
Dense quark matter with chiral imbalance: NJL-model consideration

T. Khunjua 1 K. Klimenko 2 R. Zhohov 2,3

1Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow

2Logunov Institute for High Energy Physics, NRC ”Kurchatov Institute”, Protvino, Moscow Region

3Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN),
Troitsk, Moscow

Valday, Russia
June 28, 2018

Valday, Russia 2018 1 / 27



List of content

1 Introduction

2 The model and its thermodynamical potential
Lagrangian of the model
Thermodynamical potential (TDP)

3 Phase portraits of the model
(ν, ν5)-phase portraits
Gaps and Density
ν5 do promote PCd-phase

4 Non-zero temperature and comparison with lattice

5 Conclusions

Valday, Russia 2018 2 / 27



Introduction

Introduction

Valday, Russia 2018 3 / 27



Introduction

Introduction
Models with four-fermion interactions

Isospin asymmetry is the well-known property of dense quark matter, which exists
in the compact stars and is produced in heavy ion collisions. On the other hand, the
chiral imbalance between left- and right- handed quarks is another highly anticipated
phenomenon that could occur in the dense quark matter.

To investigate dense quark under these conditions we use Nambu–Jona-Lasinio
(NJL) model and take into account:

Baryon – µB chemical potential to investigate non-zero density

Isospin – µI chemical potential to investigate non-zero isotopic imbalance

Chiral isospin – µI5 chemical potential to investigate chiral isotopic imbalance

Non-zero bare quark mass (m0 6= 0) to promote real threshold to pion
condensation phase

Non-zero temperature (T 6= 0) in order to make our investigation applicable to
hot dense quark matter and compare our NJL-model analysis with the known
lattice results
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The model and its thermodynamical potential Lagrangian of the model

Lagrangian of the model

L = q̄
[
γν i∂ν −m0 +

µB
3
γ0 +

µI
2
τ3γ

0 +
µI5
2
τ3γ

0γ5
]
q +

G

Nc

[
(q̄q)2 + (q̄iγ5~τq)2

]
Definitions

q is the flavor doublet q = (qu, qd)
T

qu and qd are four-component Dirac spinors as well as color Nc-pletsa

τk (k = 1, 2, 3) are Pauli matrices

m0 is the diagonal matrix in flavor space with bare quark masses
(from the following mu = md = m0)

aThe summation over flavor, color, and spinor indices is implied
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The model and its thermodynamical potential Lagrangian of the model

Lagrangian of the model

L = q̄
[
γν i∂ν −m0 +

µB
3
γ0 +

µI
2
τ3γ

0 +
µI5
2
τ3γ

0γ5
]
q +

G

Nc

[
(q̄q)2 + (q̄iγ5~τq)2

]
Notations

µB is a baryon number chemical potential

µI is taken into account to promote non-zero imbalance between u and d quarks

µI5 is stands to promote chiral isospin imbalance between uL(R) and dL(R)

G is coupling constant
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The model and its thermodynamical potential Lagrangian of the model

Lagrangian of the model

L = q̄
[
γν i∂ν −m0 +

µB
3
γ0 +

µI
2
τ3γ

0 +
µI5
2
τ3γ

0γ5
]
q +

G

Nc

[
(q̄q)2 + (q̄iγ5~τq)2

]

Symmetries in particular case (m0 = µB = µI = µI5 = 0)

Lagrangian is invariant under transformations from the SU(2)L × SU(2)R group,
which is also inherent in 2-flovor QCD in chiral limit

Symmetries in the chiral case (m0 = 0; µB 6= 0, µI 6= 0, µI5 6= 0)

Symmetry of the Lagrangian is reduced to UB(1)× UI3(1)× UAI3(1)

Symmetries in the general case (m0 6= 0; µB 6= 0, µI 6= 0, µI5 6= 0)

Symmetry remain intact in general case UB(1)× UI3(1)
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The model and its thermodynamical potential Lagrangian of the model

Semi-bosonized version of the Lagrangian

Let us introduce the semi-bosonized version of the Lagrangian that contains only quadratic

powers of fermionic fields as well as auxiliary bosonic fields σ(x), πa(x), :

L̃ = q̄
[
γρi∂ρ −m0 + µγ0 + ντ3γ

0 + ν5τ3γ
0γ5 − σ − iγ5πaτa

]
q − Nc

4G

[
σσ + πaπa

]
Bosonic fields

σ(x) = −2
G

Nc
(q̄q); πa(x) = −2

G

Nc
(q̄iγ5τaq)

