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• Properties of the QCD axion

• Cosmological aspects of axion dark matter

• Production in the early universe

• Prediction for dark matter mass

• Axion and ALP dark matter
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QCD axion



• Strong CP problem

• Quantum chromodynamics (QCD) allows a CP violating term:

• Non-observation of neutron electric dipole moment implies

• Peccei-Quinn (PQ) mechanism

• Take    as a dynamical variable                                                   
that explains its smallness,         i.e.

• Predicts the existence of light particle          = axion .

Strong CP problem and axion

“Why it is so small ?”
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Physical observable:

Peccei and Quinn (1977)

Weinberg(1978),  Wilczek(1978)



• Axions can be identified as                                            
Nambu-Goldstone bosons arising from                                          
breaking of global symmetry.                                         
(Peccei-Quinn (PQ) symmetry)

• Hidden scalar field:

• Interactions with standard model particles are            
suppressed by a large symmetry breaking scale.

Axion as a Nambu-Goldstone boson

Massive modulus, massless phase:
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• Axions can couple to gluons via

• Below the QCD scale                                  ,                                              
topological charge fluctuations in QCD vacuum                                   
induce the potential energy:

• Mass of QCD axions                       :

• Tiny coupling with matter + non-thermal production                                       

Properties of the axion

at the minimum, solving strong CP problem

: axion decay constant

→  good candidate of cold dark matter
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Axion cosmology



Axion mass from cosmology

• Assuming that axions explain 100% of CDM 
abundance, we can estimate their “typical mass”.

• Predictions strongly depend on the early history of  
the universe.

• Two possibilities:

• PQ symmetry is never restored after inflation.

• PQ symmetry is restored during/after inflation.
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• How the spatial distribution of       
an angular field

• The size of the patch of       
universe in which    takes              
a certain value     can be         
much larger than the Hubble radius 
at the present time.

• Relic axion abundance           
depends on     and initial angle    .

Pre-inflationary PQ symmetry breaking scenario
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evolves over time ?



• Re-alignment mechanism:             
Axion field starts to oscillate             
at

• Severe constraints from 
isocurvature fluctuations if 
inflationary scale is sufficiently high.

Pre-inflationary PQ symmetry breaking scenario

Hamann, Hannestad, Raffelt and Wong (2009)
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QCD phase transition



• Present observable universe contains many different patches with different values of     .

• Topological defects (strings and domain walls) are formed.

• Relic axion density should be estimated by summing over all possible field configurations.

Post-inflationary PQ symmetry breaking scenario
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a/vPQ = 0

Axionic string

• Peccei-Quinn field (complex scalar field)

• Spontaneous breaking of global U(1)PQ symmetry

: axion field

field space coordinate space

a/vPQ = π

a/vPQ = 2π
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Axionic domain wall

• Mass of the axion (QCD effect ;                  )

field space

coordinate space

Strings attached by domain walls.
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• Domain wall number NDW

• NDW degenerate vacua

• If NDW = 1, string-wall systems are unstable.

• They collapse soon after the formation.

• If NDW > 1, string-wall systems are stable.

• coming to overclose the universe.              

• We may avoid this problem by introducing                                   
an energy bias (walls become unstable).

Domain wall problem

Zel’dovich, Kobzarev and Okun (1975)

Sikivie (1982)

: integer determined by QCD anomaly

string
wall

NDW = 1

lifts degenerate vacua 12/20
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• Spectrum of radiated axions is estimated based on the field theoretic lattice simulations.

• Total axion dark matter abundance including the contribution from string-wall systems:

• Constraint on the axion mass:
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Hiramatsu, Kawasaki, KS, and Sekiguchi (2012), Kawasaki, KS, and Sekiguchi (2015)
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Numerical simulation : NDW = 1



• Alternative simulation method

• String density increases,                                                                     
but the axion production becomes less efficient.

• Smaller axion DM mass:

Realizing high string tension                             

that cannot be simulated in the conventional method (                              ). 

Effect of high string tension ?
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Klaer and Moore, 1707.05566, 1708.07521



• Domain walls are long-lived and decay due to the explicit symmetry 
breaking term:

• The contribution from long-lived domain walls leads to the possibility 
that axions explain CDM at lower      or larger      .

• Several constraints on the explicit symmetry breaking term.              
(Some (mild) tuning of parameters is required.)
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Hiramatsu, Kawasaki, KS and Sekiguchi (2013), 
Kawasaki, KS and Sekiguchi (2015), Ringwald and KS (2016)

Models with NDW > 1
NDW = 3



Haloscopes

IAXO

ADMX

MADMAX

NDW
= 1

NDW
= 6

Axion DM
(post-inflationary scenario)
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Search for axion dark matter
Search space in photon coupling                           vs. mass     
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Axion and ALP dark matter



• There might exist several axion-like field in low energy effective theory. 
We generalize the previous considerations:

• Couplings to gluons and photons now become

• We define the field     that                                                             
couples to gluons as QCD axion.

• Fields      that do not couple to QCD (but may still couple to photons)      
are referred to as ALPs.

Axion and axion-like particles (ALPs)

number of axion-like fields
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Mass mixing between axion and ALP

Level crossing behavior of mass eigenvalues when                and                   .

Adiabatic conversion:
Dark matter (mostly the lighter eigenmode) is produced as QCD axion,         
but behaves like ALP at the present time.

