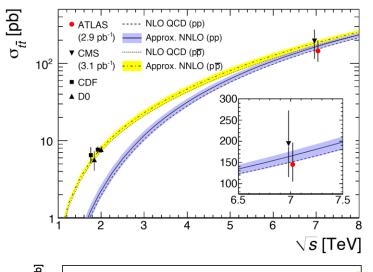

• Top pair signatures:

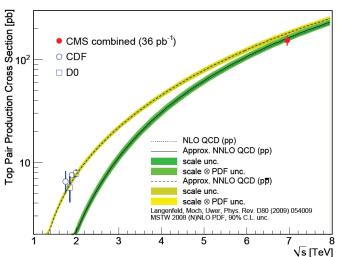
- lepton + jets

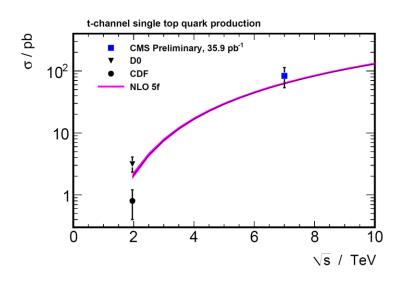

- dilepton
- all jets



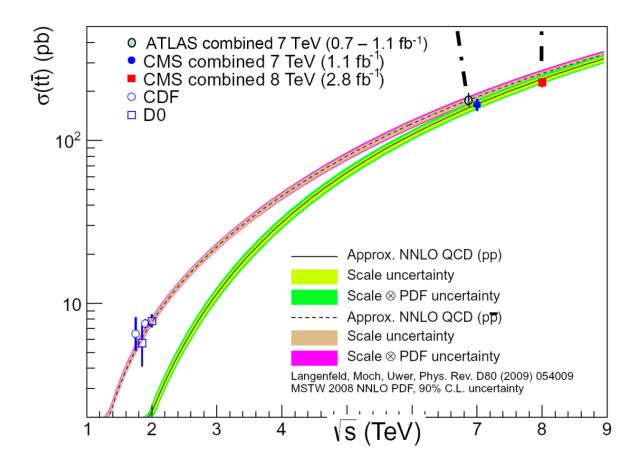
Top Pair Branching Fractions

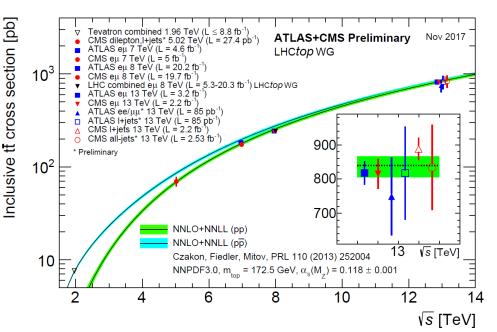

Single Top Signatures:




Pair and single top production cross sections at the LHC energy 7 TeV

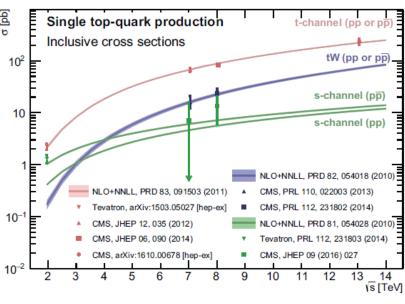
Phys. Lett. B695, 424 (2010) (CMS) Eur.Phys.J. C71, 1577 (2011) (ATLAS)

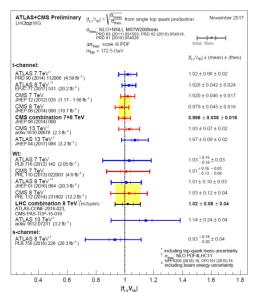



$$|V_{tb}| = \sqrt{\frac{\sigma^{exp}}{\sigma^{th}}} = 1.16 \pm 0.22(exp) \pm 0.02(th)$$



$$\sigma(8\text{TeV})/\sigma(7\text{TeV}) = 1.41 \pm 0.11$$


Further progress in top cross section measurements


Top pair production

Single top production

NNLO

Collider	$\sigma_{\rm tot} \; [pb]$	scales [pb]	pdf [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)
LHC 7 TeV	172.0	+4.4(2.6%) $-5.8(3.4%)$	+4.7(2.7%) -4.8(2.8%)
LHC 8 TeV	245.8	+6.2(2.5%) $-8.4(3.4%)$	+6.2(2.5%) $-6.4(2.6%)$
LHC 14 TeV	953.6	+22.7(2.4%) $-33.9(3.6%)$	+16.2(1.7%) -17.8(1.9%)

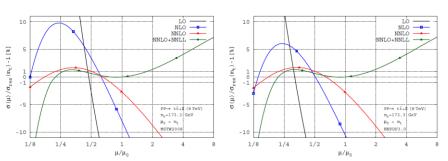
$m_{ref} = 173$	$3.3~{ m GeV}$	$\sigma(m_{ref})$ [pb]	a_1	a_2
	Central	7.1642	-1.46191	0.945791
	Scales +	7.27388	-1.46574	0.957037
Tevatron	Scales -	6.96423	-1.4528	0.921248
	PDFs +	7.33358	-1.4439	0.930127
	$\mathrm{PDFs}-$	7.04268	-1.4702	0.936027
	Central	172.025	-1.24243	0.890776
	Scales +	176.474	-1.24799	0.903768
LHC 7 TeV	Scales -	166.193	-1.22516	0.858273
	PDFs +	176.732	-1.22501	0.861216
	PDFs $-$	167.227	-1.2586	0.918304
	Central	245.794	-1.1125	0.70778
	Scales +	252.034	-1.11826	0.719951
LHC $8~{ m TeV}$	Scales -	237.375	-1.09562	0.677798
	PDFs +	251.968	-1.09584	0.682769
	PDFs -	239.441	-1.12779	0.731019

Czakon, Fiedler, Mitov' 13

$$\sigma(m) = \sigma(m_{ref}) \left(\frac{m_{ref}}{m}\right)^{4} \times \left(1 + a_{1} \frac{m - m_{ref}}{m_{ref}} + a_{2} \left(\frac{m - m_{ref}}{m_{ref}}\right)^{2}\right)$$

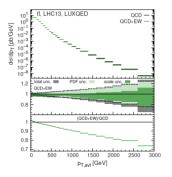
CMS EPJ C77 (2017)

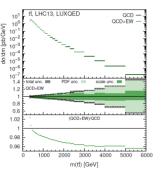
LHC 13 TeV
$$\sigma_{t\bar{t}} = 792 \pm 8 \, ({\rm stat}) \pm 37 \, ({\rm syst}) \pm 21 \, ({\rm lumi}) \, {\rm pb}$$


Czakon, Mitov Top++ code

$$\sigma_{t\bar{t}} = 832^{+40}_{-46} \, \text{pb}$$

Dynamical scales

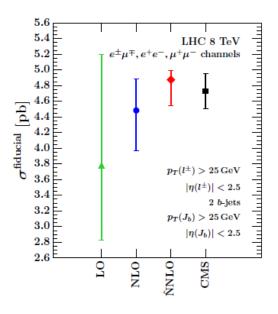

$$\begin{split} &\mu_{F,R} \in \left(\mu_0/2, 2\mu_0\right) \quad \text{with} \quad 0.5 \leq \mu_R/\mu_F \leq 2 \\ &\mu_0 \sim m_t \;, \\ &\mu_0 \sim m_T = \sqrt{m_t^2 + p_T^2} \;, \\ &\mu_0 \sim H_T = \sqrt{m_t^2 + p_{T,t}^2} + \sqrt{m_t^2 + p_{T,\bar{t}}^2} \;, \\ &\mu_0 \sim H_T' = \sqrt{m_t^2 + p_{T,t}^2} + \sqrt{m_t^2 + p_{T,\bar{t}}^2} \;, \\ &\mu_0 \sim E_T = \sqrt{\sqrt{m_t^2 + p_{T,t}^2} \sqrt{m_t^2 + p_{T,\bar{t}}^2}} \;, \\ &\mu_0 \sim H_{T,\text{int}} = \sqrt{(m_t/2)^2 + p_{T,t}^2} + \sqrt{(m_t/2)^2 + p_{T,\bar{t}}^2} \;, \\ &\mu_0 \sim m_{t\bar{t}} \;, \end{split}$$