The new notations of chemical potentials

µ ≡ µB
3

; ν ≡ µI
2

; ν5 ≡
µI5
2

Note that the composite bosonic field π3(x) can be identified with the physical π0(x)-meson

field, whereas the physical π±(x)-meson fields are the following combinations of the

composite fields, π±(x) = (π1(x)± iπ2(x))/
√

2.
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The model and its thermodynamical potential Thermodynamical potential (TDP)

Effective action

The effective action Seff(σ, πa) of the considered model, after path inegration in the
mean-field approximation has the following form:

Seff(σ(x), πa(x)) = −Nc
∫
d2x

[
σ2(x) + π2

a(x)

4G

]
− iNcTrsfx lnD,

where

D ≡ γν i∂ν −m0 + µγ0 + ντ3γ
0 + ν5τ3γ

0γ5 − σ(x)− iγ5πa(x)τa.
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The model and its thermodynamical potential Thermodynamical potential (TDP)

Effective action

The effective action Seff(σ, πa) of the considered model, after path inegration in the
mean-field approximation has the following form:

Seff(σ(x), πa(x)) = −Nc
∫
d2x

[
σ2(x) + π2

a(x)

4G

]
− iNcTrsfx lnD,

The ground state expectation values 〈σ〉, 〈πa〉, of the composite bosonic fields are
determined by the saddle point equations:

δSeff

δσ
= 0;

δSeff

δπa
= 0
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The model and its thermodynamical potential Thermodynamical potential (TDP)

Thermodynamic potential (TDP)

In the leading order of the large-N expansion TDP is defined by the following
expression: ∫

d3xΩ(σ, πa) = − 1

Nc
Seff{σ, πa}

∣∣∣
σ=〈σ〉,πa=〈πa〉

Let us note that due to a UI3(1)× UAI3(1) invariance of the model in the chiral limit
and UI3(1) invariance at physical point, the TDP depends effectively only on the
combinations, σ2 + π2

3 and π2
1 + π2

2 in the chiral limit, and π2
1 + π2

2 at the physical
point (where 〈σ(x)〉 6= 0 and 〈π3(x)〉 = 0). So in both cases, without loss of generality,
one can put π2 = π3 = 0, and study the TDP as a function of only two variables:

〈σ(x)〉 = M −m0, 〈π1(x)〉 = ∆, 〈π2(x)〉 = 0, 〈π3(x)〉 = 0.

It is also important that we investigate charged pion condensation (PC), that also
violate charged UQ(1) symmetry. So charged PC phase is also superconduct or
superfluid phase.
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The model and its thermodynamical potential Thermodynamical potential (TDP)

Calculation of the TDP

After all possible analytical calculations, we have the following form for the TDP:

Ω(M,∆) =
(M −m0)2 + ∆2

4G
−

4∑
i=1

∫ Λ

0

p2dp

2π2
|ηi|−

T

4∑
i=1

∫ Λ

0

p2dp

2π2

{
ln(1 + e−

1
T

(|ηi|−µ)) + ln(1 + e−
1
T

(|ηi|+µ))
}
,

where ηi are the roots of the following polynomial:

(
η4 − 2aη2 − bη + c

)(
η4 − 2aη2 + bη + c

)
= 0,

a = M2 + ∆2 + |~p|2 + ν2 + ν2
5 ;

b = 8|~p|νν5;

c = a2 − 4|~p|2(ν2 + ν2
5)− 4M2ν2 − 4∆2ν2

5 − 4ν2ν2
5 .
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The model and its thermodynamical potential Thermodynamical potential (TDP)

Fiiting parameters

Since the NJL model is a non-renormalizable theory we have to use fitting
parameters for the quantitative investigation of the system. We use the following,
widely used parameters:

m0 = 5, 5 MeV; G = 15.03 GeV−2; Λ = 0.65 GeV.

In this case at µ = ν = ν5 = 0 one gets for constituent quark mass the value
M = 309 MeV.
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The model and its thermodynamical potential Thermodynamical potential (TDP)

Phases

To define the ground state of the system one should find the coordinates (M0,∆0) of the global
minimum point (GMP) of the TDP. We also interested in the quark number density:

nq = − ∂Ω(M0,∆0)
∂µ . We have found the following phases in the system:

M = 0; ∆ = 0;nq = 0 – symmetrical phase (it could be realized only in chiral limit m0 = 0)

M 6= 0; ∆ = 0;nq = 0 – chiral symmetry breaking phase (CSB)

M 6= 0; ∆ 6= 0;nq = 0 – pion condensation phase with zero quark density (PC)
(M = 0 in chiral lim.)

