New large N solutions in the Sachdev-Ye-Kitaev model

Maria Tikhanovskaya

based on work in progress with I. Ya. Aref'eva, M. A. Khramtsov and I. V. Volovich

Steklov Mathematical Institute
May 29, 2018

The Sachdev-Ye-Kitaev (SYK) model

The SYK Hamiltonian

$$
H_{S Y K}=j_{a b c d} \psi_{a} \psi_{b} \psi_{c} \psi_{d}
$$

where $j_{a b c d}$ are constants taken from the Gaussian distribution

$$
\left\langle j_{a b c d}^{2}\right\rangle=\frac{J^{2}}{N^{3}}
$$

and ψ are the Majorana fermions satisfying

$$
\left\{\psi_{a}, \psi_{b}\right\}=\delta_{a b}, \quad a, b=1, \ldots, N
$$

Free energy and replica trick

In order to evaluate the free energy in a quenched disorder system, one needs to use the replica trick

$$
-\beta F=\overline{\log Z}=\lim _{M \rightarrow 0} \frac{\log \overline{Z^{M}}}{M}
$$

Free energy and replica trick

In order to evaluate the free energy in a quenched disorder system, one needs to use the replica trick

$$
-\beta F=\overline{\log Z}=\lim _{M \rightarrow 0} \frac{\log \overline{Z^{M}}}{M}
$$

Take M replicas of the system

$$
Z(\beta)^{M}=\int D \psi e^{-\sum_{\alpha=1}^{M} \int_{0}^{\beta} i \psi^{\alpha}(\tau) \psi^{\alpha}(\tau)+j_{a b c d} \psi_{a}^{\alpha}(\tau) \psi_{b}^{\alpha}(\tau) \psi_{c}^{\alpha}(\tau) \psi_{d}^{\alpha}(\tau)}
$$

To average over disorder, we introduce bilocal fields G and Σ in order to simplify the calculations. Σ is a Lagrange multiplier that sets $G_{\alpha \beta}\left(\tau, \tau^{\prime}\right)=\frac{1}{N} \sum_{a} \psi_{a}^{\alpha}(\tau) \psi_{a}^{\beta}\left(\tau^{\prime}\right)$.

Free energy and replica trick

In order to evaluate the free energy in a quenched disorder system, one needs to use the replica trick

$$
-\beta F=\overline{\log Z}=\lim _{M \rightarrow 0} \frac{\log \overline{Z^{M}}}{M}
$$

Take M replicas of the system

$$
Z(\beta)^{M}=\int D \psi e^{-\sum_{\alpha=1}^{M} \int_{0}^{\beta} i \psi^{\alpha}(\tau) \psi^{\alpha}(\tau)+j_{a b c d} \psi_{a}^{\alpha}(\tau) \psi_{b}^{\alpha}(\tau) \psi_{c}^{\alpha}(\tau) \psi_{d}^{\alpha}(\tau)}
$$

To average over disorder, we introduce bilocal fields G and Σ in order to simplify the calculations. Σ is a Lagrange multiplier that sets $G_{\alpha \beta}\left(\tau, \tau^{\prime}\right)=\frac{1}{N} \sum_{a} \psi_{a}^{\alpha}(\tau) \psi_{a}^{\beta}\left(\tau^{\prime}\right)$. Integration over disorder gives

$$
\overline{Z(\beta)^{M}}=\int D G D \Sigma \operatorname{Det}\left[\delta_{\alpha \beta} \partial_{\tau}-\Sigma_{\alpha \beta}\right]^{\frac{N}{2}} \times
$$

$\exp \left[-\frac{N}{2} \sum_{\alpha \beta} \int_{0}^{\beta} \int_{0}^{\beta} d \tau_{1} d \tau_{2}\left(\Sigma_{\alpha \beta}\left(\tau_{1}, \tau_{2}\right) G_{\alpha \beta}\left(\tau_{1}, \tau_{2}\right)-\frac{J^{2}}{4} G_{\alpha \beta}\left(\tau_{1}, \tau_{2}\right)^{4}\right)\right]$ saddle point eqs: $G(\omega)=\frac{1}{-i \omega-\Sigma(\omega)}, \quad \Sigma_{\alpha \beta}\left(\tau, \tau_{\square}^{\prime}\right)=J^{2} G_{\alpha \beta}\left(\tau, \underline{\underline{\underline{\tau}}}^{\prime}\right)^{3}$

IR limit

IR limit in the SYK model \Longleftrightarrow drop ∂_{τ} from the action.