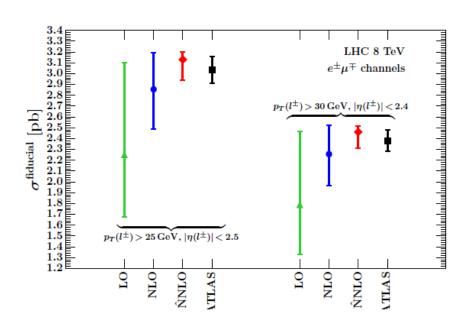

Czakon, Heymesb, Mitov' 16

Czakon, Heymes, Mitov, Davide, Pagani, Tsinikosc, Zaroe'17

QCD and EW

Top-quark pair-production and decay at high precision

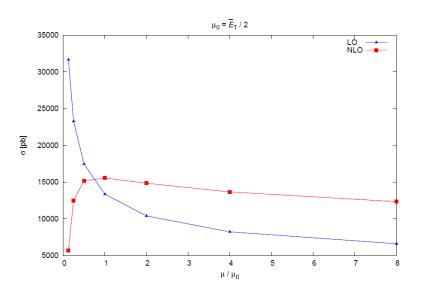

Gao, Papanastasiou 1705.08903 Papanastasiou 1801.01020


In NWA

$$d\sigma = d\sigma_{t\bar{t}} \times \frac{d\Gamma_{t \to bl^+\nu_l}}{\Gamma_t} \times \frac{d\Gamma_{\bar{t} \to \bar{b}l'^-\bar{\nu}_{l'}}}{\Gamma_t}$$

$$d\sigma_{t\bar{t}} = \alpha_s^2 \sum_{i=0}^{\infty} \left(\frac{\alpha_s}{2\pi}\right)^i d\sigma_{t\bar{t}}^{(i)},$$

$$d\Gamma_{t(\bar{t})} = \sum_{i=0}^{\infty} \left(\frac{\alpha_s}{2\pi}\right)^i d\Gamma_{t(\bar{t})}^{(i)}, \quad \Gamma_t = \sum_{i=0}^{\infty} \left(\frac{\alpha_s}{2\pi}\right)^i \Gamma_t^{(i)}$$


Fiducial cross sections computed using approximate NNLO for production and exact NNLO for decay

First complete NLO QCD computation for the process

$$pp \rightarrow \mu^- \bar{\nu}_\mu b \bar{b} jj$$

$$\mu_0 = \overline{E_{\rm T}}/2 = \frac{1}{2} \sqrt{\sqrt{m_{\rm t}^2 + p_{{\rm T},{\rm t}}^2} \sqrt{m_{\rm t}^2 + p_{{\rm T},\bar{\rm t}}^2}}}$$

light/bottom jets: $p_{\rm T,j/b} > 25 \, {\rm GeV}, \qquad |y_{\rm j/b}| < 2.5$ charged lepton: $p_{\rm T,\ell} > 25 \, {\rm GeV}, \qquad |y_{\ell}| < 2.5$

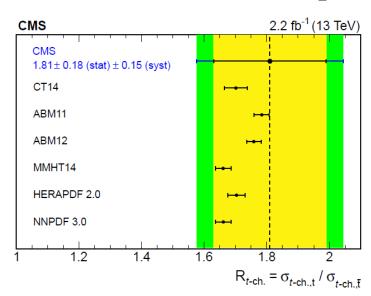
Fiducial cross section

$$\sqrt{s} = 13 \, \text{TeV}$$

Ch.	$\sigma_{\mathrm{LO}} [\mathrm{pb}]$	$\sigma_{\rm NLO}$ [pb]	K-factor
gg	12.0257(5)	13.02(7)	1.08
$qar{q}$	1.3308(3)	0.942(7)	0.71
$\mathrm{g}q(/ar{q})$		1.604(5)	
pp	13.3565(6)	15.56(7)	1.16

Single top theory cross sections

Tables from: Giammanco, Schwienhorst (2017)1710.10699


t-channel	7 TeV	8 TeV	$13 \mathrm{TeV}$	
cross section in p	ob			
NNLO				
t	-	$54.2^{+0.5}_{-0.2}$	$134.3^{+1.3}_{-0.7}$	
\overline{t}	-	$29.7^{+0.3}_{-0.1}$	$79.3^{+0.8}_{-0.6}$	Brucherseifer, Caola, Melnikov (2014), 1404.7116
$t + \overline{t}$	-	$83.9^{+0.8}_{-0.3}$	$(213.6^{+2.1}_{-1.1})$	Berger, Gao, Yuan, Zhu (2016)1606.08463
NLO+NNLL				
t	$43.0^{+1.8}_{-0.9}$	$56.4^{+2.4}_{-1.2}$	136^{+4}_{-3}	
\overline{t}	$22.9^{+0.9}_{-1.0}$	$30.7^{+1.5}_{-1.6}$	82^{+3}_{-2}	Kidonakis (2011) 1103.2792, (2016)1607.08892
$t + \overline{t}$	$65.9^{+2.6}_{-1.8}$	$87.2^{+3.4}_{-2.5}$	218^{+5}_{-4}	
tW	7 TeV	$8 \mathrm{TeV}$	$13 \mathrm{TeV}$	
cross section in p	pb			Videnakia (2016) 1612 06126
NLO+NNLL	17.0 ± 0.7	24.0 ± 1.0	(76.2 ± 2.5)	Kidonakis (2016) 1612.06426
s-channel	7 TeV	8 TeV	13 TeV	
cross section in pb				
NLO+NNLL				Videnakia (2010) 1001 5021
t	3.1 ± 0.1	3.8 ± 0.1	7.1 ± 0.2	Kidonakis (2010) 1001.5034
\overline{t}	1.4 ± 0.1	1.8 ± 0.1	4.1 ± 0.2	
$t + \overline{t}$	4.6 ± 0.2	5.6 ± 0.2	11.2 ± 0.4	

Theory results in a reasonable agreement with LHC at 13 TeV

CMS Collaboration, Phys. Lett. B772 (2017) 752

$$\sigma_{t\text{-ch.}} = 238 \pm 32 \text{ pb}$$

NNLO 213 pb

CMS Collaboration, CMS-PAS-TOP-17-018

$$\sigma_{\rm tW} = 63.1 \pm 6.6 \; {\rm pb}$$

NLO+NNLL 76 pb

Rare processes

t-W+

order	PDFs order	code	σ [fb]
LO	LO	MG5_aMC	$202.1^{+45.5}_{-34.9}$
NLO	NLO	MG5_aMC	$316.9^{+39.3}_{-34.9}$
NLO no qg	NLO	MG5_aMC	$293.3^{+19.3}_{-22.7}$
app. NLO	NLO	in-house MC	$288.1^{+21.4}_{-23.8}$
nNLO (Mellin)	NNLO	in-house MC +MG5_aMC	$330.5^{+26.2}_{-19.2}$
NLO+NNLL	NNLO	in-house MC +MG5_aMC	$333.0^{+14.9}_{-12.4}$

tTW-

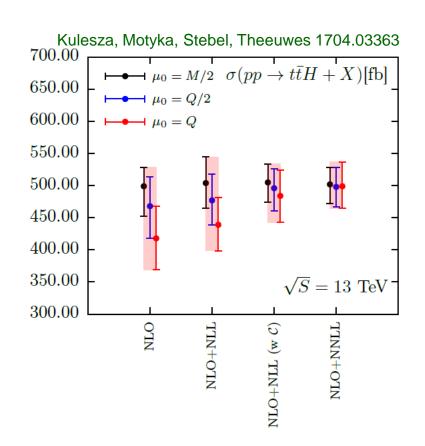
Broggio, Ferroglia, Ossola, Pecjakd 1607.05303

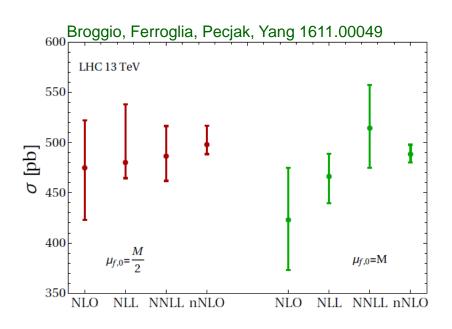
order	PDFs order	code	σ [fb]
LO	LO	MG5_aMC	$105.4^{+23.5}_{-18.2}$
NLO	NLO	MG5_aMC	$161.9^{+20.4}_{-18.1}$
NLO no qg	NLO	MG5_aMC	$149.3^{+9.2}_{-11.2}$
app. NLO	NLO	in-house MC	$147.6^{+10.5}_{-11.9}$
nNLO (Mellin)	NNLO	in-house MC +MG5_aMC	$171.8^{+13.3}_{-9.7}$
NLO+NNLL	NNLO	in-house MC +MG5_aMC	$173.1^{+7.7}_{-6.0}$

tTZ

Broggio, Ferroglia, Ossola, Pecjak, Sameshimab 1702.00800

order	PDF order	code	σ [fb]
LO	LO	MG5_aMC	$521.4^{+165.4}_{-116.9}$
app. NLO	NLO	in-house MC	$737.7^{+38.5}_{-64.5}$
NLO no qg	NLO	MG5_aMC	$730.4^{+41.8}_{-64.9}$
NLO	NLO	MG5_aMC	$728.3^{+93.8}_{-90.3}$
NLO+NLL	NLO	in-house MC +MG5_aMC	$742.0^{+90.1}_{-30.3}$
NLO+NNLL	NNLO	in-house MC +MG5_aMC	$777.8^{+61.3}_{-65.2}$


CMS Collaboration, CMS-PAS-TOP-16-017 (2017)


$$\sigma(t\bar{t}W) = 0.98^{+0.23}_{-0.22} \text{ (stat.)}^{+0.22}_{-0.18} \text{ (sys.) pb}$$

$$\sigma(t\bar{t}Z) = 0.70^{+0.16}_{-0.15} \text{ (stat.)}^{+0.14}_{-0.12} \text{ (sys.) pb}$$

ttH at 13 TeV

Vryonidou 1712.0993

ATLAS 1712.0889

$$\sigma(t\bar{t}H) = 790^{+230}_{-210} \text{ fb}$$

Top quark mass

Most precisely known quark mass!

