Phenomenology of axion miniclusters

I. Tkachev

INR RAS, Moscow

29 May 2018, Quarks conference, Valday, Russia

Outline

- Axion cosmology and miniclusters
- Axion Bose stars, their formation and explosions

see talks by D. Levkov and A. Panin, this conference

• Tidal streams from miniclusters and relation to direct detection

PQ phase transition before inflation is disfavored

see talk by K. Saikawa, this conference

PQ phase transition after inflation \rightarrow Miniclusters

- After phase transition $0<\theta<2\pi$ from horizon to horizon, but $\theta \approx {\rm const}$ on a horizon scale, l_H .
- ullet Peculiar initial amplitude of oscillations when m_a turns on.
- Dark Matter should be very clumpy

PQ phase transition before inflation is disfavored

see talk by K. Saikawa, this conference

PQ phase transition after inflation \rightarrow Miniclusters

- Mass scale of the clumps is set by $M\sim 10^{-11}\,M_\odot$, which is DM mass within l_H^3 at $T_{\rm osc}\approx 1~{
 m GeV}$
- Naively, initial DM density contrast is $\delta
 ho/
 ho \sim 1$
- In fact, very dense objects can form since for $heta \sim \pi$ the axion attractive self-coupling is non-negligible

Minicluster Formation. Non-linear story.

Spatial distribution of energy density.

Time dependence of the field at the centre of a peak, $a(\eta)=\eta$.

E.Kolb & IT, Phys.Rev. D49 (1994) 5040

Minicluster Formation. Non-linear story.

Let's define $\delta \rho_a/\rho_a \equiv \Phi$ (for final configuration at large η)

Spatial distribution of energy density. The height of the plot is cut at $\Phi=20.$

Mass fraction in miniclusters with $\Phi>\Phi_0$ as a function of $\Phi_0.$

E.Kolb & IT, Phys.Rev. D49 (1994) 5040

Minicluster evolution around equality

Clump radius as a function of $x \equiv a/a_{
m eq}$

A clump separates from cosmological expansion at $T \approx \Phi \, T_{\rm eq}$, therefore minicluster density today

$$ho_{
m mc}pprox 140\Phi^3(1+\Phi)ar
ho_a(T_{
m eq})$$

Phenomenological implications

- Large Φ . Implications for indirect axion searches
 - Gravitational microlensing and femtolensing by miniclusters
 - Bose-star formation inside miniclusters
 - Relation to FRB?
- Small Φ . Implications for direct axion searches
 - Less diffuse DM -> smaller signals in DM detectorts
 - But rare strong signals during encounters with debris of tidally disrupted miniclusters

Axion Bose-stars

Bose-condensation in miniclusters

Relaxation time is enhanced due to large phase space density

$$au_R^{-1} \sim \sigma \, v \, n \, {\cal N}$$

IT, Phys. Lett. B 261 (1991) 289

Miniclusters with $\Phi>30$ Bose condense due to axion selfcoupling, forming "Bose-stars"

Bose-condensation by gravitational interactions is much more efficient

$$au_{gr} \sim rac{10^9\,{
m yr}}{\Phi^3(1+\Phi)} \left(rac{M_c}{10^{-13}\,M_\odot}
ight)^2 \left(rac{m}{26\,\mu{
m eV}}
ight)^3$$

see talk by D. Levkov, this conference

FRB - mysterious astrophysical phenomena

- Short radio flash, 1 ms
- ullet Cosmological origin, $z\sim 1$
- Energy release $10^{38} 10^{40} \text{ ergs}$
- ullet Huge brightness temperature $T_B \sim 10^{36} \; {
 m K}$
- Rate: $\sim 10^4 \ {
 m events/day}$ for the whole sky.

- Radius of axion Bose-star 1 ms
- Minicuster mass $10^{-12} M_{\odot} = 2 \times 10^{42} {
 m ergs}$
- Bose-star can explode in a burst of coherent radiation
- We have 10²⁴ miniclusters just in a Galaxy

Can FRBs be explained by axion star explosions into pure radiation?