M 6= 0; ∆ = 0;nq 6= 0 – chiral symmetry breaking phase with non-zero quark density (CSBd)

M 6= 0; ∆ 6= 0;nq 6= 0 – pion condensation phase with non-zero quark density (PCd)

M ≈ m0; ∆ = 0;nq 6= 0 – partially restored (CSB) phase with non-zero quark density
(CSBdr)
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Phase portraits of the model (ν, ν5)-phase portraits

(ν, ν5)-phase portraits

µ = 0 MeV
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Phase portraits of the model (ν, ν5)-phase portraits

(ν, ν5)-phase portraits

µ = 150 MeV
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Phase portraits of the model (ν, ν5)-phase portraits

(ν, ν5)-phase portraits

µ = 200 MeV

Chiral limit m0 = 0
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Certain dual symmetry, that we have observed in the chiral limit, is broken explicitly. Nevertheless

duality is still relatively instructive even at the physical point. On the other hand, the results

become more physically adequate due to the threshold νc = mπ/2 ≈ 70MeV to the PC phase.
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Phase portraits of the model Gaps and Density

Gaps and Density

Valday, Russia 2018 17 / 27



Phase portraits of the model Gaps and Density

Slices of the (ν, ν5) phase portrait at µ = 150 MeV

µ = 150 MeV; ν5 = 350 MeV
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One can easily see that the quark matter in PCd-phase has baryon density approximately

equal to the density of the ordinary nuclear matter. Duality is still relatively instructive

feature to investigate phase portrait.
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Phase portraits of the model Gaps and Density

Slices of the (ν, ν5) phase portrait at µ = 200 MeV

µ = 200 MeV; ν5 = 350 MeV
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One can easily see that the quark matter in PCd-phase has baryon density approximately

equal to the density of the ordinary nuclear matter. Duality is still relatively instructive

feature to investigate phase portrait.
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Phase portraits of the model ν5 do promote PCd-phase

ν5 does promote PCd-phase
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Phase portraits of the model ν5 do promote PCd-phase

(µ, ν)-phase portraits

ν5 = 0 MeV

(µ, ν)-phase portrait
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It is evident from the figures that PCd phase exist in the very small region of the phase

portrait.
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Phase portraits of the model ν5 do promote PCd-phase

(µ, ν)-phase portraits

ν5 = 200 MeV

(µ, ν)-phase portrait
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One can see from that non-zero isospin chiral potential ν5 does promote the PCd phase in a

wide range of the parameters.
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Non-zero temperature and comparison with lattice

Non-zero temperature T 6= 0
comparison with the lattice simulations
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Non-zero temperature and comparison with lattice

(ν, T )-phase portraits

ν5 = 0 MeV

(ν, T )-phase portrait
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Qualitatively comparable with the first principle lattice simulation.
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Non-zero temperature and comparison with lattice

(ν, T )-phase portraits

ν5 = 200 MeV

(ν, T )-phase portrait
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As one could expect, the system restores broken symmetries under non-zero temperature.

Nevertheless, it is easy to see that PCd phase still occupies wide range of parameters in the

phase portrait
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Non-zero temperature and comparison with lattice

(ν5, T )-phase portraits at ν = 0 MeV

(ν5, T )-phase portrait
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We have recently shown that introduction of the chiral chemical potential µ5 into

consideration (with the following term in the Lagrangian: µ5
2
q̄γ0γ5q ) leads to an additional

dual-symmetry between µI5 ←→ µ5 in the region where ∆ = 0. In other words, in the NJL

model (1) we can certainly consider µI5 as a µ5 (only in the pure CSB phase). So we can

compare our results with the known lattice calculations with µ5

[1512.05873] (Braguta et al.).
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Non-zero temperature and comparison with lattice

(ν5, T )-phase portraits at ν = 0 MeV

Critical temperature Tc within NJL

0.99

1

1.01

1.02

1.03

0.1 0.2 0.3 0.4 0.50 ν5/GeV

T
c(
ν5
)/
T
c(
0
)

Critical temperature Tc within Lattice

We have recently shown that introduction of the chiral chemical potential µ5 into

consideration (with the following term in the Lagrangian: µ5
2
q̄γ0γ5q ) leads to an additional

dual-symmetry between µI5 ←→ µ5 in the region where ∆ = 0. In other words, in the NJL

model (1) we can certainly consider µI5 as a µ5 (only in the pure CSB phase). So we can

compare our results with the known lattice calculations with µ5

[1512.05873] (Braguta et al.).

Valday, Russia 2018 26 / 27



Conclusions

Conclusions

We have shown that there is a huge PCd region in the phase portrait of the model
promoted by ν5

The certain duality which exist in chiral limit is still instructive at the physical point

Obtained phase portraits are in qualitative accordance with the recent lattice

simulations
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