Three top quark masses in PDG

K. Melnikov

t-Quark Mass (Direct Measurements). PDG average 173.1 ± 0.6 GeV

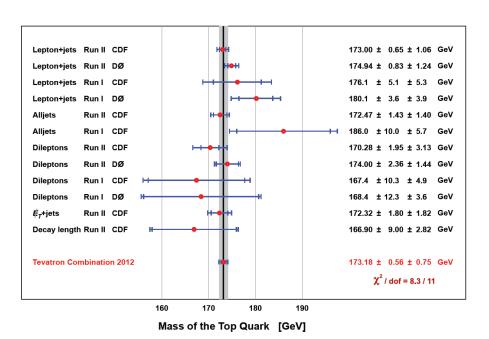
t-Quark Mass from Cross-Section Measurements (MS-bar mass) $160.0 \pm 4.8 \text{ GeV}$

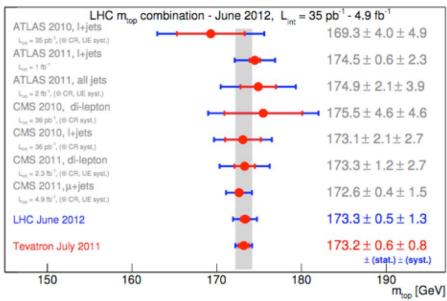
t-Quark Pole Mass from Cross-Section Measurements.
PDG average 173.5±1.1 GeV

$$m_{ ext{MC}} = m_{ ext{Pole}} \left(1 \pm \Delta\right)$$
 $\Delta = \left\{ egin{array}{l} rac{\Delta}{m} pprox 0.13\% \\ rac{\Gamma}{m} pprox 0.8\% \\ rac{lpha_s}{\pi} pprox 3.7\% \end{array}
ight.$

P. Uwer

K. Melnikov

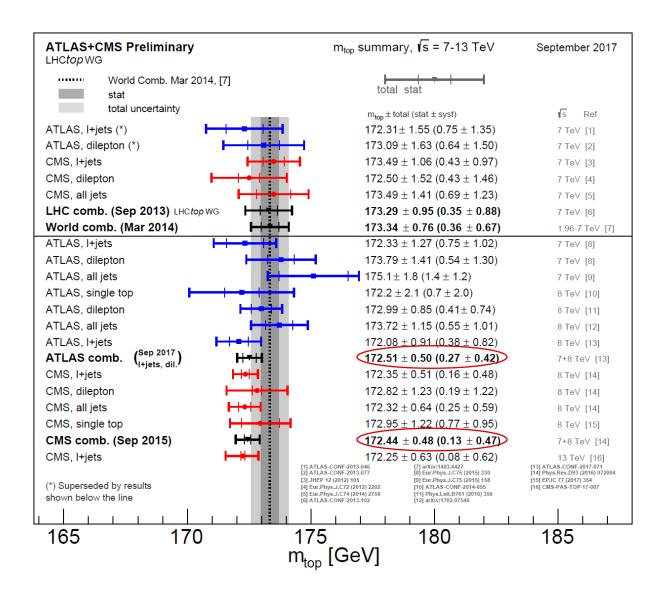

P.Nason


G. Corcella...

Main question is whether or not all sources of systematic uncertainties, including non-perturbative effects, are properly accounted for...

Latest LHC values: CMS 172.44 \pm 0.48 GeV, ATLAS 172.51 \pm 0.50 GeV

Top quark mass



$$m_t^{\text{comb}} = 173.18 \pm 0.56 \,(\text{stat}) \pm 0.75 \,(\text{syst}) \,\,\,\text{GeV}$$

= $173.18 \pm 0.94 \,\,\,\text{GeV}$

LHC:
$$m_{\text{top}} = 173.3 \pm 0.5 \text{ (stat)} \pm 1.3 \text{ (syst)}$$
 GeV
= 173.3 ± 1.4 GeV

Top quark mass

Top quark width

K. G. Chetyrkin, R. Harlander, T. Seidensticker and M. Steinhauser, Second order QCD corrections to $\Gamma(t\to Wb)$, Phys. Rev. D 60 (1999) 114015, arXiv: hep-ph/9906273.

A. Czarnecki and K. Melnikov, Two loop QCD corrections to top quark width, Nucl. Phys. B 544 (1999) 520, arXiv: hep-ph/9806244.

J. Gao, C. S. Li and H. X. Zhu, Top Quark Decay at Next-to-Next-to Leading Order in QCD, Phys. Rev. Lett. 110 (2013) 042001, arXiv: 1210.2808 [hep-ph].

NNLO top quark width 1.322 GeV for 172.5 GeV top quark mass

Top quark width

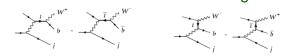
Top quark width measurement in most cases is done under assumption of the SM top

$$\Gamma_t = 2.0^{+0.47}_{-0.43} \text{ GeV}$$

$$\Gamma_t = 1.36^{+0.14}_{-0.11} \text{ GeV}$$

$$\Gamma_t = 1.76 \pm 0.33 \text{ (stat.)} ^{+0.79}_{-0.68} \text{ (syst.)} \text{ GeV}$$

 $\Gamma_t = 2.0^{+0.47}_{-0.43} \; \mathrm{GeV}$ D0 Collaboration (2012, 1201.4151) $\Gamma_t = 1.36^{+0.14}_{-0.11} \; \mathrm{GeV}$ CMS Collaboration (2014, 1404.2292) $\Gamma_t = 1.76 \pm 0.33 \text{ (stat.)} ^{+0.79}_{-0.68} \text{ (syst.) GeV}$ ATLAS Collaboration (2017, 1709.04207)

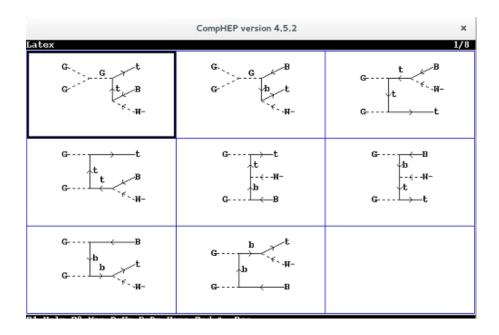

In paper by F. Caola, K. Melnikov (1307.4935) the new method for deriving modelindependent upper bound on the Higgs boson width was proposed by comparing pp->ZZ* rate close the Higgs pole with pp->ZZ above ZZ threshold.

In case of the top quark there are two valuable differences:

- 1) Higgs width / Higgs mass << Top width / Top mass
- 2) One can calculate separately amplitudes for pole, non pole, and the interference parts in case of pp->H->ZZ* and pp->ZZ in gauge invariant way. But one can not separate contributions in gauge invariant way for the top pair and the single top quark production. Giardino, Zhang 1702.06996

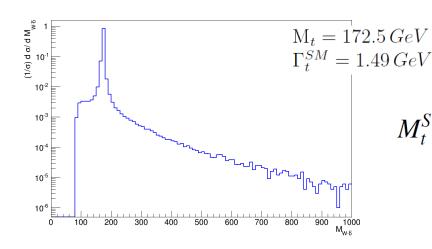
New proposal – ratio on resonant and non-resonant asymmetries

One-sigma exclusion limits at 13 TeV


Luminosity [fb ⁻¹]	30	300	3000
Limits [GeV]	[0.40, 2.30]	[1.01, 1.73]	[1.14, 1.60]

Zhang 1711.09592

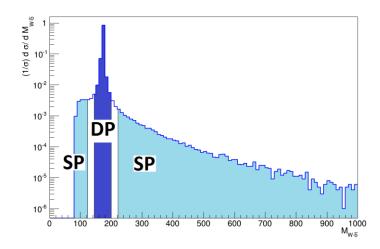
We propose to compute complete gauge invariant set of diagrams and investigate sensitivity in measuring deviations from the SM top quark width coming from different kinematical regions


To demonstrate the main idea we consider first the process

$$gg \to tW^-\bar{b}$$

Complete gauge invariant set of diagrams include top pair and single top

Definitions


We define 2 kinematic regions.