IT, JETP Letters 101 (2015) 1

A. Iwazaki, PRD 91(2015) 023008

FRB - mysterious astrophysical phenomena

- Short radio flash, 1 ms
- ullet Cosmological origin, $z\sim 1$
- Energy release $10^{38} 10^{40} \text{ ergs}$
- ullet Huge brightness temperature $T_B \sim 10^{36}~{
 m K}$
- Rate: $\sim 10^4 \ {
 m events/day}$ for the whole sky.

- Radius of axion Bose-star 1 ms
- Minicuster mass $10^{-12} M_{\odot} = 2 \times 10^{42} \ \mathrm{ergs}$
- Bose-star can explode in a burst of coherent radiation
- We have 10²⁴ miniclusters just in a Galaxy

Can FRBs be explained by axion star explosions into pure radiation?

IT, JETP Letters 101 (2015) 1

A. Iwazaki, PRD 91(2015) 023008

FRB - mysterious astrophysical phenomena

- Short radio flash, 1 ms
- ullet Cosmological origin, $z\sim 1$
- Energy release $10^{38} 10^{40} \text{ ergs}$
- ullet Huge brightness temperature $T_B \sim 10^{36}~{
 m K}$
- Rate: $\sim 10^4 \ {
 m events/day}$ for the whole sky.

- Radius of axion Bose-star 1 ms
- Minicuster mass $10^{-12} M_{\odot} = 2 \times 10^{42} \ \mathrm{ergs}$
- Bose-star can explode in a burst of coherent radiation
- We have 10²⁴ miniclusters just in a Galaxy

Can FRBs be explained by axion star explosions into pure radiation?

IT, JETP Letters 101 (2015) 1 A. Iwazaki, PRD 91(2015) 023008

ALP Bose star instability

$$V(a) = m^2 f_a^2 \left(rac{1}{2} \, heta^2 - rac{g_4^2}{4!} \, heta^4 + \dots
ight) \; , \qquad heta \equiv a/f_a \; ,$$

Self-coupling of axions is negative and axion Bose stars are unstable against collapse.

D.Levkov, A.Panin, & IT, PRL 118 (2017) 011301

ALP Bose star collapse

Self-similar wave collapse

Repeated explosions

Black hole does not form for $f_a < M_{Pl}$ D.Levkov, A.Panin, & IT, PRL 118 (2017) 011301

Decay of Bose star on relativistic axions

Spectra of emitted particles

Total emitted energy fraction

D.Levkov, A.Panin, & IT, PRL 118 (2017) 011301

FRB spectra shifted to their rest frame

IT, JETP Letters 101 (2015) 1

Study of axion Bose star decay into radiophotons is underway

see talk by A.Panin, this conference

Minicluster abundance

Typical miniclusters with $\Phi \approx 1$:

- 10²⁴ in the Galaxy
- ullet $10^{10}~{
 m pc}^{-3}$ in the Solar neighborhood
- Minicluster radius $\sim 10^7 \; \mathrm{km}$
- Direct encounter with the Earth once in 10^5 years
- ullet During encounter density increases by a factor 10^8 for about a day

But, some miniclusters are destroyed in encounters with stars. This may change the prospects for DM detection.

Tidal streams from miniclusters

Probability of a minicluster disruption

$$P(\Phi) = 0.022 \left(rac{n}{100}
ight) \Phi^{-3/2} \left(1 + \Phi
ight)^{-1/2}$$

Just disk crossings. No actual orbits integration.

P.Tinyakov, IT and K. Zioutas, JCAP 1601 (2016) 035

Crossing tidal streams from miniclusters

Mean number of encounters with axion streams producing amplification factor larger than A, as a function of A. Twenty year observation interval is assumed.

P.Tinyakov, IT and K. Zioutas, JCAP 1601 (2016) 035

Crossing tidal streams from miniclusters

Mean number of encounters with axion streams producing amplification factor larger than A, as a function of A. Twenty year observation interval is assumed.

Actual history and distribution of orbits in a given DM profile was followed:

V. Dokuchaev, Yu. Eroshenko and IT, J.Exp.Theor.Phys. 125 (2017) 434

Crossing tidal streams from miniclusters

Simulation of expected PWS in cavity experiments

C. O'Hare and A. Green, Phys.Rev. D95 (2017) 063017

Conclusions

Axion miniclusters can have interesting phenomenological consequences and the subject requires further thorough studies.