Ho, KS and Takahashi, work in progress
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Prediction for ALP dark matter

The ALP can become the main constituent of dark matter at             :
The coupling to photons can be enhanced.

Ho, KS and Takahashi, work in progress

Preliminary
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Summary

• Axion is a well motivated hypothetical particle and     
a good candidate of dark matter.

• Predictions for dark matter strongly depend on             
the early history of the universe.

• A variety of contributions from topological defects           
if the PQ symmetry was broken after inflation.

• Enhancement of couplings due to the adiabatic 
conversion between the axion and ALP.

• Mass ranges can be probed in the future experiments.
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Backup slides



Behavior of mass eigenvalues (other cases)

For



Astrophysical and cosmological constraints

• Astrophysical observations give lower (upper) bounds on      (      )

• Dark matter abundance gives upper (lower) bounds on      (      )      
[and also a lower (upper) bound for DFSZ models]

Ringwald and KS (2016)



Axion dark matter mass: summary

• Pre-inflationary PQ symmetry breaking scenario :

• Post-inflationary PQ symmetry breaking scenario (NDW = 1) : 

• Post-inflationary PQ symmetry breaking scenario (NDW > 1) :

pre-inf.

post-inf. (NDW = 1)

post-inf. (NDW = 6)

tuned
θi → 0

tuned
θi → πdominant / subdominant subdominant

overclosure
dominant

(uncertainty?) subdominant
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Lower mass ranges, depending on initial misalignment angle

Potentially large systematic uncertainty in numerical simulations

Higher mass ranges due to the production from long-lived domain walls

KS (2017)



“        strings in a horizon volume”

Axion production from topological defects

• NDW = 1:                                                                                           
String-wall systems collapse soon after the formation of domain walls.      
This happens around the time of QCD phase transition.

• The relic axion density is given by

•               is given by the scaling solution

• The mean energy                   depends on the energy spectrum                    
of radiated axions.

where

Time at the decay of defects

: scale factor

: string energy per length

Davis (1986); Harari and Sikivie (1987); Davis and Shellard (1989); Hagmann and Sikivie (1991);
Battye and Shellard (1994); Yamaguchi, Kawasaki, and Yokoyama (1999); Hagmann, Chang, and Sikivie (2001)



The energy bias acts as a pressure force       on the wall

Annihilation occurs when the tension       becomes comparable with the pressure

Annihilation mechanism of domain walls

: curvature radius of walls

: surface mass density of walls

Annihilation time

string

wall

vac. 1

vac. 2

vac. NDW

...

vac. 1



Production of axions in the early universe
(post-inflationary PQ symmetry breaking scenario)



• 81922, 163842, 327682 (2D) → decay time of domain walls

• 5123 (3D) → spectrum of radiated axions

Numerical simulation : NDW >1
Hiramatsu, Kawasaki, KS and Sekiguchi (2013)
Kawasaki, KS and Sekiguchi (2015)



• Walls obey scaling solution if            :

• Decay time (estimated from the condition                        )

•      is determined from numerical simulation
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• CP violation

• Dark matter abundance

Constraints

The higher dimensional operator shifts the minimum of the potential 
and spoils the original Peccei-Quinn solution to the strong CP problem.

Long-lived domain walls produce too much cold axions.

→ Large N is required

with

→ Small N is required

Hiramatsu, Kawasaki, KS, and Sekiguchi (2013); Kawasaki, KS, and Sekiguchi (2015)

where



• Constraints on the energy bias ( = on the coefficient     )

• Loopholes appear if the order of the operator is N = 9 or 10,             
but some tuning of the phase parameter       is required.

• With a mild tuning, axions can explain total dark matter abundance        
in the small      range.

Ringwald and KS (2016)
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Radiation of axions

• Compute power spectrum by using data of scalar field                           
obtained by simulations

• We overestimate the energy of axions                                 if 
we include data on the defects

string

higher
energyradiated axions higher energy



Masking analysis

: contains contamination
      from defects     

: use masked data
                   only

compute

Hiramatsu, Kawasaki, Sekiguchi, Yamaguchi and Yokoyama (2011)
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• We must consider two extremely different length scales.

• Width of string core

• Hubble radius

• In order to follow the time evolution correctly, we must maintain

• These conditions put a constraint on the simulation time:

• To what extent can we believe the simulation results ?

Technical limitations of lattice simulations

at the realistic situation.while

for 5123 lattice,



(cf.                                                       )

Global nature of strings

• String tension acquires a large logarithmic correction        
due to the gradient energy: 

• When               , this is larger than                                   
the string radiation power:

• We expect that the radiation damping becomes less 
important in the limit of

Strings might be denser.

Vilenkin and Vachaspati (1987)

Dabholkar and Quashnock (1990)



Simulations with auxiliary fields

• Introduce two complex scalars and one U(1) gauge field:

• Among two phases                    and                   ,                                                            
one combination is eaten by      , and the other is                                    
identified as massless axion with a decay constant

• String tension is given by that of gauge string:

• Tension becomes relatively high compared with                                            
the coupling of strings to axions (         ):

Klaer and Moore, JCAP10(2017)043 [arXiv:1707.05566]
Klaer and Moore, JCAP11(2017)049 [arXiv:1708.07521]

with

(q1,q2) = (4,3)