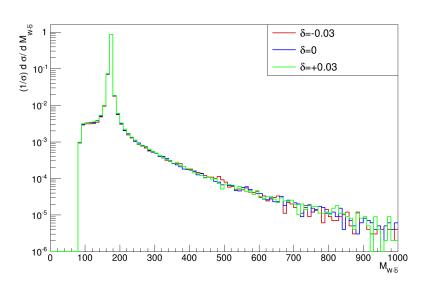
Double pole (DP):

$$M_t^{SM} - n \cdot \Gamma_t^{SM} \le M_{W^-\bar{b}} \le M_t^{SM} + n \cdot \Gamma_t^{SM}$$

Single pole (SP):

$$M_{W^-\bar{b}} \le M_t^{SM} - k \cdot \Gamma_t^{SM}$$
 or $M_t^{SM} + k \cdot \Gamma_t^{SM} \le M_{W^-\bar{b}}$

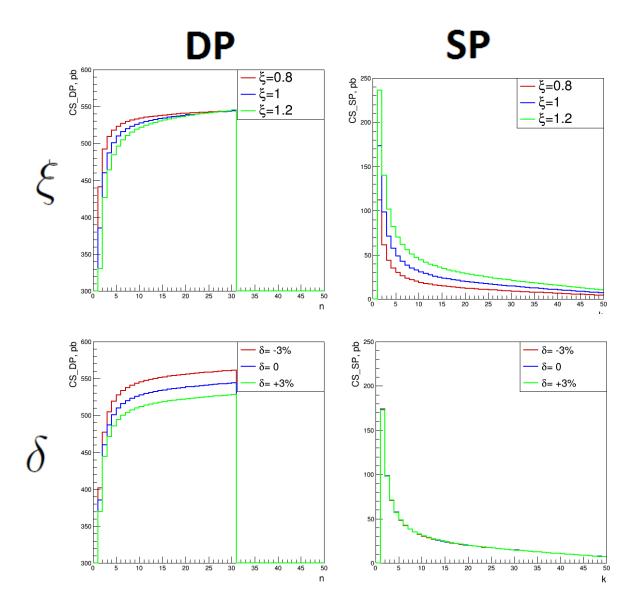

n, k are integer numbers and define boundary position


Top quark width parametrization

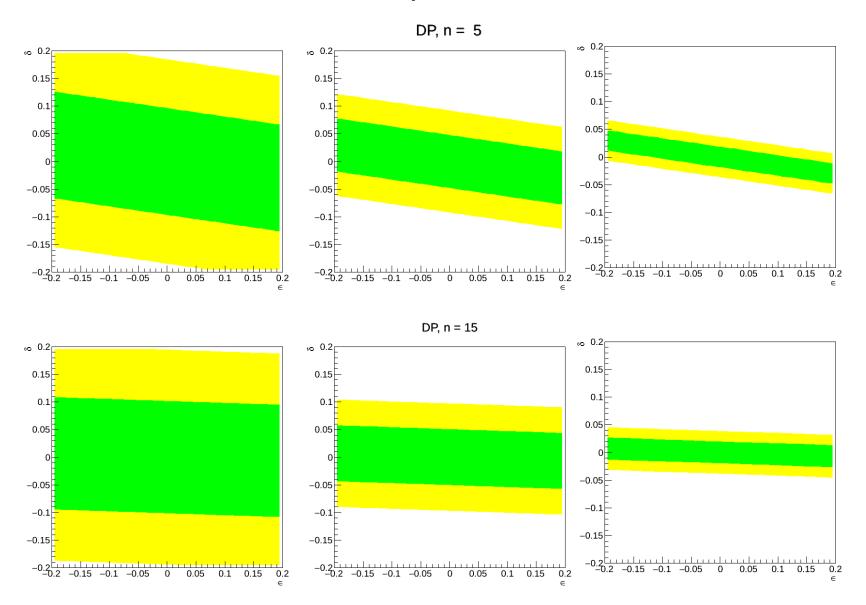
$$\Gamma_t = \xi^2 \cdot \Gamma_t^{SM} + \Delta$$

 ξ - coupling rescaling

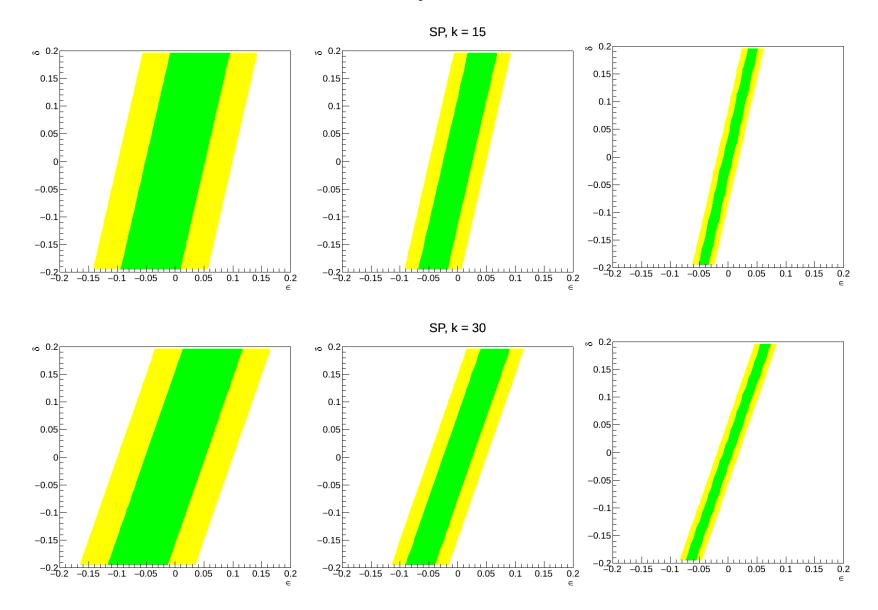
$$\Delta = \delta \cdot \Gamma_t^{SM} \quad \text{- additional contributions,} \\ \qquad \qquad \text{decay modes}$$



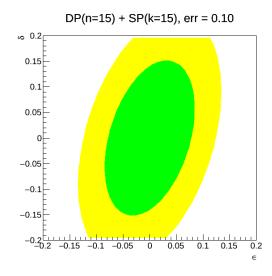
as expected ξ changes shape of the distribution mostly in SP region

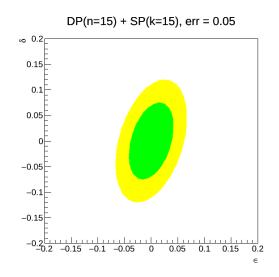

Δ affects mostly the distribution in DP region

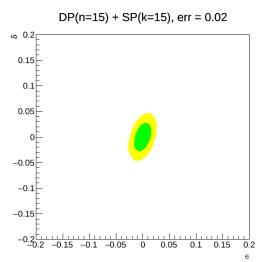
Cross sections in the DP and SP regions depending on parameters