IR limit

IR limit in the SYK model \Longleftrightarrow drop ∂_{τ} from the action. The path integral in this limit

$$
\begin{gathered}
\overline{Z(\beta)^{M}}=\int D G D \Sigma \operatorname{Det}\left[-\Sigma_{\alpha \beta}\right]^{\frac{N}{2}} \times \\
\exp \left[-\frac{N}{2} \sum_{\alpha \beta} \int_{0}^{\beta} \int_{0}^{\beta} d \tau_{1} d \tau_{2}\left(\Sigma_{\alpha \beta}\left(\tau_{1}, \tau_{2}\right) G_{\alpha \beta}\left(\tau_{1}, \tau_{2}\right)-\frac{J^{2}}{4}\left(G_{\alpha \beta}\left(\tau_{1}, \tau_{2}\right)\right)^{4}\right)\right.
\end{gathered}
$$

IR limit

IR limit in the SYK model \Longleftrightarrow drop ∂_{τ} from the action. The path integral in this limit:

$$
\begin{gathered}
\overline{Z(\beta)^{M}}=\int D G D \Sigma \operatorname{Det}\left[-\Sigma_{\alpha \beta}\right]^{\frac{N}{2}} \times \\
\exp \left[-\frac{N}{2} \sum_{\alpha \beta} \int_{0}^{\beta} \int_{0}^{\beta} d \tau_{1} d \tau_{2}\left(\Sigma_{\alpha \beta}\left(\tau_{1}, \tau_{2}\right) G_{\alpha \beta}\left(\tau_{1}, \tau_{2}\right)-\frac{J^{2}}{4}\left(G_{\alpha \beta}\left(\tau_{1}, \tau_{2}\right)\right)^{4}\right)\right.
\end{gathered}
$$

and the saddle point equations:

$$
G(\omega)=-\frac{1}{\Sigma(\omega)}, \quad \Sigma_{\alpha \beta}\left(\tau, \tau^{\prime}\right)=J^{2} G_{\alpha \beta}\left(\tau, \tau^{\prime}\right)^{3}
$$

Replica Diagonal (RD) solution and Replica Symmetry Breaking (RSB)

In the IR limit the saddle point equations are exactly solvable

$$
G_{\alpha \beta}(\tau)=P_{\alpha \beta} b \frac{\operatorname{sgn}(\tau)}{|J \tau|^{2 \Delta}}, \quad \Delta=\frac{1}{4}
$$

Replica Diagonal (RD) solution and Replica Symmetry Breaking (RSB)

In the IR limit the saddle point equations are exactly solvable

$$
G_{\alpha \beta}(\tau)=P_{\alpha \beta} b \frac{\operatorname{sgn}(\tau)}{|J \tau|^{2 \Delta}}, \quad \Delta=\frac{1}{4}
$$

saddle point equations for $P_{\alpha \beta}$:

$$
\sum_{\beta} P_{\alpha \beta} P_{\beta \gamma}^{3}=\mathcal{C} \delta_{\alpha \gamma}
$$

Replica Diagonal (RD) solution and Replica Symmetry Breaking (RSB)

In the IR limit the saddle point equations are exactly solvable

$$
G_{\alpha \beta}(\tau)=P_{\alpha \beta} b \frac{\operatorname{sgn}(\tau)}{|J \tau|^{2 \Delta}}, \quad \Delta=\frac{1}{4}
$$

saddle point equations for $P_{\alpha \beta}$:

$$
\sum_{\beta} P_{\alpha \beta} P_{\beta \gamma}^{3}=\mathcal{C} \delta_{\alpha \gamma}
$$

- RD ansatz: $P_{\alpha \beta}=\delta_{\alpha \beta}$, [Kitaev'15; Polchinski,Rosenhaus'16; Maldacena,Stanford'16;...]

Replica Diagonal (RD) solution and Replica Symmetry Breaking (RSB)

In the IR limit the saddle point equations are exactly solvable

$$
G_{\alpha \beta}(\tau)=P_{\alpha \beta} b \frac{\operatorname{sgn}(\tau)}{|J \tau|^{2 \Delta}}, \quad \Delta=\frac{1}{4}
$$

saddle point equations for $P_{\alpha \beta}$:

$$
\sum_{\beta} P_{\alpha \beta} P_{\beta \gamma}^{3}=\mathcal{C} \delta_{\alpha \gamma}
$$