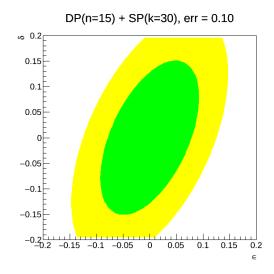


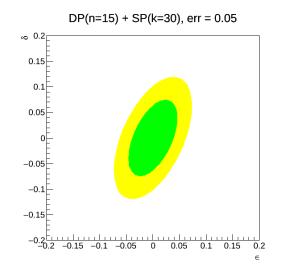
DP and SP depend differently on ξ and δ

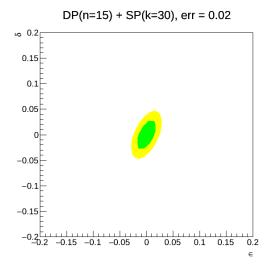

DP fit, uncertainty of 10, 5, 2 %




SP fit, uncertainty of 10, 5, 2 %




Combined fit, assuming an uncertainty of 10, 5, 2 %



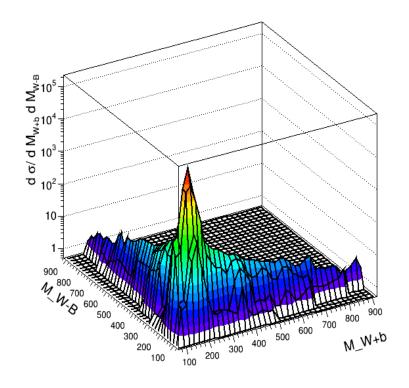
for Γ_{ι}

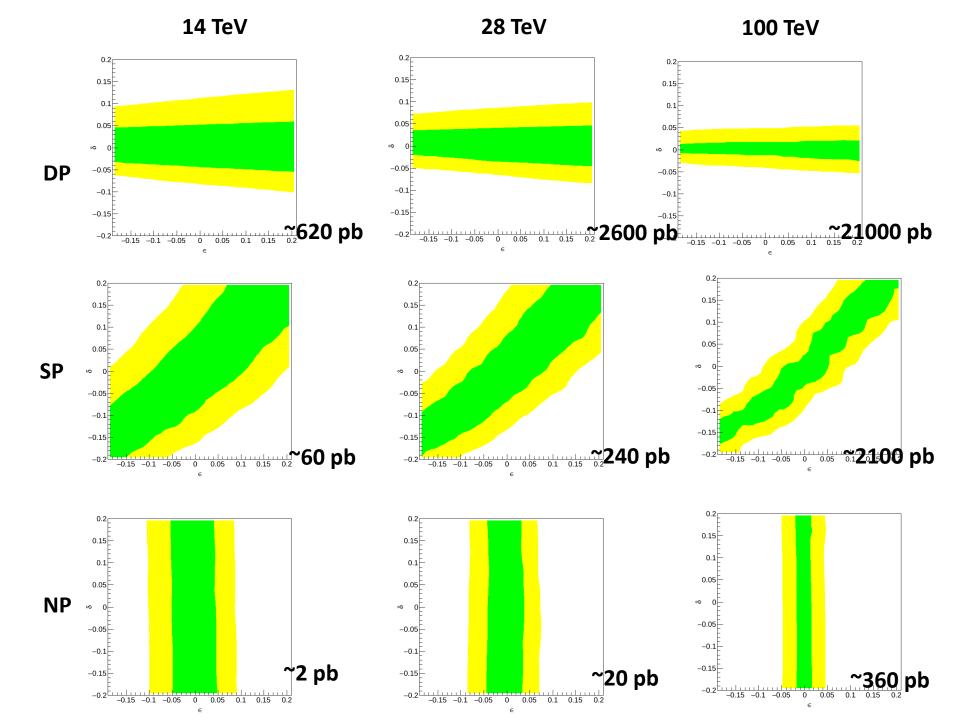
29 % 6%

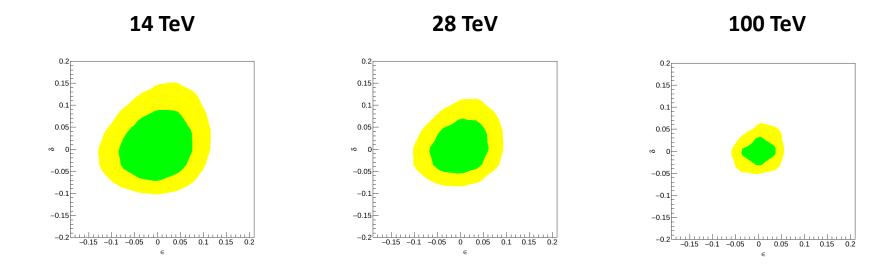
pp →W⁺W⁻bb

DP - Double pole region

$$\left(M_t^{SM} - n \cdot \Gamma_t^{SM} \leq M_{W^-\bar{b}} \leq M_t^{SM} + n \cdot \Gamma_t^{SM}\right) \quad and \quad \left(M_t^{SM} - n \cdot \Gamma_t^{SM} \leq M_{W^+b} \leq M_t^{SM} + n \cdot \Gamma_t^{SM}\right) \ (1)$$


SP - Single pole region


$$\left(M_t^{SM} - n \cdot \Gamma_t^{SM} \leq M_{W^-\bar{b}} \leq M_t^{SM} + n \cdot \Gamma_t^{SM} \right) and \left(M_{W^+b} \leq M_t^{SM} - k \cdot \Gamma_t^{SM} \text{ or } M_t^{SM} + k \cdot \Gamma_t^{SM} \leq M_{W^+b} \right)$$
 or
$$\left(M_t^{SM} - n \cdot \Gamma_t^{SM} \leq M_{W^+b} \leq M_t^{SM} + n \cdot \Gamma_t^{SM} \right) and \left(M_{W^-\bar{b}} \leq M_t^{SM} - k \cdot \Gamma_t^{SM} \text{ or } M_t^{SM} + k \cdot \Gamma_t^{SM} \leq M_{W^-\bar{b}} \right)$$


NP - No pole region

$$\begin{pmatrix} M_{W^-\bar{b}} \leq M_t^{SM} - k \cdot \Gamma_t^{SM} & or & M_t^{SM} + k \cdot \Gamma_t^{SM} \leq M_{W^-\bar{b}} \end{pmatrix}$$
 and
$$\begin{pmatrix} M_{W^+b} \leq M_t^{SM} - k \cdot \Gamma_t^{SM} & or & M_t^{SM} + k \cdot \Gamma_t^{SM} \leq M_{W^+b} \end{pmatrix}$$

On next slides results for n=k=15

Statistical uncertainty is estimated to be less than 1%.

Systematic uncertainty is assumed to be 10%, 8% and 5% for 14, 28 and 100 TeV respectively.

Under these assumptions allow one obtains model independent and gauge invariant constrains of the top quark width from

20% for 14 TeV up to 8% for 100 TeV.

Two possibilities to search for BSM

Collision energy E > production thresholds

- ⇒New resonances decaying to tops
- ⇒New states produced in association with the top

```
Z', W', \pi_T,~\rho_T , KK states top partners such as stop, sbottom, vector like quarks, t* ...
```

Collision energy E < production thresholds

- ⇒New effective anomalous interactions of the top with other SM particles
- ⇒New particle contributions via quantum loops

(modification of top decay and production properties)

Searches below threshold

Effective field theory approach or SM Effective Field Theory (SMEFT)

$$\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{c_i}{\Lambda^2} \mathcal{O}_i + \cdots$$

c; - dimensionless coefficients

O_i - operators constructed from SM fields preserving SM gauge invariance

1802.07237

Several issues – choice of operator basis, validity of computation for a particular observable, simultaneous analysis of different signatures (processes), NLO corrections, proper modeling and strategy to get limits from exp. data etc.

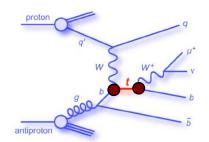
Anomalous Wtb couplings

Operators contributing to tWb interactions

Aguilar-Saavedra 0811.3842

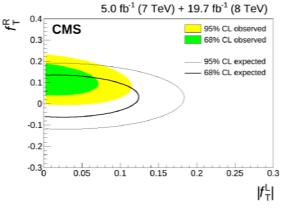
$$\begin{split} O_{\phi q}^{(3,3+3)} &= \frac{i}{2} \left[\phi^{\dagger} (\tau^I D_{\mu} - \overleftarrow{D}_{\mu} \tau^I) \phi \right] (\bar{q}_{L3} \gamma^{\mu} \tau^I q_{L3}), \qquad O_{\phi \phi}^{33} = i (\widetilde{\phi}^{\dagger} D_{\mu} \phi) (\bar{t}_R \gamma^{\mu} b_R), \\ O_{dW}^{33} &= (\bar{q}_{L3} \sigma^{\mu \nu} \tau^I b_R) \phi W_{\mu \nu}^I, \qquad O_{uW}^{33} = (\bar{q}_{L3} \sigma^{\mu \nu} \tau^I t_R) \widetilde{\phi} W_{\mu \nu}^I, \end{split}$$

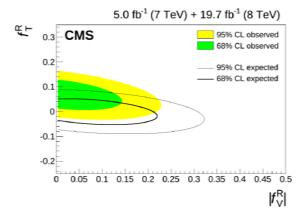
Kane, Ladinski, Yaun

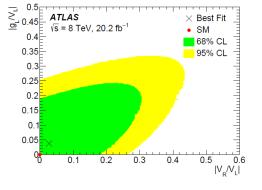

$$\mathfrak{L} = \frac{g}{\sqrt{2}}\bar{\mathbf{b}}\gamma^{\mu}\left(f_{\mathrm{V}}^{\mathrm{L}}P_{\mathrm{L}} + f_{\mathrm{V}}^{\mathrm{R}}P_{\mathrm{R}}\right)\mathbf{t}W_{\mu}^{-} - \frac{g}{\sqrt{2}}\bar{\mathbf{b}}\frac{\sigma^{\mu\nu}\partial_{\nu}W_{\mu}^{-}}{M_{\mathrm{W}}}\left(f_{\mathrm{T}}^{\mathrm{L}}P_{\mathrm{L}} + f_{\mathrm{T}}^{\mathrm{R}}P_{\mathrm{R}}\right)\mathbf{t} + \mathrm{h.c.}$$

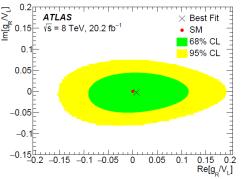
where
$$f_{LV} = V_{tb} + C_{\phi q}^{(3,3+3)*} \frac{v^2}{\Lambda^2}$$
, $f_{RV} = \frac{1}{2} C_{\phi \phi}^{33*} \frac{v^2}{\Lambda^2}$, $f_{LT} = \sqrt{2} C_{dW}^{33*} \frac{v^2}{\Lambda^2}$, $f_{RT} = \sqrt{2} C_{uW}^{33} \frac{v^2}{\Lambda^2}$

CM:
$$f_1^L = Vtb$$
, $f_1^R = 0$, $f_2^{L,R} = 0$


Natural size $|1-f_L^V|$, $f_R^V \sim v^2/\Lambda^2$

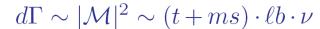

Natural size f_L^T , $f_R^T \sim v^2/\Lambda^2$

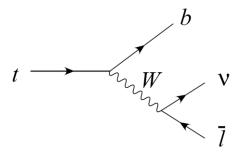

Anomalous Wtb couplings



ATLAS limits

New method of modeling with subsidiary gauge fields corresponding to each anomalous coupling

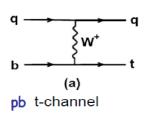


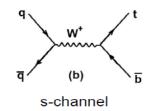

Boos, Bunichev, Dudko, Perfilov Int. J. Mod. Phys. A 32, 1750008 (2016)

Spin correlations in single top

Yadzabek, Kuhn

V-A vertex structure in SM


where in the top-quark rest frame, the spin four-vector $s=(0,\hat{s})$ \hat{s} - a unity vector that defines the spin quantization axis of the top quark. In the top quark rest frame:


$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\ell}} = \frac{1}{2} (1 + \cos\theta_{\ell})$$

Hence the charged lepton tends to point along the direction of top spin

Single top production as top decay back in time

Mahlon, Parke; Boos, Sherstnev

Down-type component of weak isospin doublet - d-quark in production plays a role of lepton in decay

Polarized top quark differential decay width. Most general case with complex anomalous parameters.

Boos, Bunichev 2018

→ y

Integrating over b and v 4-momenta we have:

$$\frac{d\Gamma_{t\to b\nu e^+}}{dE_{e^+}\cdot d\cos\theta\cdot d\phi} = \frac{g^4}{256\cdot \pi^3\cdot \Gamma_W\cdot m_W}\cdot [$$

$$+ |f_{LV}|^2 \cdot (E_{max} - E_{e^+}) \cdot E_{e^+} \cdot (1 + \cos \theta)$$

$$+|f_{LT}|^2 \cdot (E_{e^+} - E_{min}) \cdot E_{e^+} \cdot (1 + \cos \theta)$$

$$+ |f_{RT}|^2 \cdot (E_{max} - E_{e^+}) \cdot \left(E_{min} + E_{max} - E_{e^+} + \frac{m_W}{E_{e^+}} \cdot c_{e^+} \cdot \sin\theta\cos\phi + \left(\frac{m_W^2}{2E_{e^+}} + E_{e^+} - E_{min} - E_{max} \right) \cdot \cos\theta \right)$$

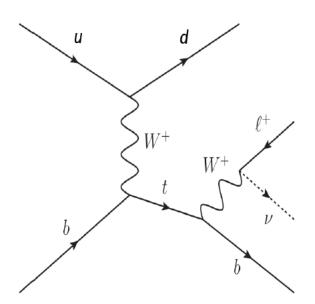
$$+ |f_{RV}|^2 \cdot (E_{e^+} - E_{min}) \cdot \left(E_{min} + E_{max} - E_{e^+} + \frac{m_W}{E_{e^+}} \cdot c_{e^+} \cdot \sin\theta\cos\phi + \left(\frac{m_W^2}{2E_{e^+}} + E_{e^+} - E_{min} - E_{max} \right) \cdot \cos\theta \right)$$

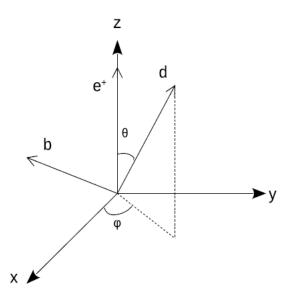
$$+\left(Ref_{LV}\cdot Ref_{RT}+Imf_{LV}\cdot Imf_{RT}\right)\cdot\left(E_{max}-E_{e^{+}}\right)\cdot\left(-2c_{e^{+}}\cdot \sin\theta\cos\phi-m_{W}\cdot(1+\cos\theta)\right)$$

$$+\left(Ref_{LT}\cdot Ref_{RV}+Imf_{LT}\cdot Imf_{RV}\right)\cdot\left(E_{e^{+}}-E_{min}\right)\cdot\left(-2c_{e^{+}}\cdot \sin\theta\cos\phi-m_{W}\cdot\left(1+\cos\theta\right)\right)$$

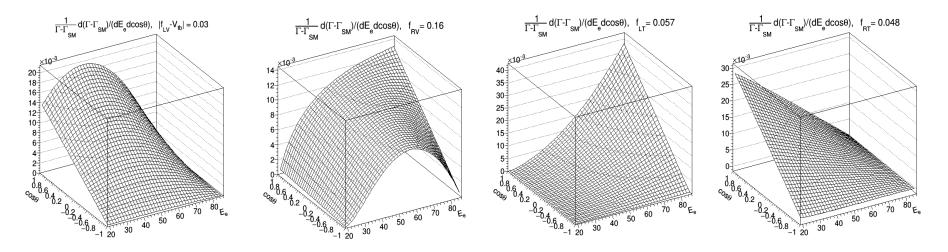
$$+\left(Ref_{LV}\cdot Imf_{RT}-Imf_{LV}\cdot Ref_{RT}\right) \cdot \left(E_{max}-E_{e^+}\right)\cdot \left(-2c_{e^+}\cdot \sin\theta\sin\phi\right)$$

+
$$(Ref_{LT} \cdot Imf_{RV} - Imf_{LT} \cdot Ref_{RV}) \cdot (E_e - E_{min}) \cdot (-2c_{e^+} \cdot \sin\theta \sin\phi)$$

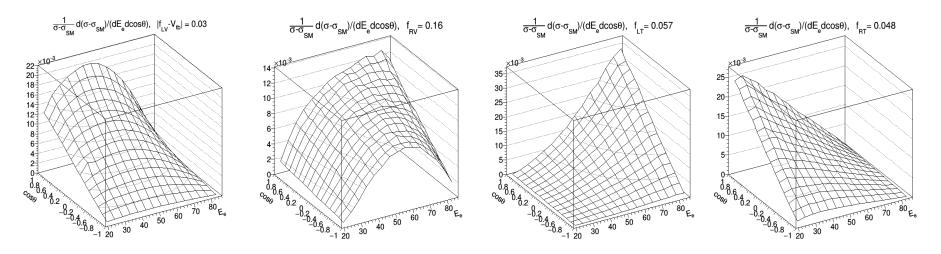

where:


$$c_{e^+} = \sqrt{(E_{max} - E_{e^+}) \cdot (E_{e^+} - E_{min})}, \quad E_{max} = m_t/2, \quad E_{min} = m_W^2/(2m_t)$$

8 different kinematical expressions as functions of E_e , θ , ϕ


In the single top quark production (t-channel) top is produced in the SM highly polarized in the direction the d-quark (light out going jet). It should remain true for the case of small anomalous contributions.

So, one expects the same (similar) forms of surfaces for 2->4 complete process if one takes the same angular variables chosen d-quark direction instead of s.



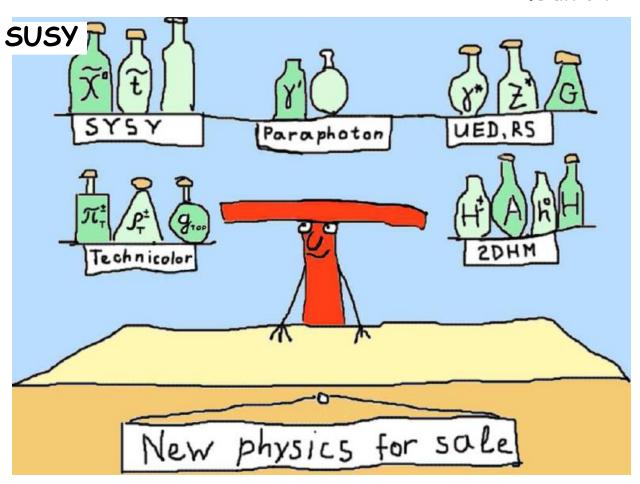
Distributions predicted by the analytic formula

Monte-Carlo simulation of the complete t-quark production and decay process (it contains all t-channal subprocesses and also contains anomalous couplings both in production and in decay)

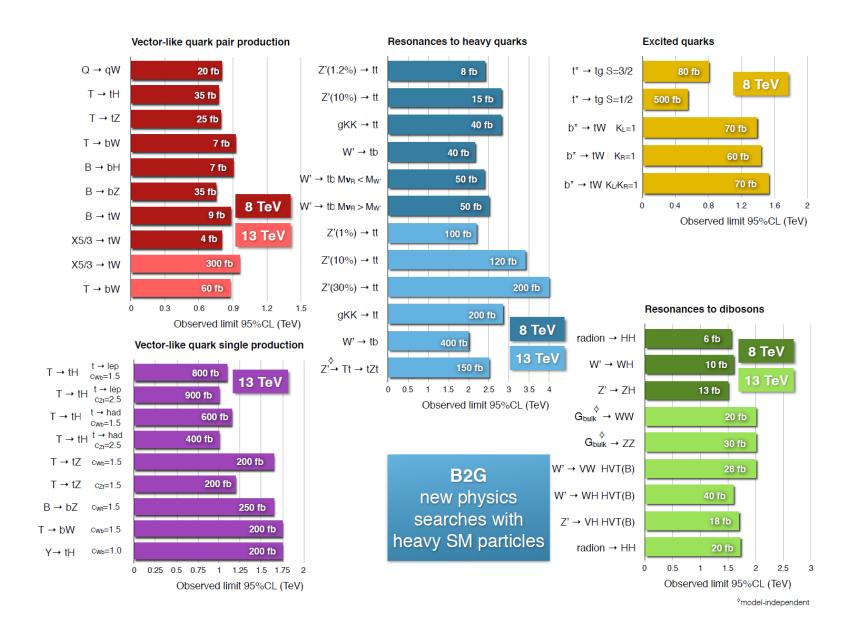
Two dimensional distribution shapes are significantly different for different anom. couplings