- RD ansatz: $P_{\alpha \beta}=\delta_{\alpha \beta}$, [Kitaev'15; Polchinski,Rosenhaus'16; Maldacena,Stanford'16;...]
- RSB ansatz:
- $P_{\alpha \beta}=$ any skew-symmetric matrix [0-dim model:

Aref'eva,Volovich'18]

Replica Diagonal (RD) solution and Replica Symmetry Breaking (RSB)

In the IR limit the saddle point equations are exactly solvable

$$
G_{\alpha \beta}(\tau)=P_{\alpha \beta} b \frac{\operatorname{sgn}(\tau)}{|J \tau|^{2 \Delta}}, \quad \Delta=\frac{1}{4}
$$

saddle point equations for $P_{\alpha \beta}$:

$$
\sum_{\beta} P_{\alpha \beta} P_{\beta \gamma}^{3}=\mathfrak{C} \delta_{\alpha \gamma}
$$

- RD ansatz: $P_{\alpha \beta}=\delta_{\alpha \beta}$, [Kitaev'15; Polchinski,Rosenhaus'16; Maldacena,Stanford'16;...]
- RSB ansatz:
- $P_{\alpha \beta}=$ any skew-symmetric matrix [0-dim model:

Aref'eva, Volovich'18]

- $P_{\alpha \beta}=$ Parisi martix [present work]

Parisi martices

Parisi matrices are constructed of m_{i} blocks, where $i=1, \ldots, M$ and / parameters under the following conditions [Parisi'72]:

$$
P_{l+1}=\left(\begin{array}{cccc}
P_{l} & a_{l} \mathcal{J}_{l} & \ldots & a_{l} \mathcal{J}_{1} \\
a_{l} \mathcal{J}_{1} & P_{l} & \ldots & a_{l} \mathcal{J}_{l} \\
& \ldots & \ldots & \\
a_{1} \mathcal{J}_{1} & a_{l} \mathcal{J}_{l} & \ldots & P_{l}
\end{array}\right), \quad \mathcal{J}_{l}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1 \\
& . & \ldots & \\
1 & 1 & 1 & 1
\end{array}\right)
$$

Parisi martices

Parisi matrices are constructed of m_{i} blocks, where $i=1, \ldots, M$ and I parameters under the following conditions [Parisi'72]:

$$
P_{l+1}=\left(\begin{array}{cccc}
P_{1} & a_{l} \mathcal{J}_{l} & \ldots & a_{l} \mathcal{J}_{l} \\
a_{l} \mathcal{J}_{1} & P_{l} & \ldots & a_{l} \mathcal{J}_{l} \\
& \ldots & \ldots & \\
a_{l} \mathcal{J}_{1} & a_{l} \mathcal{J}_{1} & \ldots & P_{l}
\end{array}\right), \quad \mathcal{J}_{l}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1 \\
& . . & \ldots & \\
1 & 1 & 1 & 1
\end{array}\right)
$$

In the case of $M=4$ it looks like

$$
P_{4}=\left(\begin{array}{llll}
a_{0} & a_{1} & a_{2} & a_{2} \\
a_{1} & a_{0} & a_{2} & a_{2} \\
a_{2} & a_{2} & a_{0} & a_{1} \\
a_{2} & a_{2} & a_{1} & a_{0}
\end{array}\right)
$$

Parisi martices

The saddle point equations for the parameters of the matrix

$$
\begin{gathered}
\mathcal{C}=a_{0}^{4}+\sum a_{j}^{4}\left(m_{j+1}-m_{j}\right) \\
a_{j} a_{0}^{3}+a_{0} a_{j}^{3}+\sum\left(a_{i} a_{j}^{3}+a_{j} a_{i}^{3}\right)\left(m_{i+1}-m_{i}\right)=m_{j} a_{j}^{4}-\sum a_{i}^{4}\left(m_{i+1}-m_{i}\right)
\end{gathered}
$$

Parisi martices

The saddle point equations for the parameters of the matrix

$$
\begin{gathered}
\mathcal{C}=a_{0}^{4}+\sum a_{j}^{4}\left(m_{j+1}-m_{j}\right) \\
a_{j} a_{0}^{3}+a_{0} a_{j}^{3}+\sum\left(a_{i} a_{j}^{3}+a_{j} a_{i}^{3}\right)\left(m_{i+1}-m_{i}\right)=m_{j} a_{j}^{4}-\sum a_{i}^{4}\left(m_{i+1}-m_{i}\right)
\end{gathered}
$$