Fitting in the 2D coordinate space (E_e , $\cos\theta$)

The accuracy of measuring the two anomalous parameters by fitting in the 2D coordinate space (E_e , $cos\theta$), sqrt(s) = 14TeV:


L, fb ⁻¹	Δ Re f_{LV} , Δ Re f_{RV}	Δ Re f_{LV} , Δ Re f_{LT}	Δ Re f_{LV} , Δ Re f_{RT}
10	0.0025	0.002	0.003
	0.02	0.01	0.003
300	0.0005	0.0004	0.001
	0.003	0.0015	0.001
3000	0.0001	0.0001	0.0003
	0.0005	0.0004	0.0003

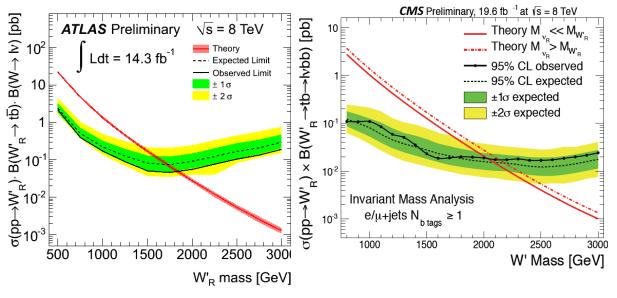
The accuracy of measuring the three anomalous parameters by fitting in the 2D coordinate space (E_e , $\cos\theta$), sqrt(s) = 14TeV:


L, fb ⁻¹	Δ Re f_{LV} Δ Im f_{LV} , Δ Im f_{RT}	Δ Re f_{LV} Δ Im f_{RV} , Δ Im f_{LT}
10	0.002 0.025 0.025	0.002 0.04 0.05
300	0.0004 0.005 0.005	0.0004 0.01 0.01
3000	0.0002 0.001 0.001	0.0002 0.002 0.002

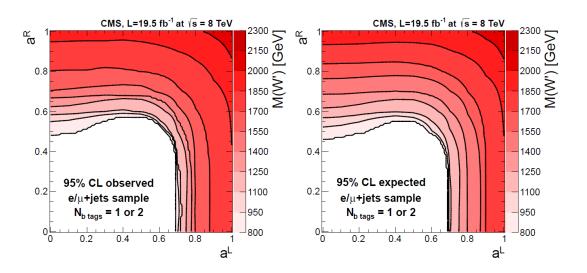
Searches above threshold

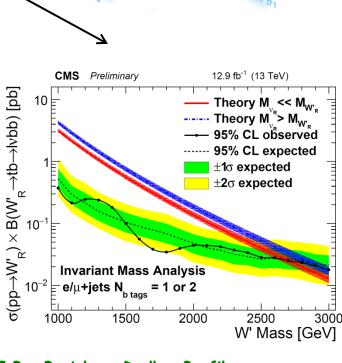
V. Bunichev

CMS limits

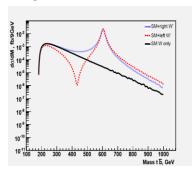

ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary


Old	tus: August 2016 Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫£ dt[fi	Mass limit	= 7, 8 TeV \(\sqrt{s} = 13 TeV \)	$\sqrt{s} = 7, 8, 13 \text{ TeV}$ Reference
Inclusive Searches	MSUGRA/CMSSM $q\bar{q}, \bar{q} \rightarrow q\bar{\chi}_{1}^{D}$ (compressed) $\bar{q}\bar{q}, \bar{q} \rightarrow q\bar{\chi}_{1}^{D}$ (compressed) $\bar{g}\bar{g}, \bar{q} \rightarrow q\bar{\chi}_{1}^{D}$ (compressed) $\bar{g}\bar{g}, \bar{g} \rightarrow q\bar{q}\bar{\chi}_{1}^{D}$ $\bar{g}\bar{g}, \bar{g} \rightarrow q\bar{q}\bar{\chi}_{1}^{D}$ $\bar{g}\bar{g}, \bar{g} \rightarrow q\bar{q}(\ell\ell/r\gamma)\bar{\chi}_{1}^{D}$ $\bar{g}\bar{g}, \bar{g} \rightarrow q\bar{g}, \bar{g} \rightarrow q\bar{g}, \bar{g}, \bar{g} \rightarrow q\bar{g}, $	$\begin{array}{c} 03 \ e, \mu/12 \ r \\ 0 \\ \text{mono-jet} \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (\text{SS}) \\ 12 \ r + 01 \ e \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 0-3 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 13.3 13.3 13.2 13.2 13.2 3.2 20.3 13.3 20.3 20.3	1.35 TeV 608 GeV 1.8 1.7 1.6 TeV	2.0 TeV	1507.05525 ATLAS-CONF-2016-078 1604.07773 ATLAS-CONF-2016-078 ATLAS-CONF-2016-078 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05979 1806.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
g med.	$\bar{g}\bar{g}, \bar{g} \rightarrow b\bar{b}\bar{\chi}^0_1$ $\bar{g}\bar{g}, \bar{g} \rightarrow b\bar{b}\bar{\chi}^0_1$ $\bar{g}\bar{g}, \bar{g} \rightarrow b\bar{b}\bar{\chi}^0_1$	0 0-1 ε,μ 0-1 ε,μ	3 b 3 b 3 b	Yes Yes Yes	14.8 14.8 20.1		19 TeV m(E ₀ ⁰)=0 GeV 19 TeV m(E ₀ ⁰)=0 GeV m(E ₀ ⁰)<300 GeV	ATLAS-CONF-2016-052 ATLAS-CONF-2016-052 1407-0600
direct production	$\begin{array}{l} \bar{b}_1\bar{b}_1, \bar{b}_1 \to b\bar{x}_1^0 \\ \bar{b}_1\bar{b}_1, \bar{b}_1 \to b\bar{x}_1^0 \\ \bar{t}_1\bar{t}_1, \bar{t}_1 \to c\bar{x}_1^0 \\ \bar{t}_1\bar{t}_1, \bar{t}_1 \to c\bar{x}_1^0 \\ \bar{t}_1\bar{t}_1, \bar{t}_1 \to c\bar{x}_1^0 \\ \bar{t}_2\bar{t}_2, \bar{t}_2 \to \bar{t}_1 + Z \\ \bar{t}_2\bar{t}_2, \bar{t}_2 \to \bar{t}_1 + B \end{array}$	0 2 e, μ (SS) 0-2 e, μ 0-2 e, μ 0 2 e, μ (Z) 3 e, μ (Z) 1 e, μ	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 6 jets + 2 b	b Yes Yes Yes Yes	3.2 13.2 4.7/13.3 4.7/13.3 3.2 20.3 13.3 20.3	840 GeV 325-885 GeV -170 GeV 200-720 GeV 90-196 GeV 205-850 GeV 90-323 GeV 150-600 GeV 290-700 GeV 320-620 GeV	$\begin{array}{l} m(\tilde{k}_{1}^{0})\!<\!100\mathrm{GeV} \\ m(\tilde{k}_{1}^{0})\!<\!150\mathrm{GeV}, m(\tilde{k}_{1}^{0})\!=\!m(\tilde{k}_{1}^{0})\!+\!100\mathrm{GeV} \\ m(\tilde{k}_{1}^{0})\!=\!2m(\tilde{k}_{1}^{0}), m(\tilde{k}_{1}^{0})\!=\!55\mathrm{GeV} \\ m(\tilde{k}_{1}^{0})\!=\!60\mathrm{V} \\ m(\tilde{k}_{1}^{0})\!=\!50\mathrm{GeV} \\ m(\tilde{k}_{1}^{0})\!>\!50\mathrm{GeV} \\ m(\tilde{k}_{1}^{0})\!>\!300\mathrm{GeV} \\ m(\tilde{k}_{1}^{0})\!=\!0\mathrm{GeV} \end{array}$	1606.08772 ATLAS-CONF-2016-037 1209.2102, ATLAS-CONF-2016-077 1506.08016, ATLAS-CONF-2016-077 1604.0773 1403.5222 ATLAS-CONF-2016-038 1506.08616
direct	$\begin{array}{l} \tilde{\ell}_{1,R}\tilde{\ell}_{1,R_1}\tilde{\ell} \rightarrow \ell \tilde{\ell}_1^0 \\ \tilde{x}_1^{\dagger}\tilde{x}_1^{\dagger},\tilde{x}_1^{\dagger} \rightarrow \tilde{\ell}\nu(\ell\bar{\nu}) \\ \tilde{x}_1^{\dagger}\tilde{x}_1^{\dagger},\tilde{x}_1^{\dagger} \rightarrow \ell \nu(\ell\bar{\nu}) \\ \tilde{x}_1^{\dagger}\tilde{x}_1^{\dagger} \rightarrow \tilde{\ell}_1\nu\tilde{\ell}_1(\ell\bar{\nu}), \ell\bar{\nu}\tilde{\ell}_1\ell(\bar{\nu}\nu) \\ \tilde{x}_1^{\dagger}\tilde{x}_2^{\dagger} \rightarrow \tilde{\ell}_1\nu\tilde{\ell}_1(\ell\bar{\nu}), \ell\bar{\nu}\tilde{\ell}_1\ell(\bar{\nu}\nu) \\ \tilde{x}_1^{\dagger}\tilde{x}_2^{\dagger} \rightarrow \tilde{k}_1\nu\tilde{\ell}_1^{\dagger}\tilde{k}_1^{\dagger}, h \rightarrow b\tilde{b}/WW/\tau \\ \tilde{x}_2^{\dagger}\tilde{x}_2^{\dagger},\tilde{x}_2^{\dagger}, -i\tilde{q}_2^{\dagger}\tilde{\ell} \\ \tilde{q}_2^{\dagger}\tilde{q}_2^{\dagger},\tilde{\chi}_2^{\dagger}\tilde{q}_3^{\dagger} \rightarrow \tilde{\ell}_1\tilde{k}_1^{\dagger}, h \rightarrow b\tilde{b}/WW/\tau \\ \tilde{q}_2^{\dagger}\tilde{q}_2^{\dagger},\tilde{\chi}_2^{\dagger}\tilde{q}_3^{\dagger} \rightarrow \tilde{\ell}_1\tilde{k}_1^{\dagger}, h \rightarrow b\tilde{b}/WW/\tau \\ \tilde{q}_2^{\dagger}\tilde{q}_3^{$		0 0 - 0 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	。 ボー 270 GeV	$\begin{split} &m(\tilde{k}_{1}^{0})\!=\!0\text{GeV}\\ &m(\tilde{k}_{1}^{0})\!=\!0\text{GeV},m(\tilde{k},\tilde{k})\!=\!0.5(m \tilde{k}_{1}^{0})\!+\!m(\tilde{k}_{1}^{0})\\ &m(\tilde{k}_{1}^{0})\!=\!0\text{GeV},m(\tilde{k},\tilde{k})\!=\!0.5(m \tilde{k}_{1}^{0})\!+\!m(\tilde{k}_{1}^{0})\\ &m(\tilde{k}_{1}^{0})\!=\!m(\tilde{k}_{1}^{0})\!+\!m(\tilde{k}_{1}^{0})\!+\!m(\tilde{k}_{1}^{0})\!+\!m(\tilde{k}_{1}^{0})\\ &m(\tilde{k}_{1}^{0})\!-\!m(\tilde{k}_{2}^{0}),m(\tilde{k}_{1}^{0})\!=\!0,\tilde{\ell}\text{decoupled}\\ &m(\tilde{k}_{1}^{0})\!-\!m(\tilde{k}_{2}^{0}),m(\tilde{k}_{1}^{0})\!-\!0,m(\tilde{k},\tilde{k})\!=\!0.5(m \tilde{k}_{2}^{0})\!+\!m(\tilde{k}_{1}^{0}))\\ &-(n(\tilde{k}_{1}^{0})\!-\!m(\tilde{k}_{1}^{0})\!-\!m(\tilde{k},\tilde{k})\!-\!0.5(m \tilde{k}_{2}^{0})\!+\!m(\tilde{k}_{1}^{0}))\\ &-(n(\tilde{k},\tilde{k})\!-\!m)\text{decoupled}\\ &m(\tilde{k},\tilde{k})\!-\!m(\tilde{k},\tilde{k})$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493 1507.05493
particles	Direct $\hat{X}_1^{\dagger}\hat{X}_1^{\dagger}$ prod., long-lived \hat{X} Direct $\hat{X}_1^{\dagger}\hat{X}_1^{\dagger}$ prod., long-lived \hat{X} Stable, stopped \hat{g} R-hadron Stable \hat{g} R-hadron Metastable \hat{g} R-hadron GMSB, stable $\hat{\tau},\hat{X}_1^0 \rightarrow \hat{\tau}(\hat{\epsilon},\hat{\mu}) + \tau$ GMSB, $\hat{X}_1^0 \rightarrow \hat{\tau}(\hat{\epsilon},\hat{\mu}) + \tau$ GMSB, $\hat{X}_1^0 \rightarrow \hat{\tau}(\hat{\epsilon},\hat{\mu}) + \tau$ GMSB, $\hat{X}_1^0 \rightarrow \hat{\tau}(\hat{\mu}) + \tau$ $\hat{\tau}(\hat{\mu}) + \tau$ $\hat{\tau}(\hat$	dE/dx trk 0 trk dE/dx trk		Yes Yes Yes - - - - -	20.3 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	270 GeV 495 GeV 850 GeV 1.58 Te 1.57 Te 440 GeV 1.0 TeV 1.0 TeV		1310.3675 1506.05332 1310.6584 1606.05129 1804.04520 1411.6795 1409.5542 1504.05162
RPV	$ \begin{array}{l} LFV \ pp \longrightarrow \overline{v}_{\tau} + X, \ \overline{v}_{\tau} - e\mu/e\tau/\mu\tau \\ Bilinear \ RPV \ CMSSM \\ \mathcal{X}_{1}^{T} X_{1}^{T}, \ \overline{\chi}_{1}^{T} - W \mathcal{X}_{1}^{0}, \ X_{1}^{0} \rightarrow eev, e\mu v, \\ \mathcal{X}_{1}^{T} X_{1}^{T}, \ \overline{\chi}_{1}^{T} - W \mathcal{X}_{1}^{0}, \ X_{1}^{0} \rightarrow \tau\tau rv_{e}, e\tau v \\ \mathcal{B} \overline{s}, \ \overline{s} \rightarrow qqq \\ \mathcal{B} \overline{s}, \ \overline{s} \rightarrow qq \overline{s}_{1}^{0}, \ \mathcal{X}_{1}^{0} \rightarrow \tau\tau rv_{e}, e\tau v \\ \mathcal{B} \overline{s}, \ \overline{s} \rightarrow qq \overline{s}_{1}^{0}, \ \mathcal{X}_{1}^{0} \rightarrow qqq \\ \mathcal{B} \overline{s}, \ \overline{s} \rightarrow qq \overline{s}_{1}^{0}, \ \mathcal{X}_{1}^{0} \rightarrow bs \\ \overline{s}_{1}\overline{s}_{1}, \ \overline{s}_{1} \rightarrow bs \\ \overline{s}_{1}\overline{s}_{1}, \ \overline{s}_{1} \rightarrow b\ell \end{array} $	2 ε,μ (SS) μμν 4 ε,μ 3 ε,μ + τ 0 4	0-3 b 0-3 b 1-5 large-R j 0-3 b 2 jets + 2 b	ets - Yes	3.2 20.3 13.3 20.3 14.8 14.8 13.2 15.4 20.3	1.45 TeV 1.14 TeV 450 GeV 1.08 TeV 1.55 Te 1.3 TeV 410 GeV 450-510 GeV 0.4-1.0 TeV	$m(\bar{K}_{-}^0) > 400 \text{GeV}, \lambda_{123} \neq 0 \ (k = 1, 2)$ $m(\bar{K}_{-}^0) > 0.2 \times m(\bar{K}_{1}^0), \lambda_{123} \neq 0$ BR(r) = BR(b) = BR(c) = 0%	1807.08079 1404.2500 ATLAS-CONF-2016-075 1405.5096 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 ATLAS-CONF-2016-022, ATLAS-CONF-2018-4
ther	Scalar charm, $\tilde{c} \rightarrow c \tilde{\ell}_1^0$	0	2 c	Yes	20.3	510 GeV	m(₹ ⁸)<200 GeV	1501.01325


states or phenomena is shown.

Searches for W' in top+b


$$\mathcal{L} = \frac{V_{f_i f_j}}{2\sqrt{2}} g_w \overline{f}_i \gamma_\mu \left(a_{f_i f_j}^{\mathrm{R}} (1 + \gamma^5) + a_{f_i f_j}^{\mathrm{L}} (1 - \gamma^5) \right) W'^\mu f_j + \mathrm{h.c.}$$

E.B., Bunichev, Dudko, Perfilov

Negative interference

Concluding remarks

Remarkable progress in precision from both sides

- theoretical computations
- experimental measurements

With more statistics and with higher energies

- one can study phase space regions with smaller rates where New Physics might be better pronounced
- one can study multidimensional distributions

However better accuracy in computation and modeling is needed in these low rate phase space regions including spin correlations, QCD and EW corrections, gauge invariant set of diagrams...

Thank you!