In the limit $M \rightarrow 0$ the saddle point eqs become

$$
\begin{gathered}
\mathcal{C}=a_{0}^{4}-\left\langle a^{4}\right\rangle \\
\mathrm{a}(\mathrm{u})\left[\mathrm{a}_{0}^{3}-\left\langle a^{3}\right\rangle\right]+a^{3}(u)\left[a_{0}-\langle a\rangle\right]=\int_{0}^{u}[a(v)-a(u)]\left[a^{3}(v)-a^{3}(u)\right] d v
\end{gathered}
$$

where the angular brackets denote the average over v

$$
\int_{0}^{1} a^{p}(v) d v \equiv\left\langle a^{p}\right\rangle
$$

One-step ansatz

To solve the equations, we need to make some assumption. Let the function $a(u)$ be:

$$
a(u)=A_{0}+A_{1} \theta(u-\mu)
$$

where μ is the breakpoint and which is considered in [Georges, Parcollet,Sachdev'99] in the context of the original SY-model

One-step ansatz

To solve the equations, we need to make some assumption. Let the function $a(u)$ be:

$$
a(u)=A_{0}+A_{1} \theta(u-\mu)
$$

where μ is the breakpoint and which is considered in [Georges, Parcollet,Sachdev'99] in the context of the original SY-model
The saddle point equations

$$
\begin{gathered}
a_{0}^{4}-\left(A_{0}+A_{1}\right)^{4}+A_{1}\left(2 A_{0}+A_{1}\right)\left(2 A_{0}^{2}+2 A_{1} A_{0}+A_{1}^{2}\right) \mu=\mathcal{C} \\
\mathrm{A}_{0}\left(a_{0} A_{0}^{2}+a_{0}^{3}+A_{1}^{3}(\mu-1)+3 A_{0} A_{1}^{2}(\mu-1)+4 A_{0}^{2} A_{1}(\mu-1)-2 A_{0}^{3}\right)=0 ; \\
A_{1}\left(A_{1}^{2}\left(a_{0}+A_{0}(3 \mu-7)\right)+3 A_{0} A_{1}\left(a_{0}+A_{0}(\mu-3)\right)+3 a_{0} A_{0}^{2}\right. \\
\left.+a_{0}^{3}+A_{1}^{3}(\mu-2)-4 A_{0}^{3}\right)=0
\end{gathered}
$$

Classes of solutions for $a(u)$

The saddle point equations admit solutions

1. Replica-diagonal solution: $A_{0}=0, A_{1}=0$.
2. Replica-symmetric solution: $A_{0}=a_{0}, A_{1}=0$.

It cannot be a solution of the full SYK model, since it requires $\mathcal{C}=0$.
3. Replica-symmetric complex-valued solutions:

$$
\begin{aligned}
& A_{0}=\frac{1}{4}(-1 \pm i \sqrt{7}) \\
& A_{1}=0
\end{aligned}
$$

4. RSB simple solution: $A_{0}=0$ which provides

$$
\begin{aligned}
& A_{1}^{2} a_{0}+a_{0}^{3}+A_{1}^{3}(\mu-2)=0 \\
& a_{0}^{3}+a_{0} A_{1}^{2}+A_{1}^{3}(\mu-2)=0
\end{aligned}
$$

5. More complex solutions: $A_{0} \neq 0$ and $A_{1} \neq 0 \Rightarrow$ numeric calculations

Free energy on the RSB solution

The free energy is:

$$
-\beta F=\lim _{M \rightarrow 0} \frac{1}{M} \log \overline{Z^{M}}
$$

The replica and time dependencies separate

$$
\frac{2}{N} S_{M}=-\operatorname{Tr} \log \left[-\left(\Sigma_{\alpha \beta}\right)\right]
$$

$+\int_{0}^{\beta} \int_{0}^{\beta} d \tau_{1} d \tau_{2} \sum_{\alpha \beta}\left(\Sigma_{\alpha \beta}\left(\tau_{1}, \tau_{2}\right) G_{\alpha \beta}\left(\tau_{1}, \tau_{2}\right)-\frac{J^{2}}{q}\left(G_{\alpha \beta}\left(\tau_{1}, \tau_{2}\right)\right)^{q}\right)=$ $-\mathrm{M} \log \operatorname{det}\left[-J^{2} g_{c}\left(\tau, \tau^{\prime}\right)^{q-1}\right]-\Lambda\left(\log \operatorname{det}\left[\mathrm{C}^{1 / q-1} Q^{\circ}(q-1)\right]-\frac{1-q}{q} M\right)$ where $\Lambda \sim \beta J / \pi$. The only one term we have to think about in the $M \rightarrow 0$ limit gives:

$$
\begin{aligned}
& \log \operatorname{det}\left[\mathcal{C}^{1 / q-1} Q^{\circ(q-1)}\right]=\frac{1-q}{q} \log \mathcal{C}+\log \left(a_{0}^{q-1}-\left\langle a^{q-1}\right\rangle\right) \\
- & \int_{0}^{1} \frac{d v}{v^{2}} \log \frac{q_{0}^{q-1}-\left\langle q^{q-1}\right\rangle-\left[a^{q-1}\right](v)}{a_{0}^{q-1}-\left\langle a^{q-1}\right\rangle}+\frac{a^{q-1}(0)}{a_{0}^{q-1}-\left\langle a^{q-1}\right\rangle}
\end{aligned}
$$

Free energy on the RSB solution

The plot of the replica dependent term of the free energy as a function of breakpoint at $a_{0}=0.7$ and $\beta J \sim 10$

Free energy on the RSB solution

The plot of the replica dependent term of the free energy as a function of breakpoint at $a_{0}=0.7$ and $\beta J \sim 10$

1. saddle points are complex valued
2. a landscape of metastable states

Comparison of RSB solution with replica-diagonal solution

The expression for the free energy:

- RD case low temperature expansion [Maldacena,Stanford'16;Kitaev'17]:

$$
\beta F=\beta E_{0}-s_{0}-\frac{c}{2 \beta}
$$

E_{0} is the vacuum energy, s_{0} - zero temperature entropy, $c \sim N / J$ is the specific heat

Comparison of RSB solution with replica-diagonal solution

The expression for the free energy:

- RD case low temperature expansion [Maldacena,Stanford'16;Kitaev'17]:

$$
\beta F=\beta E_{0}-s_{0}-\frac{c}{2 \beta}
$$

E_{0} is the vacuum energy, s_{0} - zero temperature entropy, $c \sim N / J$ is the specific heat

- RSB case

$$
\beta F=\beta E_{0}+\beta E_{0}^{R S B}-s_{0}-\frac{c}{2 \beta}
$$

where $E_{0}^{R S B}$ arises from replicas.

Reparametrization invariance

Reparametrization invariance of the system changes from the replica-diagonal case

$$
\begin{aligned}
& G_{\alpha \beta}\left(\tau, \tau^{\prime}\right)=f_{\alpha}^{\prime}(\tau)^{\Delta} f_{\beta}^{\prime}\left(\tau^{\prime}\right)^{\Delta} G_{\alpha \beta}\left(f_{\alpha}(\tau), f_{\beta}\left(\tau^{\prime}\right)\right) \\
& \Sigma_{\alpha \beta}\left(\tau, \tau^{\prime}\right)=f_{\alpha}^{\prime}(\tau)^{1-\Delta} f_{\beta}^{\prime}\left(\tau^{\prime}\right)^{1-\Delta} \Sigma_{\alpha \beta}\left(f_{\alpha}(\tau), f_{\beta}\left(\tau^{\prime}\right)\right)
\end{aligned}
$$

where $f_{\alpha}(\tau) \in \frac{\operatorname{diff}\left(S^{1}\right)^{\times M}}{S L(2, \mathbb{R})}$ - expanded reparametrization symmetry. Each replica produces a soft mode with the total action

$$
S_{\text {local }} \sim \beta J \int_{0}^{2 \pi} \sum_{\alpha} \operatorname{Sch}\left(\tan \left(f_{\alpha}(\theta)\right), \theta\right) d \theta
$$

Results

- We constructed the new large N solutions of the SYK model
- The part of the free energy which is depend on replicas, has several metastable phases
- The factorized ansatz $G_{\alpha \beta}(\tau)=P_{\alpha \beta} g(\tau)$ gives a correction to the ground state energy $\beta F=\beta E_{0}+\beta E_{0}^{R S B}-s_{0}-\frac{c}{2 \beta}$
- The factorized ansatz breaks spontaneously the reparmetrization symmetry \Rightarrow new solutions can be generated

Results

- We constructed the new large N solutions of the SYK model
- The part of the free energy which is depend on replicas, has several metastable phases
- The factorized ansatz $G_{\alpha \beta}(\tau)=P_{\alpha \beta} g(\tau)$ gives a correction to the ground state energy $\beta F=\beta E_{0}+\beta E_{0}^{R S B}-s_{0}-\frac{c}{2 \beta}$
- The factorized ansatz breaks spontaneously the reparmetrization symmetry \Rightarrow new solutions can be generated

> Thank you for your attention

